70 research outputs found

    Performance Measurement in Internet Gaming Industry – Implementing An Effective Balanced Scorecard at An Online Casino

    Get PDF
    Performance Measurement Systems (PMS) are widely known and used in business practice. In business administration, esp. Controlling, PMS is a steady component in research and education. Over time, a lot of different versions have been developed in order to take the specific requirements of companies and sectors into account. They range from conventional PMS to highly complex, hierarchy-related Controlling Systems. The common goal of all these versions is to improve the planning and management of organizations and processes. According to the literature, the PMS is a standard management tool in many industries all over the world and could be transferred to almost any kind of product or service. In this article, we will investigate how PMS can help to improve the competitiveness of online casinos. So far, there are no articles or case studies published on this specific field of interest. The topic itself is very new and innovative even though the first online casinos have existed for more than ten years. Based on the case study of an online casino, we will show how an effective PMS could be implemented by using the classical Balanced Scorecard (BSC) in order to resolve management planning issues. The authors will demonstrate how this concept can be a “blueprint” for other e-business sectors while also considering the specific challenges, e.g. rapid (technological) development and fierce competition. Keywords: performance measurement, balanced scorecard, e-business, online casinos, Internet Gaming DOI: 10.7176/EJBM/11-18-13 Publication date:June 30th 201

    Climate change impact assessment under data scarcity

    Get PDF
    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. The different regions of the Mediterranean landscape are already experiencing and expecting a broad range of natural and man-made threats to water security. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The catchment has a size of 472.5 km2. The catchment was already affected by multi-drought periods (1990-2000) (Piras et al. 2014). The process-based Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydro-logical data is poor as it is common for many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. A soil sampling campaign was conducted together with the department of Geography of the University of Kiel to assess more precisely the physical properties of the top soil (30cm depth) at 239 locations in the Rio Mannu catchment. Different deterministic and hybrid geostatistical regionalization methods like Multi-Linear Regression, Inverse Distance Weighting, Ordinary Kriging and Regression Kriging (Odeh et al. 1995) were used to calculate spatially distributed maps of particular lab-analyzed soil information. The applied regionalization methods were then tested on the prediction performance. The best performing prediction method was used to calculate a new classified soil texture map for the catchment. Soil hydrological properties were assigned to the soil texture classes by pedo-transfer functions. WaSiM was then parameterized in 2 different settings. One setting (WASiM-ARU) used the standard available soil information of Aru et al. (1990) and the other (WASiM-RKS) the improved new soil information. The WaSiM-ARU setting was used for calibration and validation. WaSiM-ARU was calibrated and validated with spatially distributed evapotranspiration rates derived with the triangle method (Jiang and Islam, 1999) and soil moisture records, due to missing adequate gauging information in the catchment. The modeled evapotranspiration result girds using WaSiM-RKS setup with the improved soil model setup show a better fit especially for the growing season to those derived from remote sensing without further calibration. Both WaSiM setups were driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series and with climate change indices like the standardized difference precipitation index, the evapotranspiration index and by the number of consecutive flow conditions. Furthermore long-term annual and monthly mean changes were analyzed. The simulated results show a reduction of all hydrological quantities in the future. Furthermore simulation results reveal an earlier onset of dry conditions in the catch-ment. The comparison of modeling results shows that the quality of the soil model setup has a major impact on the spatial distribution of modeling outputs. Finally runoff modeling results of both WaSiM setups were compared to other modeling results which were processed with other hydrological models in the test site within CLIMB. Those models used a very similar setup as WaSiM-ARU. The comparison shows a significant uncertainty in the processed results based on to the applied hydrological model. Especially in ungauged catchments like the Rio Mannu those uncertainties need to be considered in the climate change impact assessment analysis, the resulting adaption strategies and for the policy decision making. However, findings also show that the quality of soil input and parametrization creates uncertainties when using WaSiM that are in the same range as the uncertainties produced by the different applied hydrological models. The study shows that the combination of sophisticated climate model downscaling and bias correction techniques, improved hydrological model parametrization with improved soil information, and validation with in-situ and remote sensing measurements, has a high potential to improve environmental impact assessment in data scarce regions

    Der Geophilus Bodenprofilscanner: Aufbau und Anwendungsbeispiele

    Get PDF

    Motivations and Needs of Older People for Work and Active Lifestyle

    Get PDF
    The article presents the results of a poll of older people on the example of a particular region (The Tomsk Region) to identify the need for an active lifestyle and penchant for productive work. The system ofhypotheses under article issues is tested. The aim of the work is to analyze problems of older people which affect their labor activity.The empirical base for the study was the results of the survey (sample frame 400 pers.). The respondents were older people living in urban and rural areas of the Tomsk Region. To test the generated hypothesesstatistical methods (analysis of variance, correlation analysis, etc.) are used. There are three main problems the elderly related to their needs and inclinations to work. It was determined that the formationof a stable demand of older people in productive work and active lifestyle will help to solve a number of problems of socio-psychological and economic nature at the present stage of social development inRussia and abroad

    AgriWeedClim database: A repository of vegetation plot data from Central European arable habitats over 100 years

    Get PDF
    Aims: Arable habitats (i.e. fields, orchards, vineyards, and their fallows) were cre- ated by humans and have been essential elements in Central European landscapes for several millennia. In recent decades, these habitats have been drastically altered by changes in land use as well as agricultural practices and, more recently, by climate change. These changes have precipitated substantial changes in vegetation and their spatial and temporal trajectories have not yet been exhaustively studied. Here, we present the AgriWeedClim database —­ a new resource of vegetation plot (relevé) data of arable habitats in Central Europe. Location: Germany, Czech Republic, Slovakia, Switzerland, Liechtenstein, Austria, Hungary, Northern Italy, Slovenia, Croatia. Methods: Vegetation plot data were obtained from large repositories (e.g. European Vegetation Archive), specialized regional databases, colleagues and the literature. Data were then checked for completeness and standardized (e.g. taxonomy, nomenclature, crop types). Species were assigned native, archaeophyte (i.e. alien species introduced before c. 1492 CE) or neophyte (i.e. alien species introduced after c. 1492 CE) status. Results: The AgriWeedClim database version 1.0 contains georeferenced data from 32,889 vegetation plots sampled from 1916 to 2019. Conclusions: We provide an overview of this new resource and present example analyses to show its content and possible applications. We outline potential research questions including analysis of patterns and causes of vegetation changes in arable habitats from the early 20th century to the present

    Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment

    Get PDF
    This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models - CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) - are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with biascorrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971-2000) and future (2041-2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables - discharge, soil water content, and actual evapotranspiration - are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM)

    Proposal of 0.5 mg of protein/100 g of processed food as threshold for voluntary declaration of food allergen traces in processed food-A first step in an initiative to better inform patients and avoid fatal allergic reactions : A GA(2)LEN position paper

    Get PDF
    Background Food anaphylaxis is commonly elicited by unintentional ingestion of foods containing the allergen above the tolerance threshold level of the individual. While labeling the 14 main allergens used as ingredients in food products is mandatory in the EU, there is no legal definition of declaring potential contaminants. Precautionary allergen labeling such as "may contain traces of" is often used. However, this is unsatisfactory for consumers as they get no information if the contamination is below their personal threshold. In discussions with the food industry and technologists, it was suggested to use a voluntary declaration indicating that all declared contaminants are below a threshold of 0.5 mg protein per 100 g of food. This concentration is known to be below the threshold of most patients, and it can be technically guaranteed in most food production. However, it was also important to assess that in case of accidental ingestion of contaminants below this threshold by highly allergic patients, no fatal anaphylactic reaction could occur. Therefore, we performed a systematic review to assess whether a fatal reaction to 5mg of protein or less has been reported, assuming that a maximum portion size of 1kg of a processed food exceeds any meal and thus gives a sufficient safety margin. Methods MEDLINE and EMBASE were searched until 24 January 2021 for provocation studies and case reports in which one of the 14 major food allergens was reported to elicit fatal or life-threatening anaphylactic reactions and assessed if these occurred below the ingestion of 5mg of protein. A Delphi process was performed to obtain an expert consensus on the results. Results In the 210 studies included, in our search, no reports of fatal anaphylactic reactions reported below 5 mg protein ingested were identified. However, in provocation studies and case reports, severe reactions below 5 mg were reported for the following allergens: eggs, fish, lupin, milk, nuts, peanuts, soy, and sesame seeds. Conclusion Based on the literature studied for this review, it can be stated that cross-contamination of the 14 major food allergens below 0.5 mg/100 g is likely not to endanger most food allergic patients when a standard portion of food is consumed. We propose to use the statement "this product contains the named allergens in the list of ingredients, it may contain traces of other contaminations (to be named, e.g. nut) at concentrations less than 0.5 mg per 100 g of this product" for a voluntary declaration on processed food packages. This level of avoidance of cross-contaminations can be achieved technically for most processed foods, and the statement would be a clear and helpful message to the consumers. However, it is clearly acknowledged that a voluntary declaration is only a first step to a legally binding solution. For this, further research on threshold levels is encouraged.Peer reviewe

    Proposal of 0.5 mg of protein/100 g of processed food as threshold for voluntary declaration of food allergen traces in processed food—A first step in an initiative to better inform patients and avoid fatal allergic reactions: A GA²LEN position paper

    Get PDF
    Background: Food anaphylaxis is commonly elicited by unintentional ingestion of foods containing the allergen above the tolerance threshold level of the individual. While labeling the 14 main allergens used as ingredients in food products is mandatory in the EU, there is no legal definition of declaring potential contaminants. Precautionary allergen labeling such as "may contain traces of" is often used. However, this is unsatisfactory for consumers as they get no information if the contamination is below their personal threshold. In discussions with the food industry and technologists, it was suggested to use a voluntary declaration indicating that all declared contaminants are below a threshold of 0.5 mg protein per 100 g of food. This concentration is known to be below the threshold of most patients, and it can be technically guaranteed in most food production. However, it was also important to assess that in case of accidental ingestion of contaminants below this threshold by highly allergic patients, no fatal anaphylactic reaction could occur. Therefore, we performed a systematic review to assess whether a fatal reaction to 5mg of protein or less has been reported, assuming that a maximum portion size of 1kg of a processed food exceeds any meal and thus gives a sufficient safety margin. Methods: MEDLINE and EMBASE were searched until 24 January 2021 for provocation studies and case reports in which one of the 14 major food allergens was reported to elicit fatal or life-threatening anaphylactic reactions and assessed if these occurred below the ingestion of 5mg of protein. A Delphi process was performed to obtain an expert consensus on the results. Results: In the 210 studies included, in our search, no reports of fatal anaphylactic reactions reported below 5 mg protein ingested were identified. However, in provocation studies and case reports, severe reactions below 5 mg were reported for the following allergens: eggs, fish, lupin, milk, nuts, peanuts, soy, and sesame seeds. Conclusion: Based on the literature studied for this review, it can be stated that cross-contamination of the 14 major food allergens below 0.5 mg/100 g is likely not to endanger most food allergic patients when a standard portion of food is consumed. We propose to use the statement "this product contains the named allergens in the list of ingredients, it may contain traces of other contaminations (to be named, e.g. nut) at concentrations less than 0.5 mg per 100 g of this product" for a voluntary declaration on processed food packages. This level of avoidance of cross-contaminations can be achieved technically for most processed foods, and the statement would be a clear and helpful message to the consumers. However, it is clearly acknowledged that a voluntary declaration is only a first step to a legally binding solution. For this, further research on threshold levels is encouraged

    Proposal of 0.5 mg of protein/100 g of processed food as threshold for voluntary declaration of food allergen traces in processed food-A first step in an initiative to better inform patients and avoid fatal allergic reactions: A GA(2)LEN position paper

    Get PDF
    BackgroundFood anaphylaxis is commonly elicited by unintentional ingestion of foods containing the allergen above the tolerance threshold level of the individual. While labeling the 14 main allergens used as ingredients in food products is mandatory in the EU, there is no legal definition of declaring potential contaminants. Precautionary allergen labeling such as “may contain traces of” is often used. However, this is unsatisfactory for consumers as they get no information if the contamination is below their personal threshold. In discussions with the food industry and technologists, it was suggested to use a voluntary declaration indicating that all declared contaminants are below a threshold of 0.5 mg protein per 100 g of food. This concentration is known to be below the threshold of most patients, and it can be technically guaranteed in most food production. However, it was also important to assess that in case of accidental ingestion of contaminants below this threshold by highly allergic patients, no fatal anaphylactic reaction could occur. Therefore, we performed a systematic review to assess whether a fatal reaction to 5mg of protein or less has been reported, assuming that a maximum portion size of 1kg of a processed food exceeds any meal and thus gives a sufficient safety margin.MethodsMEDLINE and EMBASE were searched until 24 January 2021 for provocation studies and case reports in which one of the 14 major food allergens was reported to elicit fatal or life-threatening anaphylactic reactions and assessed if these occurred below the ingestion of 5mg of protein. A Delphi process was performed to obtain an expert consensus on the results.ResultsIn the 210 studies included, in our search, no reports of fatal anaphylactic reactions reported below 5 mg protein ingested were identified. However, in provocation studies and case reports, severe reactions below 5 mg were reported for the following allergens: eggs, fish, lupin, milk, nuts, peanuts, soy, and sesame seeds.ConclusionBased on the literature studied for this review, it can be stated that cross-contamination of the 14 major food allergens below 0.5 mg/100 g is likely not to endanger most food allergic patients when a standard portion of food is consumed. We propose to use the statement “this product contains the named allergens in the list of ingredients, it may contain traces of other contaminations (to be named, e.g. nut) at concentrations less than 0.5 mg per 100 g of this product” for a voluntary declaration on processed food packages. This level of avoidance of cross-contaminations can be achieved technically for most processed foods, and the statement would be a clear and helpful message to the consumers. However, it is clearly acknowledged that a voluntary declaration is only a first step to a legally binding solution. For this, further research on threshold levels is encouraged.</div
    corecore