3,662 research outputs found

    Deuteron Dipole Polarizabilities and Sum Rules

    Full text link
    The scalar, vector, and tensor components of the (generalized) deuteron electric polarizability are calculated, as well as their logarithmic modifications. Several of these quantities arise in the treatment of the nuclear corrections to the deuterium Lamb shift and the deuterium hyperfine structure. A variety of second-generation potential models are used and a (subjective) error is assigned to the calculations. The zero-range approximation is used to analyze a subset of the results, and a simple relativistic version of this approximation is developed.Comment: 14 pages, LaTex - submitted to Physical Review

    A learning development module to support academically unsuccessful 1st-year medical students

    Get PDF
    Background. Students who fail the first semester in an undergraduate medical programme at the University of the Free State may join a Learning Development Programme (LDP) in the second semester. A new generic skills module, Lifelong Learning Skills (LLLS), was added to the curriculum in 2013.Objective. To ascertain whether the LLLS module helped to improve the generic learning skills of LDP students.Methods. Student reflections and a self-administered questionnaire with open-ended questions were used to obtain feedback.Results. Students believed that the LLLS module enhanced their generic skills, and that it was beneficial to them. Aspects such as motivation, time management and critical thinking improved. Furthermore, they indicated that the skills mastered during the module continued to be useful in the subsequent academic year.Conclusion. The students’ reflections made a valuable contribution to understanding ways in which they can be supported. Through student insights, future presentation of the LLLS module can be enhanced

    Renormalization of the Deuteron with One Pion Exchange

    Full text link
    We analyze the deuteron bound state through the One Pion Exchange Potential. We pay attention to the short distance peculiar singularity structure of the bound state wave functions in coordinate space and the elimination of short distance ambiguities by selecting the regular solution at the origin. We determine the so far elusive amplitude of the converging exponential solutions at the origin. All bound state deuteron properties can then be uniquely deduced from the deuteron binding energy, the pion-nucleon coupling constant and pion mass. This generates correlations among deuteron properties. Scattering phase shifts and low energy parameters in the 3S1-3D1 channel are constructed by requiring orthogonality of the positive energy states to the deuteron bound state, yielding an energy independent combination of boundary conditions. We also analyze from the viewpoint of short distance boundary conditions the weak binding regime on the light of long distance perturbation theory and discuss the approach to the chiral limit.Comment: 22 pages, 11 figure

    Economic value of clinical decision support allied to direct data feedback to clinicians: blood usage in haematology

    Get PDF
    Background and Objectives: Responding to national and local pressures to reduce the amount of blood transfused, the haematology department of Oxford University Hospitals (OUH), UK implemented an electronic blood‐ordering system with clinical decision support. This intervention targeted junior doctors, giving regular feedback on their transfusion practices with respect to clinical guidelines. / Methods: We evaluated the incremental costs of the intervention using interrupted time series methods to compare red blood cell and platelet usage before and after the intervention was implemented. Difference‐in‐differences analysis was used to control for external factors that would affect the use of blood products over time. Reductions in blood usage were balanced against intervention costs. / Results: The base case analysis showed an average cost saving to the department of £89 304 annually as a result of the intervention. Scenario analyses suggested that the savings may have been greater still, had the increasing trend in blood use prior to the intervention continued in the absence of the intervention. / Conclusion: An electronic blood‐ordering system with clinical decision support can reduce blood transfusions and associated healthcare costs. Focusing on improving junior doctors' transfusion practice is expected to have a knock‐on benefit in terms of dissemination of good transfusion practice both within their own department and others as they continue their training

    A lower bound on the eccentric connectivity index of a graph

    Get PDF
    AbstractIn pharmaceutical drug design, an important tool is the prediction of physicochemical, pharmacological and toxicological properties of compounds directly from their structure. In this regard, the Wiener index, first defined in 1947, has been widely researched, both for its chemical applications and mathematical properties. Many other indices have since been considered, and in 1997, Sharma, Goswami and Madan introduced the eccentric connectivity index, which has been identified to give a high degree of predictability. If G is a connected graph with vertex set V, then the eccentric connectivity index of G, ξC(G), is defined as ∑v∈Vdeg(v)ec(v), where deg(v) is the degree of vertex v and ec(v) is its eccentricity. Several authors have determined extremal graphs, for various classes of graphs, for this index. We show that a known tight lower bound on the eccentric connectivity index for a tree T, in terms of order and diameter, is also valid for a general graph G, of given order and diameter

    Decadal-scale thermohaline variability in the Atlantic sector of the Southern Ocean

    Get PDF
    An enhanced Altimetry Gravest Empirical Mode (AGEM), including both adiabatic and diabatic trends, is developed for the Antarctic Circumpolar Current (ACC) south of Africa using updated hydrographic CTD sections, Argo data, and satellite altimetry. This AGEM has improved accuracy compared to traditional climatologies and other proxy methods. The AGEM for the Atlantic Southern Ocean offers an ideal technique to investigate the thermohaline variability over the past two decades in a key region for water mass exchanges and transformation. In order to assess and attribute changes in the hydrography of the region, we separate the changes into adiabatic and diabatic components. Integrated over the upper 2000 dbar of the ACC south of Africa, results show mean adiabatic changes of 0.16 ± 0.11°C decade−1 and 0.006 ± 0.014 decade−1, and diabatic differences of −0.044 ± 0.13°C decade−1 and −0.01 ± 0.017 decade−1 for temperature and salinity, respectively. The trends of the resultant AGEM, that include both adiabatic and diabatic variability (termed AD-AGEM), show a significant increase in the heat content of the upper 2000 dbar of the ACC with a mean warming of 0.12 ± 0.087°C decade−1. This study focuses on the Antarctic Intermediate Water (AAIW) mass where negative diabatic trends dominate positive adiabatic differences in the Subantarctic Zone (SAZ), with results indicating a cooling (−0.17°C decade−1) and freshening (−0.032 decade−1) of AAIW in this area, whereas south of the SAZ positive adiabatic and diabatic trends together create a cumulative warming (0.31°C decade−1) and salinification (0.014 decade−1) of AAIW

    Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Get PDF
    We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to -2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by -1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time

    Baryon-Baryon Interactions

    Full text link
    After a short survey of some topics of interest in the study of baryon-baryon scattering, the recent Nijmegen energy dependent partial wave analysis (PWA) of the nucleon-nucleon data is reviewed. In this PWA the energy range for both pp and np is now 0 < Tlab < 350 MeV and a chi^2_{d.o.f.}=1.08 was reached. The implications for the pion-nucleon coupling constants are discussed. Comments are made with respect to recent discussions around this coupling constant in the literature. In the second part, we briefly sketch the picture of the baryon in several, more or less QCD-based, quark-models that have been rather prominent in the literature. Inspired by these pictures we constructed a new soft-core model for the nucleon-nucleon interaction and present the first results of this model in a chi^2 -fit to the new multi-energy Nijmegen PWA. With this new model we succeeded in narrowing the gap between theory and experiment at low energies. For the energies Tlab = 25-320 MeV we reached a record low chi^2_{p.d.p.} = 1.16. We finish the paper with some conclusions and an outlook describing the extension of the new model to baryon-baryon scattering.Comment: 12 pages LaTeX and one postscript figure included. Invited talk presented at the XIVth European Conference of Few-Body Problems in Physics, Amsterdam, August 23-28, 199
    corecore