203 research outputs found

    The realities of storing carbon dioxide - A response to CO2 storage capacity issues raised by Ehlig-Economides & Economides

    Get PDF
    In a recent publication, Ehlig-Economides & Economides (2010) have sought to demonstrate that carbon dioxide capture and storage (CCS) is not technically or economically feasible, based on a supposed lack of underground storage capacity. We consider this to be a serious misrepresentation of the scientific, engineering and operational facts surrounding CCS. Ehlig-Economides & Economides raise a number of storage related issues: reservoir boundaries, capacity, pressure management, storage integrity, dissolution and storage in depleted reservoirs. We take each one in turn, highlighting specific errors in the paper but also drawing attention to more general background issues. Finally, we discuss in more detail some inconsistencies in the paper surrounding the reservoir engineering calculations

    Premature Professionalisation or Early Engagement? Examining Practise in Football Player Pathways

    Get PDF
    There is a growing debate, both in the academic and sporting worlds, about the most appropriate pathway for high potential young players in sport. In this regard, there has been a considerable focus on the age of selection into structured talent development pathways and the nature of the experience once players have been recruited. Given the economic and reputational currency associated with developing professional footballers in particular, it is unsurprising that professional football clubs continue to invest significant financial resources into their academy structures. Understandably, this recruitment policy has attracted substantial attention within the media and research community, with ethical concerns arising surrounding the impact early selection may have on the welfare and the experiences of the young players within the pathway. The aim of this perspective article was to critically consider the research underpinning the early engagement practises of football clubs and the extent to which, and how, the pathway can provide players with the most appropriate starting point for their development. This evidence points to the need to look beyond the prevalent ‘early specialisation vs. diversification’ debate in youth sport towards a consideration of an early engagement perspective that reflects the biopsychosocial influences on talent development and the socio-political environment that influences decisions. We provide practical recommendations focused on the quality of the early engagement experience

    The Irish Football Player Pathway: Examining Stakeholder Coherence Throughout and Across the Player Development System

    Get PDF
    Maximizing the efficiency of the player development system is a strategic priority for any professional football club or association. However, the successful development of a young footballer is largely dependent upon the roles and relationships of the different stakeholders invested in the developmental process. This study examined the level of horizontal (i.e., extent to which stakeholders across a pathway stage work with players in an agreed fashion to optimize their experience) and vertical (i.e., extent to which multiple stages of the pathway are coordinated and build chronologically from previous involvement toward long-term needs) stakeholder coherence throughout the Irish football player pathway following a restructuring of development policies and the implementation of a nationwide academy system between 2016 and 2020 under the Football Association of Ireland's (FAI) Player Development Plan. As a second aim, we explored each of the key stakeholders' alignment to academic talent development principles in order to provide practical recommendations for future player and coach development policies. Accordingly, a series of interviews were conducted with 31 key stakeholders currently engaged in the player pathway. These key stakeholders consisted of parents, coaches and members of the FAI as the National Governing Body for football in Ireland. Data were analyzed using Reflexive Thematic Analysis, with findings highlighting a lack of stakeholder coherence across the pathway, both vertically and horizontally. Stakeholders displayed inconsistency in their understanding of the purpose of the player pathway and its long-term strategic aims, as well as demonstrating poor and incohesive relationships with each of the different stakeholders. Moreover, talent development principles between the different stakeholders appeared well-understood overall, although the practical implementation of several of these principles in applied practice did not appear to exist. Results highlight the need for organizational intervention and structural change across the Irish player pathway to maximize long-term player development in the future. Practical implications for the FAI are discussed and recommendations are made to support optimal player development policies moving forward

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change

    Climate Change: Scenarios & Impacts for Ireland (2000-LS-5.2.1-M1) ISBN:1-84095-115-X

    Get PDF
    The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2001) is the most authoritative assessment of global climate change to date. Produced by several hundred leading scientists in various areas of climate studies, its principal conclusions include the following: • Global average temperature has increased by 0.6 ± 0.2°C since 1860 with accelerated warming apparent in the latter decades of the 20th century. A further increase of 1.5–6.0°C from 1990 to 2100 is projected, depending on how emissions of greenhouse gases increase over the period. • The 20th century was the warmest of the last millennium in the Northern Hemisphere, with the 1990s being the warmest decade and 1998 the warmest year. Warming has been more pronounced at night than during the day. • Reductions in the extent of snow cover of 10% have occurred in the past 40 years, with a widespread retreat also of mountain glaciers outside the polar regions. Sea-ice thickness in the Arctic has declined by about 40% during late summer/early autumn, though no comparable reduction has taken place in winter. In the Antarctic, no similar trends have been observed. One of the most serious impacts on global sea level could result from a catastrophic failure of grounded ice in West Antarctica. This is, however, considered unlikely over the coming century. • Global sea level has risen by 0.1–0.2 m over the past century, an order of magnitude larger than the average rate over the past three millennia. A rise of approximately 0.5 m is considered likely during the period 1990–2100. • Precipitation has increased over the land masses of the temperate regions by 0.5–1.0% per decade. Frequencies of more intense rainfall events appear to be increasing also in the Northern Hemisphere. In contrast, decreases in rainfall over the tropics have been observed, though this trend has weakened in recent years. More frequent warm-phase El Niño events are occurring in the Pacific Basin. Precipitation increases are projected, particularly for winter, for middle and high latitudes in the Northern Hemisphere and for Antarctica. • No significant trends in the tropical cyclone climatology have been detected. These global trends have implications for the future course of Ireland’s climate which it is judicious to anticipate. This report presents an assessment of the magnitude and likely impacts of climate change in Ireland over the course of the current century. It approaches this by establishing scenarios for future Irish climate based on global climate model projections for the middle and last quarter of the present century. These projections are then used to assess probable impacts in key sectors such as agriculture, forestry, water resources, the coastal and marine environments and on biodiversity. The purpose of the report is to firstly identify where vulnerability to climate change exists in Ireland and what adjustments are likely in the operation of environmental systems in response to such changes. In some sectors, e.g. agriculture, some new opportunities may arise. In other instances, e.g. water resource management, long-term planning strategies will be necessary to mitigate adverse impacts. Long lead times for adjustment characterise many sectors, e.g. forestry, and it is important to provide as much advance warning of likely changes as possible to enable adaptation to commence early. By anticipating change it may be possible to minimise adverse impacts and to maximise positive aspects of global climate change

    TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements

    Get PDF
    To assess horizontal and vertical transports of methane (CH4) concentrations at different heights within the troposphere, we analyzed simulations by 12 chemistry transport models (CTMs) that participated in the TransCom-CH4 intercomparison experiment. Model results are compared with aircraft measurements at 13 sites in Amazon/Brazil, Mongolia, Pacific Ocean, Siberia/Russia, and United States during the period of 2001-2007. The simulations generally show good agreement with observations for seasonal cycles and vertical gradients. The correlation coefficients of the daily averaged model and observed CH4 time series for the analyzed years are generally larger than 0.5, and the observed seasonal cycle amplitudes are simulated well at most sites, considering the between-model variances. However, larger deviations show up below 2 km for the model-observation differences in vertical profiles at some locations, e.g., at Santarem, Brazil, and in the upper troposphere, e.g., at Surgut, Russia. Vertical gradients and concentrations are underestimated at Southern Great Planes, United States, and Santarem and overestimated at Surgut. Systematic overestimation and underestimation of vertical gradients are mainly attributed to inaccurate emission and only partly to the transport uncertainties. However, large differences in model simulations are found over the regions/seasons of strong convection, which is poorly represented in the models. Overall, the zonal and latitudinal variations in CH4 are controlled by surface emissions below 2.5 kmand transport patterns in the middle and upper troposphere. We show that the models with larger vertical gradients, coupled with slower horizontal transport, exhibit greater CH4 interhemispheric gradients in the lower troposphere. These findings have significant implications for the future development of more accurate CTMs with the possibility of reducing biases in estimated surface fluxes by inverse modelling
    corecore