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Abstract Camelina sativa, a largely relict crop, has

recently returned to interest due to its potential as an

industrial oilseed. Molecular markers are key tools

that will allow C. sativa to benefit from modern

breeding approaches. Two complementary methodol-

ogies, capture of 30 cDNA tags and genomic reduced-

representation libraries, both of which exploited

second generation sequencing platforms, were used

to develop a low density (768) Illumina GoldenGate

single nucleotide polymorphism (SNP) array. The

array allowed 533 SNP loci to be genetically mapped

in a recombinant inbred population of C. sativa.

Alignment of the SNP loci to the C. sativa genome

identified the underlying sequenced regions that would

delimit potential candidate genes in any mapping

project. In addition, the SNP array was used to assess

genetic variation among a collection of 175 accessions

of C. sativa, identifying two sub-populations, yet low

overall gene diversity. The SNP loci will provide

useful tools for future crop improvement of C. sativa.

Keywords Camelina sativa � Reduced

representation � SNP � Genetic mapping � Diversity �
Polyploidy

Introduction

Camelina sativa (L. Crantz) is a species from the

highly diverse Brassicaceae family, which contains a

number of economically important oilseed crops

(Bailey et al. 2006). Recently C. sativa has garnered

interest as a possible non-food oilseed platform for
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bioproducts and biofuels, which could complement its

crop relatives from the Brassiceae tribe. As a crop C.

sativa benefits from a short generation time and innate

biotic and abiotic stress tolerance. Furthermore, it is

amenable to similar production practices as the widely

grown oilseed crop Brassica napus (Séguin-Swartz

et al. 2009). These various attributes would allow C.

sativa to be grown both in more Northern latitudes and

in more arid areas than B. napus. The potential of C.

sativa as a crop for the Canadian Prairies has already

been established (Gugel and Falk 2006). Although

harbouring many positive traits C. sativa has not been

grown extensively since the 1950s and to ensure its

establishment as a viable crop, improvements need to

be made to seed size, yield traits, oil content and

disease tolerance.

The recent publication of the genome sequence of

C. sativa represented a significant advance for further

research targeting this promising oilseed (Kagale et al.

2014). Previous efforts in molecular genetic analyses

of C. sativa, have mostly focused on identifying the

range of available genetic diversity within the species.

Vollmann et al. (2005) observed low levels of genetic

diversity in 41 C. sativa accessions studied through

RAPD genotyping. More variation was suggested

when studying a collection of 53 C. sativa accessions

using AFLP markers; however, the study was some-

what biased due to a limited geographical sampling

area (Ghamkhar et al. 2010). These studies should

prove invaluable for identifying novel variation for

useful traits; however, they provided no genome

context for the published marker data. In addition

the previously available genetic map for C. sativa

(Gehringer et al. 2006) was derived using AFLP

technology which precludes comparison either within

or across species and such markers are recalcitrant to

conversion to locus specific markers, an essential

prerequisite for marker-assisted selection.

The development of robust genetic markers allows

genomic regions controlling traits of interest to be

tagged and followed in marker-assisted selection,

which can expedite crop improvement strategies

(Collard and Mackill 2008). In addition, molecular

markers allow comprehensive assessment of available

genetic variation within a species leading to the

identification of novel alleles for traits of interest.

Single nucleotide polymorphisms (SNP) are valued as

genetic markers in plants due to their generally

uniform distribution across the genome, relative

abundance and their ability to be used on multiple

platforms, including massively parallel array systems

(Ganal et al. 2009). Genome-wide SNPs in C. sativa

could also be anchored to the genome sequence

allowing rapid identification of candidate genes for

traits of interest and providing genomic substrates for

targeted marker development. The genome sequence

of C. sativa uncovered a relatively undifferentiated

hexaploid genome with strong conservation of

sequence identity between the three subgenomes

(Kagale et al. 2014). This genome structure hampers

the development of robust single copy SNP loci

assayed through standard procedures, which are

dependent upon specific hybridization to short oligo-

nucleotide sequences, thus confounded by the pre-

sence of duplicated loci. In particular in the absence of

a genome sequence, development of SNP loci that

identify true intra-locus polymorphisms requires addi-

tional processing steps to ensure their specificity.

The current research describes two alternative

methods for SNP discovery in C. sativa in the absence

of a genome sequence, the development of an Illumina

GoldenGate SNP array, the generation of a SNP map

for C. sativa subsequently anchored to the genome

sequence, and assessment of genetic variation in a

wide collection of C. sativa accessions. The linkage

map allowed conserved syntenous blocks common to

all Brassicaceae species to be identified within the C.

sativa genome (Schranz et al. 2006), providing a

useful platform for identifying candidate genes for

traits of interest. The SNP loci provide an excellent

basis to establish genome-based improvement of this

emerging industrial oilseed crop.

Materials and methods

Plant materials

In total four C. sativa lines were used for SNP

discovery using two different approaches. C. sativa

lines 31471-03 and 33708-06, are progenitor lines of

36011 and 36012 that show a differential response to

sclerotinia infection as described in Eynck et al.

(2012). Plants of these two lines were grown in a

greenhouse and tissue collected from whole seedlings

2 weeks after germination. RNA was extracted using

the Qiagen RNeasy mini kit according to the manu-

facturer’s protocol (Qiagen Inc., Toronto, ON,
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Canada). cDNA was synthesized from five lg of total

RNA according to Sharpe et al. (2013). Advanced

inbred lines of the old German cultivars Licalla and

Lindo (DSV Seeds, Lippstadt, Germany), which were

used to derive a recombinant inbred (RI) population as

described in Gehringer et al. (2006), were used to

develop reduced representation genomic next gener-

ation sequencing libraries. Plant tissue was collected

from greenhouse grown plants at approximately

2 weeks after germination and DNA extracted accord-

ing to Sharpe et al. (1995).

For diversity analysis, a collection of 178 acces-

sions was obtained from Plant Gene Resources of

Canada (PGRC, Saskatoon, SK, Canada; http://pgrc3.

agr.gc.ca) (Supplementary Table 1). DNA was

extracted from freeze dried tissue of young leaves

using a cetyltrimethylammonium bromide (CTAB)

based method (Murray and Thompson 1980).

30 cDNA library construction and Roche 454

next generation sequencing

30 biased 454 Roche libraries were generated from

cDNA digested with AciI (20 U) for 1 h at 37 �C. Small

fragments were removed by hybridizing the digested

cDNA to AMPure beads (Agencourt Bioscience Cor-

poration, Beverly, MS, US) for 5 min at room temper-

ature, washing with 70 % ethanol and eluting the cDNA

in 10 mM Tris Buffer. The adaptor was prepared by

annealing 100 pmol of oligo A1 (CCATCTCATCCC

TGCGTGTCTCCCACTCAGCAT) and 100 pmol of

oligo A2 (CGATGCTGAGTCGGAGACACGCAG

GGATGA) in annealing buffer (1 mM Tris–HCl pH

8, 15 mM MgCl2, 15 mM NaCl, 0.1 mM spermidine) at

55 �C for 5 min and then allowing the mixture to return

to room temperature. Purified cDNA was hybridized

with 25 lL M-270 streptavidin beads (Dynabeads, Life

Technologies Inc., Burlington, ON, Canada) for 20 min

at room temperature. The adaptor (5 pmol) was ligated

to the immobilized library for 20 min at room temper-

ature, followed by a fill-in reaction using Large

Fragment Bst Polymerase (24 U, NEB, Whitby, ON,

Canada) for 20 min at 42 �C. The single-stranded

library was eluted from the beads using 0.1 N NaOH

and neutralized in Qiagen PBI buffer containing NaOAc

pH5.2. The neutralized, single-stranded library was

cleaned using a Qiagen MinElute Kit according to the

manufacturer’s protocol. The libraries were sequenced

on a Roche 454 GS FLX sequencer in the DNA

Technologies Laboratory at National Research Council,

Saskatoon.

Reduced representation library preparation

and Illumina sequencing

Ten microgram of genomic DNA from Lindo and

Licalla were digested to completion with EcoRI (4 U/lg)

for 12 h at 37 �C. The digested DNA was separated in

0.7 % agarose (19 TAE) for 2 h at 110 V, fragments

between 2 and 4 Kb in length were excised from the

gel and eluted from the agarose using QIAquick gel

extraction kit. The eluted DNA was then used to

generate a reduced representation library with the

Illumina paired-end sample preparation kit according

to the manufacturer’s protocol, with a final insert size

of approximately 300 bp (Illumina Inc., San Diego,

CA, USA). The libraries for each line were sequenced

for 101 cycles from each end of the insert on an

Illumina Genome Analyser IIx in the DNA Technol-

ogies Laboratory at National Research Council,

Saskatoon.

SNP discovery and array development

The 454 transcriptome data was processed and ana-

lysed using SeqMan NGen v2.1.0. The raw data were

trimmed for quality and adapter sequence. Sequences

from line 33708-06 were assembled de novo using the

following parameters: match Size 19, match Spacing

75, minimum match percentage 95, match score 10,

mismatch penalty 25, gap penalty to generate 25,

maximum gap 15 and expected coverage 100. The

filtered sequences from line 31471-03 were reference

mapped to the assembled contigs using the same

parameters as for the de novo assembly except that the

minimum match percentage was increased to 98.

Nucleotide variation was identified in NGen using

default parameters. The resultant list of SNPs was

filtered as described in ‘‘Results’’.

The Illumina genomic data were imported into

CLCBio Genomics Workbench v4. for subsequent

analysis. The sequences were trimmed for quality,

length and presence of adapter sequence. The

sequence data for Lindo were assembled de novo

with default parameters, specifically with a sequence

similarity of 0.8 over 0.5 of the read length. The

sequence data for Licalla were referenced mapped to

Lindo using default parameters (as above), with only
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unique matches being considered. SNP variants were

called with a minimum variant frequency of 35 % and

a predicted genome ploidy level of three, since it had

been previously suggested that C. sativa was an

ancient hexaploid (Hutcheon et al. 2010). Potentially

useful SNPs were filtered using custom Perl scripts as

described in the ‘‘Results’’.

The sequences containing potential SNPs along

with 100 bp of flanking DNA were submitted to the

Illumina� Assay Design Tool (ADT) to generate an

ADT score; those SNPs falling below 0.6 were

rejected. The final selection of 768 SNP loci was

submitted to Illumina to generate the custom pooled

oligo set (OPA).

Genetic mapping

DNA was extracted from Lindo, Licalla and 180 lines

of the RI mapping population according to Murray and

Thompson (1980). Forty-six SSR loci had previously

been mapped on the same population (unpublished

data). DNA was quantified with the Quant-it Pico-

green dsDNA Assay Kit (Life Technologies Inc.,

Burlington, ON, Canada) and 200 ng was hybridized

to the C. sativa Illumina GoldenGate array according

to the manufacturer’s instructions. Subsequently the

arrays were scanned using an Illumina HiScan. The

SNP data were analysed and the genotypes for each

line called using the Genotyping module of the

GenomeStudio software. The genetic linkage map

was generated using Mapmaker v3 with a LOD score

of 3.0 (Lander et al. 1987). The map order was

checked manually for the presence of double cross-

overs, which might indicate incorrectly placed loci,

and the final map distances were generated using the

Kosambi mapping function. The map was drawn using

MapChart v2.2 software (Voorrips 2002).

Population genetic analyses

STRUCTURE v2.3.4 was used to analyse the popu-

lation structure (Pritchard et al. 2000). To estimate the

posterior probabilities (qK) a 100,000 burn-in period

was used, followed by 100,000 iterations using a

model allowing for admixture and correlated allele

frequencies with no a priori location or population

information. At least 10 independent runs of STRUC-

TURE were performed by setting K from 1 to 10, with

10 replicates for each K. The DK was calculated for

each value of K using Structure Harvester (Evanno

et al. 2005; Earl and vonHoldt 2012). A line was

assigned to a given cluster when the proportion of its

genome in the cluster (qK) was higher than a standard

threshold value of 70 %. For the chosen optima value

of K, membership coefficient matrices of replicates

from STRUCTURE were integrated to generate a

Q matrix using the software CLUMPP (Jakobsson and

Rosenberg 2007) and the STRUCTURE bar plot was

drawn using the DISTRUCT software (Rosenberg

2004).

Statistics including gene diversity, PIC value and

allele frequency for each locus were calculated using

Powermarker v3.25 (Liu and Muse 2005). AMOVA

was performed using Arlequin version 3.5.1.3 (Ex-

coffier and Lischer 2010). A phylogenetic tree was

constructed using the unweighted Neighbour-Joining

tree implemented in Darwin (http://darwin.cirad.fr/

darwin). Bootstrap support for this tree was deter-

mined by resampling loci 1000 times.

Results

SNP discovery and array design

Two approaches, both using next generation sequenc-

ing (NGS), were adopted to identify SNPs in the C.

sativa genome. The first involved the development and

sequencing of cDNA libraries that were targeted to

capture the 30 end of expressed transcripts and the

second approach used reduced representation through

restriction digestion and size selection to limit the

regions of the genome that were being assayed.

The 30 biased cDNA libraries were sequenced using

Roche 454 and 956,538 high quality sequences were

generated from line 33708-06 and 586,982 for line

31471-03. Since no reference genome sequence was

available for C. sativa, a de novo assembly was

generated for line 33708-06, which resulted in

582,229 reads (60.9 %) being assembled into 47,313

contigs with an average length of 425 bp. Seventy-four

percent (435,016) of the reads from line 31471-03 were

reference mapped to the assembled contigs with a

fivefold average coverage. Nucleotide variation was

identified using a depth cut-off of 3 and a variant

percentage of 30, which identified 8,037 SNPs (2,683

contigs) and 21,537 insertion/deletions (6,509 contigs).

Due to the anticipated polyploid nature of the genome
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and the desire to generate locus-specific SNPs, further

filtering required both the reference and the alternate

base to be represented in 100 % of the reads. This

significantly reduced the potential number of useful

SNPs to 426 (5 % of the observed variation). Screening

for SNPs with sufficient flanking sequence that also

passed Illumina’s quality check for probe design (ADT

score [0.6) identified 252 SNP loci, which were

submitted for Illumina GoldenGate array design.

The reduced representation genomic libraries were

sequenced on the Illumina GAIIx platform and the

resultant data for each line are shown in Supplemen-

tary Table 2. Eighty-two percent of the Lindo reads

(84,331,454) were de novo assembled using CLCBio

Genomics Workbench to generate 288,946 contigs

(C200 bp), with an average length of 511 bp covering

147.7 Mb of genome sequence. The data from Licalla

was referenced mapped to the Lindo contigs, resulting

in alignment of 46,922,482 reads to 260,431 contigs.

SNP detection using CLCBio identified 234,838 SNP

positions with a single variant base in Licalla at a

depth of at least 8 reads and a variant percentage

greater than 35 %. In order to reduce the impact of

duplicate loci only SNPs where the reference and

alternate base showed no variation were further

processed. This reduced the number of available

SNP positions to 48,421 (20.6 % of possible varia-

tion). In addition, SNPs were further restricted by

selecting those with 100 bp of flanking sequence and

which contained no additional SNPs, reducing the

available SNPs to 6,686 in 4,919 contigs. These SNPs

were submitted to Illumina’s Assay Design Tool and

only those with a score of [0.6 were considered

further. In an attempt to select SNPs across the

genome, inferred synteny with Arabidopsis thaliana

was exploited. The sequence of each contig with

potentially useful SNPs was aligned to the A. thaliana

genome using BLASTN (E value cut-off of 1E-12).

Approximately 50 % of the contigs (2,448) were

homologous to 1,878 annotated A. thaliana genes. A

subset of SNPs were selected for the array design from

contigs that potentially covered the expanse of the A.

thaliana genome. This represented 288 SNPs that

were positioned in contigs with homology to 64, 58,

48, 47 and 61 A. thaliana genes on chromosomes one

to five, respectively. Since genic SNPs can be less

robust due to the influence of unidentified homo-

logues, 228 SNPs were chosen randomly from those

assumed to be intergenic. Including SNPs designed

from the 30 cDNA analyses a total of 768 SNPs were

submitted for Illumina GoldenGate array design

(Supplementary Table 3).

Genetic linkage map for Camelina sativa

A recombinant inbred (RI) population derived from a

cross between Lindo and Licalla was used to develop a

genetic map for C. sativa. The newly developed

GoldenGate array was hybridized with DNA from the

two parental lines and 180 RI lines. Eighteen of the

probes on the array gave poor signals with normalized

R values\0.2 for each sample. Two hundred and seven

probes on the array showed no polymorphism between

the parental lines. The majority of these monomorphic

loci (189) were designed from the 30 cDNA data, and

only 18 of these loci had been designed to specifically

target SNP variation between Lindo and Licalla. The

cluster distribution for the remaining probes on the

array varied in pattern and ease of scoring (Fig. 1). The

majority of the SNP assays showed a pattern that was

distinguished by three clearly defined clusters repre-

senting the three genotypes in the mapping population

(Fig. 1a). In some instances, although three clusters

were observed, one allele was far less tightly clustered

than its counterpart suggesting perhaps additional SNP

variation in the flanking DNA could be impacting the

efficacy of the hybridization (Fig. 1b). In rare cases

both alleles showed loose clustering indicating poor

hybridization. Such anomalies could in extreme cases

suggest additional clusters; however, mapping of the

loci showed normal segregation was occurring. Differ-

ences in separation of the clusters was also observed

and in some cases the variance in normalized theta

value between the two alleles was extremely small,

requiring manual cluster calling in the GenomeStudio

software (Fig. 1c). A very small subset of SNP loci (7)

appeared to be dominant in nature, with only one of the

alleles showing significant fluorescence levels (nor-

malized R values). For such loci determination of

heterozygous individuals was not possible (Fig. 1d).

After manual editing of the GenomeStudio cluster

file it was possible to score and map 533 SNP loci.

These were arranged over twenty linkage groups,

representing the haploid chromosome number of C.

sativa (Table 1; Fig. 2). Forty-six EST-SSR loci that

had previously been mapped on 90 lines of the same

population were added to give a final genetic map

composed of 579 loci distributed over 1,808.7 cM.
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There were at least 4 instances where significant

([20 cM) gaps in the linkage map (Cas 4, 15, 17 and

18) were observed. These regions were not associated

with the four regions where segregation ratios for

multiple linked loci were significantly (p \ 0.01)

imbalanced (Cas 1, 6, 17 and 20).

Fig. 1 GenomeStudio images of SNP markers segregating in

the RIL Population. a SNP showing typical 3 cluster segregation

pattern; b SNP where the hybridization of one allele was

affected perhaps by the presence of an additional SNP in the

flanking sequence; c SNP with extremely low cluster separation,

requiring manual editing of the clusters; and d dominant SNP for

which only one allele could be scored
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Anchoring to the Camelina sativa genome

and delineation of the Brassicaceae ancestral

blocks

The 100 bp sequences flanking the SNP loci were

aligned to the C. sativa genome sequence using BLAT

(Kent 2002) with default parameters. In addition,

sequences of the contigs from which each of the

mapped SNP markers was derived were aligned to

both the C. sativa and the A. thaliana genome using

BLASTN (1E-12) (Supplementary Table 4). Simi-

larly the EST sequences used to design the SSR primer

sequences were compared to the two genomes. There

was a strong correlation between the genetic and

physical maps of C. sativa (Supplementary Figure 1);

however, in regions of reduced recombination there

were minor discrepancies between the marker order of

the genetic map and the genome sequence. On average

the markers were distributed 1 locus per 1 Mb of

genome sequence, the regions with increased

recombination or the larger gaps in the map corre-

sponded to a paucity of loci selected for the particular

genomic segment with physical distances ranging

from 3.7 to 6.2 Mb between the loci. Some of the

centromeric regions also displayed a low density of

SNP loci, which was not reflected in the genetic

distance (Supplementary Table 4).

Comparative alignment of 413 loci with homology

either to A. thaliana genes or adjacent genome sequence

identified the Brassicaceae ancestral blocks (A–X)

defined by Schranz et al. (2006) (Supplementary

Table 5; Fig. 2). These alignments were subsequently

confirmed through the comprehensive analyses offered

by alignment of the C. sativa genome sequence with the

A. thaliana genome in Kagale et al. (2014). The SNP

loci allow delineation of shared ancestry across the

Brassicaceae, which assists with the identification of

candidate genes underlying genomic regions of interest,

in particular providing access to the extensive annota-

tion of the A. thaliana genome.

Table 1 Genetic linkage map of Camelina sativa

C. sativa

linkage group

No. of

SNP loci

No. of

SSR loci

Total

loci

cM Average distance

between loci (cM)

Average distance

between loci (Mb)1

Cas1 23 3 26 68.2 2.62 0.84

Cas2 13 0 13 68.8 5.29 1.96

Cas3 31 5 36 109.4 3.04 0.70

Cas4 31 3 34 95.8 2.82 0.73

Cas5 24 1 25 95.5 3.82 1.28

Cas6 15 4 19 69.9 3.68 1.14

Cas7 32 1 33 106.7 3.23 0.96

Cas8 30 5 35 105.8 3.02 0.77

Cas9 38 1 39 92.0 2.36 0.88

Cas10 22 4 26 83.7 3.22 0.95

Cas11 57 1 58 145.8 2.51 0.80

Cas12 15 1 16 88.0 5.5 1.72

Cas13 34 3 37 93.0 2.51 0.60

Cas14 27 3 30 105.0 3.5 0.99

Cas15 17 3 20 75.2 3.76 1.33

Cas16 22 2 24 94.5 3.94 1.09

Cas17 27 2 29 93.9 3.24 1.05

Cas18 29 0 29 72.7 2.51 0.71

Cas19 24 2 26 81.0 3.11 0.95

Cas20 22 2 24 63.8 2.66 1.04

Total 533 46 579 1,808.7 3.12 0.95

1 The physical position in the genome was defined based on BLAT alignment of the flanking sequence for each SNP or SSR marker
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Genetic variation among C. sativa accessions

The newly developed C. sativa SNP array was used to

genotype 178 C. sativa accessions, three lines had

[20 % missing values and were excluded from

further analyses. The cluster patterns observed for

the SNP loci were similar to those observed for the

mapping population, although further clusters were

observed in some instances presumably due to the

presence of additional SNP variation in the DNA

flanking the SNP position found among the diversity

collection. Based on automated calling 232 of the 768

SNPs were uninformative, and 11 had[20 % missing

genotype values; thus 493 SNP loci were used for

further analyses. Basic information including PIC

value (ranging from 0.006 to 0.375), gene diversity

(0.006–0.5) and major allele frequency (0.5–0.99) for

each SNP locus is provided in Supplementary Table 6.

The gene diversity for the entire collection was 0.26,

which is lower than a similar analysis of elite maize

germplasm (Van Inghelandt et al. 2010). A recent

study by Delourme et al. (2013) which assessed SNP

variation among germplasm of the related allotetra-

ploid Brassica napus presented PIC values as a

measure of gene diversity for each SNP locus. In

comparing mean PIC values between the species

invariably lower PIC values were seen for C. sativa,

where values for each linkage group ranged from

0.153 to 0.286 in C. sativa and from 0.292 to 0.330 in

B. napus (Supplementary Table 7). A very high

inbreeding coefficient (FIS value) of 0.96 was calcu-

lated from the C. sativa lines that can be explained by

the inbreeding nature of the species whereas the

overall fixation index (FST value) of 0.276, which

provides a measure of population differentiation,

indicates a similar level of differentiation among

sub-populations as that found among winter and spring

types of B. napus (Delourme et al. 2013).

Population structure analysis was completed using

STRUCTURE (Pritchard et al. 2000) for 175 acces-

sions. Since the estimated log-likelihood values

appeared to be an increasing function of K for all

examined values of K, inferring the exact value of

K was not straightforward (Supplementary Figure 2a).

Using the program Structure Harvester (Evanno et al.

2005) maximal DK revealed that at a K value of 2 the

accessions were clustered into two sub-populations

(Supplementary Figure 2b). Using a minimum value

of 70 % ancestry, 152 accessions were assigned to one

of the two sub-populations, 61 accessions to Popula-

tion I and 91 accessions to Population II (Fig. 3a). The

remaining 23 accessions appeared to be admixtures or

have ancestry from more than one population, with qK

values \70 % for both populations (Supplementary

Table 1). The population clusters did not group

according to the available geographical information.

A similar pattern was observed for the relationship as

determined by the unweighted Neighbour-Joining

method, which clustered accessions into two major

groups. In Fig. 3b, the red and green branches on

the tree represent Populations I and II, respectively

as determined by STRUCTURE; all accessions

defined as admixtures are shown in black. Similar

to the STRUCTURE analysis, the resultant phyloge-

netic tree did not cluster the accessions based on

geographical origin, with the lines derived from

each country being evenly distributed between the

populations.

Discussion

The recent resurgence of interest in C. sativa as a

feedstock for the bioproducts industry (Eynck and

Falk 2013) has led to significant advances in the

development of resources, which begin to rival those

available for its Brassica crop relatives. The recent

publication of a genome sequence for C. sativa

provides a clear picture of the hexaploid genome

structure and will be a foundational resource for

genetic manipulation of the crop (Kagale et al. 2014).

However, basic tools for crop improvement are still

required, such as robust, high-throughput molecular

markers for marker-assisted breeding. Two alternative

approaches to the development of SNP markers for C.

sativa were applied to the species prior to the

availability of the genome sequence and their efficacy

tested through genetic mapping and by assessing

available molecular variation in a public germplasm

collection.

cFig. 2 Genetic linkage map of twenty chromosomes (Cas1-20)

of C. sativa. SNP loci (locus names have been shortened for

brevity) are indicated in black (reduced representation of

genomic DNA) and green (30 cDNA); additional SSR loci are

indicated in red. The ancestral blocks are indicated by colour of

AK chromosome of origin and by letter (A–X). Asterisks to right

of locus name indicate significant segregation distortion

(p \ 0.01). (Color figure online)
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The two approaches for SNP discovery utilized

next generation sequencing technologies combined

with genomic reduction methods, one targeting

expressed sequences and the second genomic DNA.

The first approach exploits the knowledge that

sequence variation is greater in untranslated regions

of transcripts, and by targeting the 30 end of the

transcript enhances the captured sequence depth,

which improves the efficacy of SNP discovery (Eve-

land et al. 2008; Parkin et al. 2010; Koepke et al.

2012). The second approach used a simple genome

reduction technique, whereby digestion with a single

6 bp recognition restriction enzyme is followed by

size selection to limit genome coverage (Young et al.

2010). Both approaches proved effective in identify-

ing SNP variants; however, the more normal distribu-

tion of read coverage from the genomic DNA and the

greater depth offered by the Illumina platform led to

higher numbers of SNP variants being detected with

the genomic reduction method. Gehringer et al. (2006)

developed the mapping population used in this study

and suggested the skewed segregation pattern they

observed for 21 % of AFLP loci, which were excluded

from the map, and the fact that 56 % of the SSR

primers amplified multiple loci, resulted from the

presence of duplicated loci due to the underlying

polyploidy in the C. sativa genome. This is a common

problem faced in the design of molecular markers for

polyploid species, where any amplification or hybrid-

ization based marker will invariably assay multiple

orthologous or paralogous sequences (Dufresne et al.

2014). The recent publication of the C. sativa genome

sequence (Kagale et al. 2014) demonstrated the high

level of gene and genome redundancy in this species,

with limited gene fractionation after the foundation of

the hexaploid genome. In designing the SNP assays,

the polyploid nature of the C. sativa genome neces-

sitated more stringent post-discovery screening of

SNP loci to reduce the likelihood of designing assays

to such inter-paralogue variation. It is common to

allow between 10 and 30 % variance for allele calls

within SNP discovery pipelines, allowing for sequenc-

ing errors or misalignment of sequence reads; how-

ever, in the current study only SNPs called with zero

variance in either the de novo assembled reference or

aligned reads were selected for assay design. This

necessarily limited the number of available SNP loci

reducing the level of variation to 5–20 % of the total

observed. However, 97 % of the SNP assays designed

specifically to the parents of the recombinant inbred

population were successfully mapped with limited

evidence of significant segregation distortion, indicat-

ing the efficiency of the design approach for polyploid

genomes.

The use of inferred collinearity with A. thaliana

allowed the selection of SNP loci distributed relatively

evenly across the C. sativa genome. The resultant

genetic map spanned all of the expected 20 linkage

groups, with a SNP locus found on average every

3.4 cM with only a small number of significant gaps

([20 cM) that equated to relatively large physical

distances indicating a paucity of markers in these

regions. The linkage groups ranged from 63.8 cM

(Cas20) to 145.8 cM (Cas11) and together covered

1,808.7 cM. This was somewhat larger than the previ-

ously published map (1,385.6 cM) for the same map-

ping population (Gehringer et al. 2006), probably due to

the considerably higher marker density and greater

coverage of the genome. Alignment of the sequenced

contigs to the C. sativa genome sequence (Kagale et al.

2014) anchored the developed map to the physical
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sequence providing a direct link to regions for targeted

marker design and to the identification of candidate

genes controlling traits of interest.

Only 17.5 % of the SNP loci designed from the 30

cDNA sequences were polymorphic between the par-

ents of the mapping population although 45.3 % were

informative in assessing genetic diversity across the

wider C. sativa germplasm collection. Although the use

of transcriptome sequence for SNP discovery has the

advantage of intrinsic complexity reduction, such data

can be complex to mine for variation due to biased

representation resulting from the nuances of gene

expression and the inherent redundancy arising from

gene duplication (Ganal et al. 2009). Therefore it was

perhaps predictable that in comparison to the 30 cDNA

SNP loci, almost double the number of SNPs (79.1 %)

designed from the genomic DNA were informative

across the C. sativa accessions. Similar to previous

genetic diversity analyses carried out on smaller

collections of C. sativa (Manca et al. 2013; Vollmann

et al. 2005), two well-differentiated populations could

be identified among the germplasm investigated in the

present study. Population stratification revealed by

molecular diversity studies in plants can be a conse-

quence of a number of factors, including mating habit,

geographic origin, environmental selection pressure,

migration and in the case of crop plants—human

selection or domestication (Dufresne et al. 2014).

Currently we have limited knowledge of the history or

origin of C. sativa and as with the previous studies

neither the phylogenetic tree nor the STRUCTURE

results clustered the accessions based on the expected

geographical distribution. This could be due to unre-

solved conflicts between the actual origin of an

Fig. 3 Patterns of

molecular variation in 175

C. sativa accessions.

a STRUCTURE analyses

showing population

membership of each line (y-

axis) based on Q value (x-

axis) indicated in red

(population 1) and green

(population 2).

b Phylogenetic relationship

among 175 C. sativa

accessions based on the

unweighted neighbour

joining method. (Color

figure online)
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accession and the country that donated the accession to

the genebank. There is no suggestion of differential

mating habits among the C. sativa accessions studied.

Furthermore, the strong inbreeding nature of C. sativa,

which reduces the effective population size, could lead

to rapid isolation of a sub-population that has a selective

advantage. It is interesting to speculate that the spread of

C. sativa from Europe to North America, possibly as a

contaminant of flax seed, may have contributed to the

current population structure; however, further work will

be needed to characterise the observed differentiation

(Francis and Warwick 2009). The estimate of genetic

variability provided by PIC value as a measure of gene

diversity is low (0.224 for mapped loci) when compared

to an analyses of the related crop species B. napus

(0.310) described by Delourme et al. (2013). Although

there was variation for PIC value both among C. sativa

linkage groups and along their lengths (Supplementary

Table 7, Supplementary Figure 3) as observed for B.

napus, there were no significant differences found in

mean PIC value either between the triplicated sub-

genomes or when independently analysing the sub-

populations, whereas differences were observed both

between sub-genomes and across morphotypes in B.

napus (Delourme et al. 2013). Again this probably

reflects the limited breeding pressure to which C. sativa

has been exposed. Although variation has been identi-

fied for a number of phenotypic traits of value, including

oil profiles and downy mildew resistance (Vollmann

et al. 2001, 2007), the relatively low gene diversity of C.

sativa combined with the complexities of working with

a hexaploid could prove frustrating for breeding

programs targeting this novel oilseed. It maybe that

alternative approaches to manipulating the genome,

such as simultaneously manipulating entire gene fam-

ilies would be more promising (Nguyen et al. 2013).

The current study exploited reduction representation

and NGS to carry out SNP discovery for the hexaploid

genome of C. sativa. A comparison of transcriptome

and genomic targets suggested the latter were more

efficient substrates for developing robust markers, in

particular for a polyploid genome that requires addi-

tional filtering of potential SNP variants. Although

designed from only four genotypes, the developed

Illumina GoldenGate SNP assays showed sufficient

polymorphism for molecular characterization and

genetic diversity analyses in a large collection of C.

sativa accessions. This SNP genetic map of C. sativa

provides an important tool for navigation from trait loci

to the recently published genome sequence. Further-

more, the current assays can be readily converted for

use on other platforms. Hence they represent an

important resource for genetic characterization of

additional mapping populations and can be readily

applied in current breeding programs.
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