46 research outputs found

    Our Space: Being a Responsible Citizen of the Digital World

    Get PDF
    Our Space is a set of curricular materials designed to encourage high school students to reflect on the ethical dimensions of their participation in new media environments. Through role-playing activities and reflective exercises, students are asked to consider the ethical responsibilities of other people, and whether and how they behave ethically themselves online. These issues are raised in relation to five core themes that are highly relevant online: identity, privacy, authorship and ownership, credibility, and participation.Our Space was co-developed by The Good Play Project and Project New Media Literacies (established at MIT and now housed at University of Southern California's Annenberg School for Communications and Journalism). The Our Space collaboration grew out of a shared interest in fostering ethical thinking and conduct among young people when exercising new media skills

    The Grizzly, February 21, 2002

    Get PDF
    Former U.S Ambassador to Sierra Leone now Ursinus Professor • Professor Melrose Testifies Before the Senate • Fire in Reimert: Where Were the Smoke Detectors? • Grant Will Enhance Ursinus Asian Studies Program • Marisol: A Lesson in Living in the Aftermath of September 11th • Winter Olympics Take Salt Lake by Storm • Save a Life: Donate Blood at the March Blood Drive • Opinions: Dressing Up: What Happened to Everyone\u27s Style?; Heart-wrenching and Heart-warming Olympics; For the Appropriateness of Fraternities and Sororities on Campus • When Making Love Becomes Sex: Diversifying Love and Sex • Price Comparison: Don\u27t Let the Cold Season Hurt Your Wallet • Pledging in the Past • Women\u27s Basketball Shoots Out Bryn Mawr to end 2002 Season • Men\u27s Basketball Looks Toward Showdown with Franklin & Marshall • Centennial Conference Wrestling Tournament Held at Ursinushttps://digitalcommons.ursinus.edu/grizzlynews/1508/thumbnail.jp

    Estimated Maternal Pesticide Exposure from Drinking Water and Heart Defects in Offspring

    Get PDF
    Our objective was to examine the relationship between estimated maternal exposure to pesticides in public drinking water and the risk of congenital heart defects (CHD). We used mixed-effects logistic regression to analyze data from 18,291 nonsyndromic cases with heart defects from the Texas Birth Defects Registry and 4414 randomly-selected controls delivered in Texas from 1999 through 2005. Water district-level pesticide exposure was estimated by linking each maternal residential address to the corresponding public water supply district’s measured atrazine levels. We repeated analyses among independent subjects from the National Birth Defects Prevention Study (NBDPS) (1620 nonsyndromic cases with heart defects and 1335 controls delivered from 1999 through 2005). No positive associations were observed between high versus low atrazine level and eight CHD subtypes or all included heart defects combined. These findings should be interpreted with caution, in light of potential misclassification and relatively large proportions of subjects with missing atrazine data. Thus, more consistent and complete monitoring and reporting of drinking water contaminants will aid in better understanding the relationships between pesticide water contaminants and birth defects

    Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Get PDF
    Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III) respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III) reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O(2), rather than Fe(III), was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III) species even in the systems in which Fe(III) was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III) in our laboratory systems proceeded through the following: (1) alteration of NAu-1 and concurrent release of Fe(III) from the octahedral sheets of NAu-1; and (2) subsequent microbial respiration of Fe(III)

    Healing in Acute Ankle Ligament Sprains

    No full text

    A case of spontaneous acquisition of a human sound by an orangutan

    No full text
    The capacity of nonhuman primates to actively modify the acoustic structure of existing sounds or vocalizations in their repertoire appears limited. Several studies have reported population or community differences in the acoustical structure of nonhuman primate long distance calls and have suggested vocal learning as a mechanism for explaining such variation. In addition, recent studies on great apes have indicated that there are repertoire differences between populations. Some populations have sounds in their repertoire that others have not. These differences have also been suggested to be the result of vocal learning. On yet another level great apes can, after extensive human training, also learn some species atypical vocalizations. Here we show a new aspect of great ape vocal learning by providing data that an orangutan has spontaneously (without any training) acquired a human whistle and can modulate the duration and number of whistles to copy a human model. This might indicate that the learning capacities of great apes in the auditory domain might be more flexible than hitherto assumed.</p

    A case of spontaneous acquisition of a human sound by an orangutan

    No full text
    The capacity of nonhuman primates to actively modify the acoustic structure of existing sounds or vocalizations in their repertoire appears limited. Several studies have reported population or community differences in the acoustical structure of nonhuman primate long distance calls and have suggested vocal learning as a mechanism for explaining such variation. In addition, recent studies on great apes have indicated that there are repertoire differences between populations. Some populations have sounds in their repertoire that others have not. These differences have also been suggested to be the result of vocal learning. On yet another level great apes can, after extensive human training, also learn some species atypical vocalizations. Here we show a new aspect of great ape vocal learning by providing data that an orangutan has spontaneously (without any training) acquired a human whistle and can modulate the duration and number of whistles to copy a human model. This might indicate that the learning capacities of great apes in the auditory domain might be more flexible than hitherto assumed.</p
    corecore