576 research outputs found

    Distributed Consensus to Enable Merging and Spacing of UAS in an Urban Environment

    Get PDF
    This paper presents a novel approach to enable multiple Unmanned Aerial Systems approaching a common intersection to independently schedule their arrival time while maintaining a safe separation. Aircraft merging at a common intersection are grouped into a network and each aircraft broadcasts its arrival time interval to the network. A distributed consensus algorithm elects a leader among the aircraft approaching the intersection and helps synchronize the information received by each aircraft. The consensus algorithm ensures that each aircraft computes a schedule with the same input information. The elected leader also dictates when a schedule must be computed, which may be triggered when a new aircraft joins the network. Preliminary results illustrating the collaborative behavior of the vehicles are presented

    A Learning-Based Guidance Selection Mechanism for a Formally Verified Sense and Avoid Algorithm

    Get PDF
    This paper describes a learning-based strategy for selecting conflict avoidance maneuvers for autonomous unmanned aircraft systems. The selected maneuvers are provided by a formally verified algorithm and they are guaranteed to solve any impending conflict under general assumptions about aircraft dynamics. The decision-making logic that selects the appropriate maneuvers is encoded in a stochastic policy encapsulated as a neural network. The networks parameters are optimized to maximize a reward function. The reward function penalizes loss of separation with other aircraft while rewarding resolutions that result in minimum excursions from the nominal flight plan. This paper provides a description of the technique and presents preliminary simulation results

    Fermi Surface Reconstruction in CeRh1−x_{1-x}Cox_{x}In5_{5}

    Full text link
    The evolution of the Fermi surface of CeRh1−x_{1-x}Cox_xIn5_5 was studied as a function of Co concentration xx via measurements of the de Haas-van Alphen effect. By measuring the angular dependence of quantum oscillation frequencies, we identify a Fermi surface sheet with ff-electron character which undergoes an abrupt change in topology as xx is varied. Surprisingly, this reconstruction does not occur at the quantum critical concentration xcx_c, where antiferromagnetism is suppressed to T=0. Instead we establish that this sudden change occurs well below xcx_c, at the concentration x ~ 0.4 where long range magnetic order alters its character and superconductivity appears. Across all concentrations, the cyclotron effective mass of this sheet does not diverge, suggesting that critical behavior is not exhibited equally on all parts of the Fermi surface.Comment: 4 pages, 4 figure

    Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services

    Get PDF
    This paper presents the development of ICAROUS-2 (Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services), the second generation of a software architecture that integrates several algorithms as distributed onboard services to enable robust autonomous UAS applications. In particular, the ICAROUS architecture defines a framework to perform detect and avoid, geofencing, path monitoring, path planning, and autonomous decision making to ensure safety and mission progress. Most of the core algorithms implemented in ICAROUS are formally verified using an interactive theorem prover. These algorithms are composed together using a plan execution engine, whose operational semantics is formally specified. A description of the integrated architecture, services currently available, and flight test results highlighting the capability of ICAROUS are presented

    Electronic Structure of LuRh2Si2: "Small" Fermi Surface Reference to YbRh2Si2

    Full text link
    We present band structure calculations and quantum oscillation measurements on LuRh2Si2, which is an ideal reference to the intensively studied quantum critical heavy-fermion system YbRh2Si2. Our band structure calculations show a strong sensitivity of the Fermi surface on the position of the silicon atoms zSi within the unit cell. Single crystal structure refinement and comparison of predicted and observed quantum oscillation frequencies and masses yield zSi = 0.379c in good agreement with numerical lattice relaxation. This value of zSi is suggested for future band structure calculations on LuRh2Si2 and YbRh2Si2. LuRh2Si2 with a full f electron shell represents the "small" Fermi surface configuration of YbRh2Si2. Our experimentally and ab initio derived quantum oscillation frequencies of LuRh2Si2 show strong differences with earlier measurements on YbRh2Si2. Consequently, our results confirm the contribution of the f electrons to the Fermi surface of YbRh2Si2 at high magnetic fields. Yet the limited agreement with refined fully itinerant local density approximation calculations highlights the need for more elaborated models to describe the Fermi surface of YbRh2Si2.Comment: 12 pages 10 figure

    Implicitly Coordinated Detect and Avoid Capability for Safe Autonomous Operation of Small UAS

    Get PDF
    As the airspace becomes increasingly shared by autonomous small Unmanned Aerial Systems (UAS), there would be a pressing need for coordination strategies so that aircraft can safely and independently maneuver around obstacles, geofences, and traffic aircraft. Explicitly coordinating resolution strategies for small UAS would require additional components such as a reliable vehicle-to-vehicle communication infrastructure and standardized protocols for information exchange that could significantly increase the cost of deploying small UAS in a shared airspace. This paper explores a novel approach that enables multiple aircraft to implicitly coordinate their resolution maneuvers. By requiring all aircraft to execute the proposed approach deterministically, it is possible for all of them to implicitly agree on the region of airspace each will be occupying in a given time interval. The proposed approach lends itself to the construction of a suitable feedback mechanism that enables the real-time execution of an implicitly conflict-free path in a closed-loop manner dealing with uncertainties in aircraft speed. If a network infrastructure is available, the proposed approach can also exploit the benefits of explicit information

    High-pressure spin shifts in the pseudogap regime of superconducting YBa2Cu4O8 as revealed by 17O NMR

    Full text link
    A new NMR anvil cell design is used for measuring the influence of high pressure on the electronic properties of the high-temperature superconductor YBa2_2Cu4_4O8_8 above the superconducting transition temperature TcT_{\rm c}. It is found that pressure increases the spin shift at all temperatures in such a way that the pseudo-gap feature has almost disappeared at 63 kbar. This change of the temperature dependent spin susceptibility can be explained by a pressure induced proportional decrease (factor of two) of a temperature dependent component, and an increase (factor of 9) of a temperature independent component, contrary to the effects of increasing doping. The results demonstrate that one can use anvil cell NMR to investigate the tuning of the electronic properties of correlated electronic materials with pressure.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.

    Genetic effects on life-history traits in the Glanville fritillary butterfly

    Get PDF
    Background: Adaptation to local habitat conditions may lead to the natural divergence of populations in life-history traits such as body size, time of reproduction, mate signaling or dispersal capacity. Given enough time and strong enough selection pressures, populations may experience local genetic differentiation. The genetic basis of many life-history traits, and their evolution according to different environmental conditions remain however poorly understood. Methods: We conducted an association study on the Glanville fritillary butterfly, using material from five populations along a latitudinal gradient within the Baltic Sea region, which show different degrees of habitat fragmentation. We investigated variation in 10 principal components, cofounding in total 21 life-history traits, according to two environmental types, and 33 genetic SNP markers from 15 candidate genes. Results: We found that nine SNPs from five genes showed strong trend for trait associations (p-values under 0.001 before correction). These associations, yet nonsignificant after multiple test corrections, with a total number of 1,086 tests, were consistent across the study populations. Additionally, these nine genes also showed an allele frequency difference between the populations from the northern fragmented versus the southern continuous landscape. Discussion: Our study provides further support for previously described trait associations within the Glanville fritillary butterfly species across different spatial scales. Although our results alone are inconclusive, they are concordant with previous studies that identified these associations to be related to climatic changes or habitat fragmentation within the angstrom land population.Peer reviewe
    • …
    corecore