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Abstract An enhanced Altimetry Gravest Empirical Mode (AGEM), including both adiabatic and diabatic
trends, is developed for the Antarctic Circumpolar Current (ACC) south of Africa using updated hydro-
graphic CTD sections, Argo data, and satellite altimetry. This AGEM has improved accuracy compared to tra-
ditional climatologies and other proxy methods. The AGEM for the Atlantic Southern Ocean offers an ideal
technique to investigate the thermohaline variability over the past two decades in a key region for water
mass exchanges and transformation. In order to assess and attribute changes in the hydrography of the
region, we separate the changes into adiabatic and diabatic components. Integrated over the upper 2000
dbar of the ACC south of Africa, results show mean adiabatic changes of 0.16 6 0.118C decade21 and
0.006 6 0.014 decade21, and diabatic differences of 20.044 6 0.138C decade21 and 20.01 6 0.017 deca-
de21 for temperature and salinity, respectively. The trends of the resultant AGEM, that include both adia-
batic and diabatic variability (termed AD-AGEM), show a significant increase in the heat content of the
upper 2000 dbar of the ACC with a mean warming of 0.12 6 0.0878C decade21. This study focuses on the
Antarctic Intermediate Water (AAIW) mass where negative diabatic trends dominate positive adiabatic dif-
ferences in the Subantarctic Zone (SAZ), with results indicating a cooling (20.178C decade21) and freshen-
ing (20.032 decade21) of AAIW in this area, whereas south of the SAZ positive adiabatic and diabatic trends
together create a cumulative warming (0.318C decade21) and salinification (0.014 decade21) of AAIW.

1. Introduction

The Southern Ocean plays a critical role in the global circulation, as it links the three major ocean basins, and
connects the deep sea to the surface [Marshall and Speer, 2012]. The principal flow of the Southern Ocean, the
Antarctic Circumpolar Current (ACC), extends uninterrupted around Antarctica and is associated with steeply
sloping isopycnals maintained by the intense westerlies and strong meridional density gradients [Killworth
and Hughes, 2002]. The ACC exerts a critical influence on water mass formation, subduction, and in turn cli-
mate regulation, via the redistribution of heat, salt, and atmospheric gasses [B€oning et al., 2008]. In recent dec-
ades, this vital limb of the global ocean conveyor belt has been in a state of disequilibrium with the
atmosphere and cryosphere, with hydrographic station and Argo float observations revealing rising tempera-
tures and freshening trends in the upper 1000 m [Jacobs, 2006; Aoki et al., 2005; B€oning et al., 2008].

In the Atlantic sector of the Southern Ocean, waters from the Indian, South Atlantic, and Southern Oceans
meet and interact through highly energetic, nonlinear dynamics that lead to intense water mass mixing and
transformation [Lutjeharms, 1996; Swart and Speich, 2010; Rusciano et al., 2012; Rimaud et al., 2012]. Further-
more, the interoceanic exchange of water that ensues, and the meridional heat transport in the South Atlan-
tic, are considered critical factors in determining global climate [Fu, 1981; Holfort and Siedler, 2001; Garzoli
and Matano, 2011]. Despite the importance of this region, changes in thermohaline properties and water
mass evolution are relatively poorly understood due to the scarcity of high-resolution and extended time
series data, as well as the difficulties that exist when attempting to model such a dynamic system [Meredith
and Hogg, 2006; Speich et al., 2006; Rimaud et al., 2012].

The traditional observational methodology of the ACC density field has been via the acquisition of in situ
temperature and salinity profiles. However, the resource intensive nature of obtaining these data means
that it is highly challenging to monitor the current with sufficient resolution to avoid aliasing, as the uneven
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spatial and temporal distribution of data is the largest source of uncertainty in reporting Southern Ocean
thermohaline property modification [Sokolov et al., 2004; Jacobs, 2006; Gille, 2008]. An effective approach to
address this is to develop a proxy technique based on a variable that can be measured at a higher spatial
and temporal resolution requiring fewer resources [Watts et al., 2001; Sokolov et al., 2004]. Sun and Watts
[2001] first demonstrated that there is a highly robust empirical relationship between the surface dynamic
height of the water column and the subsurface temperature and salinity profiles within the Southern Ocean.
This form of proxy methodology is termed the Gravest Empirical Mode (GEM), and is highly effective in the
Southern Ocean due to the steep meridional density gradients and the equivalent barotropic nature of the
ACC [Killworth, 1992]. This means that subsurface changes in density are highly correlated with variability in
surface expressions, such as dynamic height or sea surface height [Vivier et al., 2005; Firing et al., 2011].

A GEM proxy technique based on that developed originally by Meinen and Watts [2000] is used here to establish
the relationships between the thermohaline properties of the upper 2000 dbar of the water column and the sur-
face dynamic height [Watts et al., 2001; Sokolov et al., 2004]. The main improvements of this GEM compared to
past studies are the use of Argo profiling float data in addition to more recent repeat CTD hydrography data as
well as a more appropriate technique for the removal of the seasonal bias. Satellite measurements of sea surface
height anomalies are available for the region of the ACC south of Africa from 1992, and therefore by coupling
the GEM dynamic height relationship with altimetry measurements, an enhanced altimetry-based GEM (AGEM)
is produced following the methods of Swart et al. [2010] and Meijers et al. [2011b]. From this AGEM, 20 years of
weekly temperature and salinity sections for the region from 1992 to 2012 can be analyzed.

The AGEM generated fields are utilized to observe the temporal evolution of Antarctic Intermediate Water
(AAIW) in the south-east Atlantic sector of the Southern Ocean. This water mass was chosen as it feeds the
base of the thermocline in the Southern Hemisphere oceans, thereby acting as an important limb of the
global Meridional Overturning Circulation (MOC), and providing a teleconnection between future ocean
changes and past and present variations in the Southern Ocean. This water mass facilitates important trans-
ports of heat, freshwater, and biogeochemical tracers both vertically from the surface to the interior ocean,
and meridionally from the Southern Ocean to the tropics [Sloyan and Rintoul, 2001; Pahnke et al., 2008]. The
water mass undergoes significant modification of its properties as it experiences high levels of mixing cross-
ing from the South Atlantic to the South Indian Ocean [Rimaud et al., 2012]. From Argo float data, Rusciano
et al. [2012] identified the exact isopycnal interval of AAIW as being 27.1–27.32 kg m23 at the GoodHope
(GH) line (approximate longitude range 08E–108E). It therefore accepted that in the southeast Atlantic, all
varieties of intermediate water are found to reside between 27.0 and 27.4 kg m23, and eastward of this
area, the water mass becomes saltier and resides deeper [Rusciano et al., 2012]. Circumpolar warming has
been detected within the AAIW layer [Schmidtko and Johnson, 2012]; however, due to the scarcity of high-
resolution data for the southeast Atlantic, the extent of water mass change in this area is poorly understood
[Banks et al., 2000; Pahnke et al., 2008]. The contribution of the Atlantic sector of the Southern Ocean to reg-
ulating climate, coupled with the influence of AAIW on the stability of the ocean circulation system, makes
obtaining a better view of the extent of property evolution in this area of significant importance.

The study presents how the existing GEM methodology is enhanced by including more recent, higher spa-
tial and temporal resolution in situ Southern Ocean data that include both CTD and Argo float measure-
ments. The GEM and AGEM techniques along with the hydrography used to set up these proxy
relationships allow for the explicit separation of the diabatic and adiabatic components of change in a
regional study. The adiabatic trends are calculated from a linear regression and correlation of the AGEM
generated thermohaline fields. The diabatic trends on the other hand are obtained through the investiga-
tion of the changes evident in the in situ hydrographic data. Previous studies [e.g., B€oning et al., 2008;
Meijers et al., 2011b] addressed global changes and therefore smoothed much of the regional variability in
creating a circumpolar average of the results. The strength of this study lies in the focused analysis that pro-
vides improved insight into a certain sector of the Southern Ocean.

2. Data

2.1. CTD Data
The GoodHope (GH) line is a repeat monitoring track that spans the ocean between Africa and Antarctica [Speich
and Arhan, 2007; Speich and Dehairs, 2008; Swart et al., 2008]. A total of 11 CTD sections occupying, or in close
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proximity to, the GH line have been selected for this GEM study (all stations reach a maximum depth of at least
2000 dbar; information available in Table 1; station positions shown in Figure 1). These sections span the period
from 1984 to 2009, with five transects occupied during the World Ocean Circulation Experiment (WOCE; com-

pleted in the late 1990s), and the remain-
der occupied during GH transects
undertaken between 2004 and 2009. In
total, 556 CTD stations covering the
region 388S to 568S have been used in
this study. The 2000 dbar maximum
depth was used as this corresponded to
the limit of Argo data available. For
further information regarding CTD cali-
bration and sampling techniques, refer to
the references provided in Table 1.

2.2. Argo Float Data
The Argo float program has proven to be
invaluable in collecting data in remote
regions such as the Southern Ocean [Riser
et al., 2016; Roemmich et al., 2015, 2003;
Gould et al., 2004]. In this study, a total of
155 floats, sampling between 2004 and
2012, were found to be located in the
study domain (378S–568S; 58W–158E) sur-
rounding the GH line (Figure 1). The
domain limits of the study were selected
to balance the benefits of including a
wider data set from which to build the
GEM relationships, with the negative
impact of incorporating measurements
of significantly different water masses.
The 155 floats located within the domain
rendered an additional 2201 profiles
used to set up the GEM fields. The data
are delayed mode and underwent quality
control, with further quality checks per-
formed by the CLIVAR international
observing program.

Table 1. Summary of the CTD Sections Used in This Study

Section Date Institute Ship Chief Scientist/Reference

AJAX Jan 1984 Scripps Institution
of Oceanography

R/V Knorr Reid/Whitworth and
Peterson [1985]

A21 Jan–Mar 1990 University of Hamburg R/V Meteor W. Roether/Roether et al. [1990]
A12 May–Aug 1992 Leibniz-Institut f€ur

Meereswissenschaften, Kiel (LfMK)
R/V Polarstern P. Lemke/Lemke [1992]

A1299 Mar 1999 Alfred Wegener Institute R/V Polarstern E. Fahrbach
A1200 Dec 2000 Alfred Wegener Institute R/V Polarstern E. Fahrbach/World Ocean Circulation

Experiment [2002]
A1202 Dec 2002 Alfred Wegener Institute R/V Polarstern F€utterer/World Ocean Circulation

Experiment [2002]
GH2004 Nov 2004 Shirshov Institute of Oceanology RV Akademik Sergey Vavilov S. Gladyshev/Gladyshev et al. [2008]
GH2005 Oct 2005 Shirshov Institute of Oceanology RV Akademik Sergey Vavilov S. Gladyshev/Gladyshev et al. [2008]
GH2006 Oct–Nov 2006 Shirshov Institute of Oceanology RV Akademik Sergey Vavilov S. Gladyshev/Gladyshev et al. [2008]
BGH2008 Mar–Apr 2008 Laboratoire de

Physique des Oceans
RV Marion Dufresne II S. Speich/Speich and Dehairs [2008]

GH2009 Dec 2009 Shirshov Institute of Oceanology RV Akademik Sergey Vavilov S. Gladyshev

Figure 1. Mean Absolute Dynamic Topography (ADT) [Rio et al., 2009] for the region
(in dyn m) from 1992 to 2012, with the positions of the hydrographic stations used
in this study overlaid. The position of the GH line is marked with a magenta line. The
limits of the study region and float data used are delineated with the black box.
Average positions of the ACC fronts as defined from altimetry, using the regional
dynamic height signatures identified by Swart et al. [2010] are overlaid.
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2.3. Satellite Altimetry
The satellite measurements used in this study are AVISO updated delayed weekly maps of sea level anoma-
lies (MSLA), gridded onto a 1/38 spatial resolution, and date from October 1992 to February 2012. For details
on the mapping methods and error corrections applied to these fields, refer to Le Traon et al. [1998], Le
Traon and Ogor [1998], and Ducet et al. [2000]. These maps provide circumpolar sea level anomalies (SLA),
and therefore an interpolation onto the GH line coordinates was required. A mean dynamic topography
(MDT) was then added to the satellite product to obtain an absolute dynamic topography (ADT) for the
region. In this study, the MDT was calculated from a synthesis of all available relevant hydrographic data
and referenced to 2000 dbar, as this was found to more accurately represent the region compared to the
AVISO MDT product [Rio et al., 2009], and the reference level is compatible with the hydrographic dynamic
heights used in the GEM. The ADT is then calculated as the sum of the MDT from hydrography plus the
AVISO SLA measurements. In total, 1009 weeks of MSLA combined with the MDT were utilized to generate
a time series of the thermohaline fields covering 20 years. Please note that the frontal locations were identi-
fied using the dynamic height signatures from Swart et al. [2010] located on the Rio et al. [2009] maps of
dynamic topography. The latitudinal positions of the fronts on the GH line at each time step were obtained
and the corresponding ADT noted (SLA plus local calculated MDT). It is for this reason that the dynamic
height values of Figure 1 differ to the dynamic heights in Figure 2, as Figure 2 is the ADT calculated specifi-
cally for the GH line and referenced to 2000 dbar.

3. An Enhanced GEM for the South Atlantic

The GEM method, described first by Sun and Watts [2001], utilizes all historical casts by projecting the data
into baroclinic stream function space. The GEM field contains information from all available historical hydro-
graphic data and therefore provides an improved resolution than individual transect [Sun and Watts, 2002].
Swart et al. [2010] were the first to establish a GEM for the southeast Atlantic sector of the Southern Ocean
based on data from seven CTD transects of the ACC, and relate the GEM to satellite altimetry. A drawback
of this study was the limited data upon which the proxy relationship was built. The research presented
here, on the other hand, utilizes updated cruise data (11 CTD transects) along with a vast inventory of Argo
profiling float measurements, to develop GEM proxy relationships based on a far greater array of reference
points. The CTD data for the Southern Ocean are largely seasonally biased as most cruises are restricted to

Figure 2. (a, c, e) Temperature and (b, d, f) salinty data obtained from all available cruise and Argo float data plotted against dynamic height (DH; u) for three different pressure levels.
The data are fitted with a smoothing spline. The mean positions of the Southern Ocean fronts are indicated. The location of the Subtropical Front (STF) represents the northern boundary
of the GEM. The Subantarctic Front (SAF) separates the tightly fit ACC data from the turbulent Cape Cauldron and the associated Agulhas Ring shedding region to the north.
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the austral spring-summer months. Prior to synthesizing all data to establish the GEM relationships, meas-
urements pertaining to the top 300 dbar required ‘‘deseasoning.’’ This was achieved by binning the data
into frontal zones and removing the seasonal influence defined from Argo data using a 3 month low-pass
filter of monthly anomalies from the annual mean. This removed contributions to dynamic height due to
seasonal variability in the upper ocean that otherwise would have been erroneously attributed to the adia-
batic movement of the entire water column.

The hydrographic data are projected into streamline space parameterized by pressure (p) and dynamic
height (u). To do so, the surface u, relative to 2000 dbar, was obtained for every hydrographic profile and
plotted against the temperature (T) and salinity (S) values for that profile at each pressure level between the
surface and 2000 dbar, at 5 dbar intervals (Figure 2). The scatter of the relationships (Figure 2) displays
remarkable organization around a functional curve. A cubic smoothing spline provides an effective approxi-
mation method [Thomson and Emery, 2014] that can be fitted to the scatter (coefficient of 0.9997 is used).
This spline coefficient was chosen after extensive testing as the best fit for the results as it captures the
hydrographic variability in the region without possessing too much sensitivity to outliers.

It is evident from Figure 2 that the scatter about the smoothing spline increases with higher u and that the
magnitudes of scatter about the splines increase with decreasing depth (e.g., 250 dbar) and at u greater
than 1.6 dyn m (extending northward of the Subantarctic Zone, SAZ). The phenomena driving these devia-
tions are related to the presence of mesoscale and submesoscale features, such as eddies associated with
the Agulhas Retroflection, and Subtropical Front (STF) instabilities that prevail in this region [Swart and
Speich, 2010; Dencausse et al., 2010]. The coexistence of varying u over time in one location is synonymous
with this highly variable area associated with the Agulhas Current system and its leakage into the South
Atlantic Ocean [Boebel et al., 2003; Swart and Speich, 2010; Rusciano et al., 2012]. The presence of multiple
T(u,p) and S(u,p) profiles along one streamline presents a challenge for the GEM, which assumes a single
mode, and thus we limit the generated fields of the ACC to south of 388S (or u �1.75 dyn m), which is the
approximate latitude of the geographical STF. This allows for the inclusion of the SAZ in the resultant fields
and part of the overall ACC analysis (see section 3.3 where the GEM-related errors are discussed in detail).

4. Altimetry-Based GEM and Testing

An Altimetry GEM (AGEM) is created for the region of the ACC south of Africa by combining the established
GEM relationships with an altimetry-derived ADT product (see section 2.3), as previously done by Swart
et al. [2010]. The GEM produces T(u,p) and S(u,p) fields where u is dynamic height (see Figure 2 for illustra-
tion of process). By drawing on an approximate 1:1 equivalence between the satellite ADT h(x,y,t) and u
from the GEM fields, the AGEM is then able to generate T(x,y,p,t) and S(x,y,p,t) fields relevant for the GH line
at weekly time steps from October 1992 to February 2012 (�20 years). The time mean satellite h(x,y) field
can be seen in Figure 1. The suitability of the GEM technique in the Southern Ocean has been demonstrated
by a number of studies [Meinen and Watts, 2000; Watts et al., 2001; Sokolov et al., 2004; Swart et al., 2010;
Meijers et al., 2011a]. We have therefore only presented here the comparisons with the in situ cruise obser-
vations pertaining to the final AGEM. For the sake of brevity, we present and discuss the comparison
between the GEM and three CTD transects, namely GH2004, GH2008, and GH2009. These CTD occupations
are considered the most appropriate for comparison as they show the range of proficiency of the AGEM,
from the most inaccurate reproduction (GH2004) to the most accurate (GH2009). Note that the CTD data
against which the AGEM are compared is removed from the synthesis of hydrographic profiles that are pro-
jected into stream function space to ensure the independence of the test data.

Figure 3 shows the differences between the AGEM T(x,y,p) and salinity S(x,y,p) sections corresponding to
the sampling dates of each cruise and the original CTD observations (AGEM-CTD). Overall, the AGEM is
capable of capturing the thermohaline structure for all three cruises. Elevated differences are visible in the
upper 1000 dbar of the northern section of all transects. These larger offsets (also identified in Figure 2) are
an artifact of the GEM process, whereby the T and S profiles of an entire column are laterally shifted to the
location of the corresponding u, translating to an ‘‘adiabatic’’ alteration. The AGEM therefore misinterprets a
change in u as a shift in water masses, whereas it may instead be due to diabatic fluctuations in heat or salt
flux, barotropic variability, or baroclinic variability below 2000 dbar. The T and S differences decrease signifi-
cantly south of �428S and at pressures greater than 500 dbar (Figure 3). Note that for all comparisons, the
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AGEM appears to underestimate salinity in the interior of the ACC (negative differences, Figures 3b, 3d, and 3f).
Overall, the RMS errors from the cruise comparisons were found to show good agreement of the AGEM fields
with observations. The offsets are largest for the GH2004 comparison, with the RMS errors decreasing with
each consecutive cruise—GH2006 and GH2009. The connection between AGEM accuracy increasing with pro-
gressive cruise dates may be a result of regular improvements in the satellite altimetry data quality providing a
more accurate SLA and thus ADT [Le Traon et al., 1998]. The percentage of observed variance represented by
the AGEM fields varies per cruise with 84.4%, 90.7%, and 92.4% of the T variability and 74.4%, 81.7%, and
78.4% of the S fluctuations captured for the GH2004, GH2006, and GH2009 comparisons, respectively. The
amount of variance captured by the AGEM presented here is lower than that reported by Sun and Watts [2001]
and Swart et al. [2010] as this AGEM extends further north to 388S versus the 458S limit of the variance test at
the WOCE SR3 line of Sun and Watts [2001] and 408S by Swart et al. [2010]. The AGEM therefore struggles to
accurately represent all the water mass properties present at the northern limits of the domain.

The average RMS error of the T residuals were 0.22 6 0.0568C, 0.15 6 0.0718C, and 0.086 6 0.0828C for the
upper 300, 1000, and 2000 dbar, respectively. The average RMS reported by Swart et al. [2010] for the top
2500 of their AGEM was 0.158C. The RMS T residuals of the satGEM developed by Meijers et al. [2011a] also
decreased rapidly below the thermocline with a surface RMS value of 1.168C, decreasing to a RMS error of
0.458C at 500 dbar and 0.118C at 1500 dbar. The RMS errors shown here are in general smaller than those
reported by both Swart et al. [2010] and the circumpolar satGEM developed by Meijers et al. [2011a]. This
AGEM is also shown to be more accurate than the second version of the 2013 World Ocean Atlas [Locarnini
et al., 2013], which exhibits standard errors in T of approximately 0.58C in the top 300 m and 0.38C at
1000 m depth.

The salinity RMS errors of the AGEM are similarly acceptable, with the mean RMS offset over all comparisons
being 0.031 6 0.0078, 0.019 6 0.0108, and 0.012 6 0.011 for the upper 300, 1000, and 2000 dbar, respec-
tively. Swart et al. [2010] reported mean S offsets of 0.02 for the upper 2500 dbar, and the satGEM of Meijers
et al. [2011a] possessed an RMS error of 0.132 at the surface, decreasing to less than 0.03 below 1000 dbar.
The RMS errors calculated for the AGEM are comparable in magnitude to the standard S errors of World
Ocean Atlas 2013, which are in the order of 0.02–0.05 at 500 m depth, in the region south of Africa [Zweng
et al., 2013]. The reduction in error in this improved version of the AGEM is likely due to the inclusion of
Argo data providing more spatially and temporally coherent GEM fields from which to derive the thermoha-
line sections using altimetry.

Figure 3. Temperature difference between AGEM and original cruise measurements at all latitudes (AGEM-CTD) for (a) GH2004, (c) GH2006, and (e) GH2009 tests. Salinity difference
between AGEM and original cruise values for (b) GH2004, (d) GH2006, and (f) GH2009 tests. The root-mean-square error (RMSE) of the residuals in the upper 2000 dbar, and the standard
deviation thereof, are reported for each comparison.
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5. Results

5.1. Adiabatic and Diabatic Trends
The GEM and AGEM projections along with the hydrography used to create these proxies enable the sepa-
ration of the observed changes into the adiabatic and diabatic components. We assume stationarity in our
data, even though we are aware that this is incorrect. We have 20 years of variability in the AGEM time
series and so the lowest frequency we can resolve is 10 years. The results presented here discuss this deca-
dal low frequency, and are referred to as ‘‘trends,’’ which denote the amplitude of low-frequency variability
(which is admittedly underrepresented as it is poorly resolved). We describe the amplitude of this frequency
using a linear regression as the assumption that the variability is linear provides for clearer interpretation
and evaluation.

The success of the AGEM technique at reproducing observations in the African sector of the Southern
Ocean is largely due to the equivalent barotropic nature of variability (adiabatic shifting), and the profi-
ciency of the GEM upon which the AGEM is built. For the region and scales relevant to this study, adiabatic
shifts from frontal movements and mesoscale activity largely determine sea surface height variability. We
therefore assume that columns of water largely retain their vertical structure during horizontal displace-
ments [Watts et al., 2001]. The adiabatic differences Ta0(u,p) and Sa0 (u,p) can thus be obtained using the
time evolving AGEM fields as is explained in section 5.1.1 following the method of Meijers et al. [2011b].
These trends (Figure 5) represent the horizontal displacement of water masses, which in the ACC represents
a shift in the position of the circumpolar fronts. Diabatic adjustments, on the other hand, do not necessarily
conserve dynamic height and signify a change in water mass properties due to heat and freshwater fluxes
or mixing. The residuals between two GEMs created from the historical in situ hydrographic profiles with
different temporal means denote the changing thermohaline structure due to alterations that are inde-
pendent of frontal shifts [Meijers et al., 2011b]. The method to find diabatic Td0(u,p) and diabatic Sd0(u,p) is
clearly explained in section 5.1.2. It is important to understand both the adiabatic and diabatic components
of change if we are to understand the main drivers of thermohaline variations in the ACC.
5.1.1. AGEM Variability—Adiabatic Trends Due to a Shift in Circumpolar Fronts
The AGEM generated 20 years of weekly T(x,y,p) and S(x,y,p) sections of the upper 2000 dbar, meridionally
across the ACC south of Africa, at the GH line. The thermohaline profiles have a spatial resolution of 1/38 latitude,

Figure 4. Hovm€oller representation of (a) temperature and (b) salinity anomalies, normalized by the local standard deviation at each depth
and averaged over the upper 2000 dbar from a 20 year AGEM time series along the GoodHope line south of Africa. The positions of the
main ACC fronts as defined by Swart et al. [2010] are shown in black and labeled.
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matching the sampling resolution of the satellite SLA data. A Hovm€oller representation (Figure 4) provides
insight into the vertical integral over the top 2000 dbar of T(x,y,t) and S(x,y,t) variability over 20 years showing
the normalized anomalies from the mean property values at constant latitudes. The anomaly from the 20 year
mean at each depth is divided by the standard deviation of all anomalies over time at this depth, and then all
normalized anomalies are averaged over the upper 2000 dbar. In doing this, the influence of highly variable
areas is reduced and the relative influence of large anomalies in areas with small variability is highlighted. Posi-
tive T anomalies (with normalized values up to 38C) are located between the STF and Subantarctic Front (SAF)
post-2005. The normalized S anomalies in the SAZ are small as there is a high level of local variability (influence
of Agulhas Rings and STF instabilities) thereby further highlighting the significance of the large normalized T val-
ues. Post-2007, positive T anomalies are observed over the entire meridional extent of the ACC, with strongly
negative S anomalies (values up to 1.5) in the Polar Frontal Zone (PFZ) (Figure 4b).

The adiabatic Ta0 (x,y,p) and Sa0 (x,y,p) changes are obtained from the time evolving AGEM fields by estimat-
ing the linear temporal trend in each property at each grid point. These trends can then be projected back
into u space using the MDT at that location (calculated from the hydrographic data and referenced to 2000
dbar) plus the satellite SLA at each altimetry time step. The resultant adiabatic Ta0(u,p) and adiabatic
Sa0(u,p) changes per decade are shown in Figure 5. The results are presented in u space due to the circum-
polar variations in the meridional position of the ACC, thereby allowing for comparison with other sectors
of the Southern Ocean. At each grid point (p, u), the linear regression and correlation coefficients are calcu-
lated for the T and S data with time. Only the correlations with significance greater than 95% confidence
were plotted and the gradient of the linear regression fit reported.

The adiabatic trends presented here are similar in pattern to the circumpolar mean adiabatic T and S trends
of Meijers et al. [2011b], however, the trends are over double the magnitude of those reported by Meijers

Figure 5. Adiabatic trends per decade for (a) temperature (8C decade21) and (b) salinity (decade21). Only the trends with a correlation
coefficient significant greater than 95% confidence are plotted. Potential density contours and the mean positions of the ACC fronts have
been overlaid.
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et al. [2011b] who reported maximum T and S trends of approximately �0.048C yr21 and 0.005 yr21. We
estimate maximum yearly trends of 0.128C yr21 and 0.013 yr21 for the adiabatic changes reported here (or
1.28C decade21 and 0.13 decade21, Figures 5a and 5b). The focus of this study is on the point that the
changes are regionally specific, therefore highlighting the local anomalies that are likely removed by cir-
cumpolar averaging in Meijers et al. [2011b]. The mean adiabatic change in T and S for the upper 2000 dbar
of the ACC south of Africa is 0.16 6 0.118C decade21 and 0.006 6 0.014 decade21. Between the 26.6 and
27.2 kg m23 contours, an overall persistence of positive anomalies is visible in Figure 5, with a warming of
0.68C decade21 and salinification of 0.07 decade21. A layer of freshening is located below the 27.2 kg m23

isopycnal, belonging to UCDW with decreases in S of 20.06 decade21. A net warming and increase in salin-
ity between the surface and intermediate depths was also reported by Meijers et al. [2011b], with weak adia-
batic freshening below AAIW and a similar maximum in negative trends observed just south of the SAF (see
Figure 5b at 1000 dbar, 1.4 dyn m).
5.1.2. Diabatic Trends Due to Heat and Freshwater Fluxes
The diabatic Td0(u,p) and Sd0(u,p) variability not associated with frontal movement is calculated using the
historical hydrographic observations. By observing the trend from in situ observations with time, the tempo-
ral shift in thermohaline properties can be extracted. As these changes are separate from the coherent
equivalent barotropic adiabatic moment of water masses discussed in the previous section, and may be
produced by surface property fluxes or lateral mixing, we term these trends diabatic. Two GEMs with differ-
ent temporal means are established from the in situ CTD and Argo measurements, and the difference
between the two is used to calculate the diabatic trends in the region over the sampling period. The year
2005 was used to divide the hydrographic data used to create the separate GEMs because this year allows
for an even data distribution, and is still approximately mid-time series. The pre-2005 GEM had a mean date
of 22 September 2000 and the post-2005 had a mean date of 21 October 2007, with a resultant time offset

Figure 6. Diabatic differences per year between GEMs with temporal means of 2000 and 2007 for (a) temperature (8C decade21) and (b)
salinity (decade21). Potential density contours and the mean positions of the ACC fronts in dynamic height space have been overlaid.
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in the GEM fields of 7.08 years. The differences between two the GEMs at each grid point were converted
into trends per decade Td0(u,p) and Sd0(u,p) and essentially represent the changes undergone in the ACC
density structure south of Africa, thereby providing insight into the diabatic alterations that occurred over
the observational period (Figure 6).

The rates of change evident in Figure 6 are in the same range as the adiabatic trends of Figure 5, yet the
pattern is almost entirely in the opposite sense. Figure 6 shows a diabatic cooling (20.78C decade21) and
salinification (20.08 decade21) in the SAZ with the post-2005 GEM possessing lower temperatures and sal-
inities than the earlier GEM. Positive differences representing a diabatic increase in heat (maximum 0.58C
decade21) and salt (maximum 0.1 decade) are visible south of the APF at around 1500 dbar corresponding
to UCDW. Similar warming and salinification trends between the isopycnals 27.2–27.8 kg m23 (AAIW and
UCDW density range) were also noticed by Meijers et al. [2011a] in their assessment of circumpolar diabatic
trends. A freshening can be seen in the top 200 dbar in the southern PFZ and the Antarctic Zone (AZ). The
mean diabatic variability of the upper 2000 dbar of the ACC south of Africa is 20.044 6 0.138C decade21

and 20.01 6 0.017 decade21 for T and S, respectively.

5.2. Combining Adiabatic and Diabatic Trends in an AD-AGEM
The time evolving AGEM T(x,y,p,t) and S(x,y,p,t) fields essentially only represent adiabatic alterations within
the water column of the southeast Atlantic as the AGEM proxy technique horizontally rearranges the posi-
tion of vertical T and S profiles in response to a change in the surface dynamic height. The AGEM does not
modify the vertical structure of these profiles, and thus is unable to resolve property changes due to dia-
batic heat and salt fluxes at various depths. In this section, we investigate the changes occurring in the
region from 1992 to 2012 by combining the adiabatic and diabatic components of change in an Adiabatic-

Figure 7. Comparison between original and AD-AGEM estimates of (a) heat and (c) salt content integrated over the upper 2000 dbar, across the ACC south of Africa. Hovm€oller plots
showing the evolution of ACC (b) heat and (d) salt content anomalies with latitude and time calculated from the AD-AGEM fields. The latitude of the ACC fronts, as determined with satel-
lite altimetry data, are overlaid in Figures 7b and 7d.
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Diabatic AGEM (AD-AGEM). This is accomplished by following the technique explained in Meijers et al.
[2011b], where the diabatic differences at each grid point (p,u) are converted into trends per week, and are
incrementally added to the original GEM fields as a function of time. The fields are projected back into
h(x,y) space and the result is 20 years of AD-AGEM time evolving T(x,y,p,t) and S(x,y,p,t) sections that repre-
sent both the diabatic and adiabatic alterations of the ACC density field south of Africa.

The heat and salt contents of the ACC in this region can now be calculated from the resultant AD-AGEM
fields. These values are integrated over the whole domain from the STF to the southern-most extent of
altimetry data (this position varies depending on the extent of sea ice). The heat content (HC) and salt con-
tent (SC) of the upper 2000 dbar south of Africa are presented in Figure 7 and were calculated using the fol-
lowing equations:

HC5

ð ð5 dbar

2000 dbar
pCpT dzdy

SC5

ð ð5 dbar

2000 dbar
p0:001 S dzdy

where q is the density of seawater (1027 kg m23), Cp is the heat capacity of seawater at a constant pressure
(4000 J kg21 K21), z the depth range (5–2000 dbar) of the AGEM fields, y is the meridional extent of the
ACC, T is the temperature (8C), and S is the salinity.

The HC and SC of the AD-AGEM fields are compared with the original AGEM fields in Figures 7a and 7c. The
original AGEM estimates of both HC and SC of the upper 2000 dbar of the African sector of the ACC are
greater than the AD-AGEM estimates, and the difference between the two increases with time. Inclusion of
the diabatic trends into the time evolving AGEM fields appears to have partially lowered the HC (Figure 7a),
and caused a significant decrease in the SC (Figure 7c). This signifies that although the southward displace-
ment of the ACC fronts is driving an apparent adiabatic salinification within the ACC domain, the diabatic
input of freshwater overrides this effect resulting in a net decrease in SC. There are both freshening and sali-
nification trends in the adiabatic component that will partially offset one another, unlike the adiabatic T
trends, which are positive throughout the section (Figure 5).

There is a clear increase in the overall HC of the ACC with time, as shown by the increasing values in Figure
2a and the prevalence of positive anomalies after 2007 in Figure 7b. The positive anomalies that were previ-
ously dominant in the SAZ (Figure 4a), now appear sizeably reduced due to diabatic cooling effects
(�20.78C decade21; Figure 6a) in this region. The opposite is true for the region south of the SAF where
diabatic warming trends (�0.68C decade21 in the AZ; Figure 6a) have amplified the increase in mean tem-
perature of the upper 2000 dbar due to the shift in fronts resulting in a coherent uniform distribution of
positive T anomalies post-2005. Similar spatial separation of trends was noticed by Gille [2008] who
described from summertime averages of the upper 1000 m a cooling north of the SAF and a warming to
the south. The decrease in salt content is strongest in the SAZ, seen by the large negative anomalies in Fig-
ure 7d. The SC variations appear to be clearly divided by frontal zone, with strong freshening north of the
SAF post-2002, no clear trend in anomalies within the PFZ, and an increase in positive T anomalies post-
2007 in the region between the APF and the southern boundary of the ACC. Results from the AGEM includ-
ing the diabatic components of change expose a small net freshening of the ACC within the African choke
point (Figure 7c). Examination of the absolute property changes over time renders mean trends for the top
2000 dbar for the ACC south of Africa of 0.12 6 0.0878C decade21 and 20.0039 6 0.0017 decade21. The
standard deviations of these estimates are large due to the highly variable nature of the longer-term vari-
ability with both depth and latitude, as can be seen in Figure 8, showing the T and S trends of the AD-
AGEM fields significant at 95% confidence.
5.2.1. AAIW Evolution
It is important to obtain a better understanding of the thermohaline variability of AAIW, as it is widely
thought to have a critical influence on ocean circulation and climate regulation. This water mass facilitates
important transports of heat, freshwater, and biogeochemical tracers, both vertically from the surface to the
interior ocean, and meridionally from the Southern Ocean to the tropics [Sloyan and Rintoul, 2001; Pahnke
et al., 2008]. After AAIW is formed, it subducts below the seasonal thermocline and is no longer in direct
contact with the atmosphere, thereby retaining its properties set at formation [Rimaud et al., 2012]. AAIW
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has its properties set west of Drake Passage, and undergoes further mixing in the Scotia Sea and Brazil/Mal-
vinas confluence [Talley, 1996; Naveira Garabato et al., 2009]. We examine this water mass immediately
downstream of its formation and modification region, at a point where its properties are relatively stable,
and thus is an ideal place to examine longer-term trends due to changes in heat and freshwater fluxes.

The exact isopycnal interval of the AAIW layer at the GH line was identified from Argo float data by Rusciano
et al. [2012] as being 27.1–27.32 kg m23. In order to account for the different varieties of AAIW that can be
found south of Africa, we expand this range slightly to capture them all, and so the boundaries of AAIW
used in this study are 27.0–27.4 kg m23. AAIW was identified in the AD-AGEM fields and the property infor-
mation belonging to this layer extracted. The water mass is consistently located above 2000 dbar and there-
fore within the vertical limits of the Argo-based and cruise-based AGEM and is located within a depth range
of the AGEM where the RMS errors are small (T< 0.0258C; S< 0.001) relative to the surface. The mean verti-
cal limits of the AAIW layer can be seen in Figure 8 overlaid on the mean trends in T and S (significant at
95% confidence) of the AD-AGEM fields over the 20 year time period. In order to obtain improved insight
into the spatial and temporal changes that AAIW has undergone between 1992 and 2012, the region is split
up into latitudinal zones delimited by the position of the ACC fronts (see time varying positions in Figure 7).
As the AD-AGEM fields are limited to south of 388S, the location of the STF is bounded in the north by this
latitude. For further insight into the horizontal pathways and varieties of AAIW within the southeast Atlantic
domain please refer to Rimaud et al. [2012].

The temporal evolution of the T and S properties of the AAIW layer within the Subantarctic Zone (SAZ) are
shown in Figure 9. The water mass layer averages of T and S decrease from 1992 to 2012 (Figures 9a and
9b) with trends of 20.178C decade21 (r 5 20.76) and 20.032 (r 5 20.84) for T and S, respectively. This net
change in the water mass is the sum of both the adiabatic and diabatic alterations. The mean adiabatic
trends for the AAIW layer located in the SAZ are 0.0588C decade21 (r 5 0.36) and 0.0076 decade21 (r 5 0.35)
significant at 95% confidence for T and S, respectively. These trends can be seen in Figure 5, where a clear

Figure 8. Mean AD-AGEM trends in (a) temperature (8C decade21) and (b) salinity (decade21) from 1992 to 2012. Only those significant at
over 95% confidence have been shaded. The mean upper and lower limits of the AAIW layer are overlaid in green using the 27.0 and
27.4 kg m23 density contours, respectively.
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adiabatic warming is evident along with a sizeable increase in S within this water mass layer, changes typi-
cal of a southward shift in the fronts. The mean diabatic differences (Figure 6) of AAIW in the SAZ were
found to be 20.23 6 0.118C decade21 and 20.04 6 0.015 decade21, indicating a cooling and freshening
due to water mass fluxes. The standard deviations of the reported trends are large due to the broad distri-
bution in values of the anomalies in this zone with both depth (Figure 8) and latitude (Figures 9c and 9d).
The overall cooling and freshening of the SAZ can also been seen in the Hovm€oller plots where there is a
clear shift from positive to negative anomalies in 2002 (Figures 9c and 9d).

The thermohaline variability of AAIW for the Polar Frontal Zone (PFZ; Figure 10) displays a positive trend in
both T and S over the past two decades. The property trends from the AD-AGEM fields from 1992 to 2012
are 0.318C decade21 (r 5 0.83) and 0.014 decade21 (r 5 0.77). Pre-2005 there is very little change in AAIW
properties with changes of 0.18C decade21 (r 5 0.043) and 0.0026 decade21 (r 5 0.2) for T and S, respec-
tively. Between 2005 and 2012, the rate of change increases with average trends of T and S of 0.548C deca-
de21 (r 5 7) and 0.027 decade21 (r 5 0.67). For clarity, we have presented the trends over the entire time
period in Figures 10a and 10b, where the gradient of change for mean T of AAIW located in the PFZ is
almost double that of the negative T change found in the SAZ. Figures 10c and 10d indicate a fairly even
distribution of anomalies with latitude and a strong increase in positive values post-2006. The mean adia-
batic trends for the AAIW layer located in the PFZ are 0.0628C decade21 (r 5 0.38) and 0.0037 decade21

(r 5 0.37) for T and S, respectively. The diabatic differences from hydrography alone are comparatively
smaller with mean T trends of 0.25 6 0.0828C decade21 and S trend of 0.01 6 0.011 decade21 for AAIW
located in this zone. Again, the standard deviations of the mean trends are large due to the presence of
both positive and negative trends within the intermediate water mass layer of the PFZ (see Figures 5 and 6
between isopycnals 27.0–27.4 kg m23).

Figure 9. Mean (a) temperature and (b) salinity of AAIW within the SAZ. Hovm€oller showing averaged anomalies in (c) temperature and (d) salinity of the AAIW water mass layer for the
SAZ.
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Gille [2002] showed using Lagrangian floats recording middepth temperatures in the Southern Ocean that tem-
peratures in the intermediate layer (700–1100 m) have risen by 0.0088C yr21 between the 1950s and the 1980s.
The trends reported by Gille [2002] can largely be considered adiabatic as they are measured in a fixed depth/
latitude range. The overall positive adiabatic alterations reported here for AAIW in both the SAZ and PFZ are in
line with the trends reported by Gille [2002]. On the other hand, in a study using circumpolar Argo and CTD
observations from the early 1960s, B€oning et al. [2008] reported widespread cooling (20.012 6 0.0058C yr21)
and freshening (20.045 6 0.02 yr21) north of the APF in the AAIW density class (27.1–27.2 kg m23), and warm-
ing and salinification trends in UCDW on the poleward flank of the ACC. These trends are closer to diabatic alter-
ations by virtue of observing changes along a density surface. The diabatic trends in AAIW reported in this study
indicate a cooling and freshening in the SAZ and a warming and salinification in the PFZ, thereby largely agree-
ing with the findings of B€oning et al. [2008].

6. Discussion

6.1. Thermohaline Changes Within the ACC South of Africa
The contributors driving the long-term variations within the Atlantic sector of the Southern Ocean are com-
plex to ascertain due to the multitude of factors influencing the ocean properties within the region. The
southward movement of the ACC fronts [Meijers et al., 2011b; Fyfe and Saenko, 2006; Graham et al., 2012],
increased Agulhas leakage [Biastoch et al., 2009; Durgadoo et al., 2013], changes in precipitation [Durack
et al., 2012], upstream processes [Swart and Speich, 2010], and sea ice melt [Hall and Visbeck, 2002; Sen Gupta
and England, 2006] all have influential roles in determining the thermohaline properties in the southeast
Atlantic. Identifying the contribution of each of these processes and the associated feedback and response
mechanisms remains complex. Nevertheless, some hypotheses providing explanations for the observed
changes are proposed.

Figure 10. Mean (a) temperature and (b) salinity of AAIW within the PFZ. Hovm€oller showing averaged anomalies in (c) temperature and (d) salinity of the AAIW water mass layer for the PFZ.

Journal of Geophysical Research: Oceans 10.1002/2015JC011491

HUTCHINSON ET AL. ATLANTIC ACC THERMOHALINE VARIABILITY 3184



In a recent study relevant to the ACC south of Africa, Domingues et al. [2014] showed that the ACC system is
strongly linked to atmospheric forcing. It was found that upper ocean temperature variability is largely tied
to wind forcing, with meridional changes in wind stress, linked to the Southern Annular Mode (SAM), driving
changes in SAF and APF transports via Ekman dynamics. Latitudinal shifts in the Southern Hemisphere west-
erly winds may therefore play a significant role in generating observed adiabatic T and S changes. A tend-
ency toward an increasing SAM in recent decades was observed by Sall�ee et al. [2010], implying a poleward
shift and intensification of the westerlies [Hall and Visbeck, 2002; Thompson and Solomon, 2002; Morrow
et al., 2008], and thus a southward shift in the fronts. The results pertaining to adiabatic fluctuations (Figures
4 and 5) exhibit similar spatial distribution of trends to those reported in other studies: Morrow et al. [2008]
noticed a significant warming in the SAZ of �0.198C yr21 between two mean summertime sections of the
ACC, and proposed it was due to the southward displacement of the fronts. As the AGEM measures the adi-
abatic shifts due to horizontal displacements of the water masses, the results displayed here can be directly
compared with those Morrow et al. [2008] attributed due to frontal shifts. The reported 0.198C yr21 [Morrow
et al., 2008] is almost double the maximum trend in the anomalies evident in Figure 5 of 0.128C yr21 (1.28C
decade21). The adiabatic salinity changes showing overall positive S anomalies equatorward of the SAF and
freshening poleward (Figures 4 and 5) are congruent, for example, with those of Boyer et al. [2005], where
positive S trends over the past 50 years were described in the subtropics and negative trends south of this.
The dominant signal presented by Meijers et al. [2011b] is also in agreement with the results presented in
Figure 5, namely significant warming and salinification in the upper 500 dbar. The theoretical explanation of
these adiabatic alterations is that a southward displacement of the ACC would allow for the advection of
warmer and saltier tropical waters into northern sector of the ACC (mainly the SAZ), thereby explaining the
positive anomalies in the upper 1000 dbar seen in this region. Poleward of the SAZ, the variability is domi-
nated by frontal meandering, largely due to the conservation of potential vorticity and baroclinic instability
of the mean flow in response to the disturbance caused by local topography. The adiabatic freshening of
the lower portion of the AAIW layer and UCDW observed in Figure 5b is likely caused by the southward shift
of the low S tongue of AAIW, as would be the case with a southward movement of the ACC fronts.

The diabatic pattern of change presented in Figure 6 is complex to explain; however, some suggestions are
presented here based on spatial agreements with the expected water mass alterations due to air-sea fluxes
in response to climate change [Banks and Bindoff, 2003; Aoki et al., 2005]. Durack and Wijffels [2010] reported
an increase in intensity of the global water cycle over the past 50 years, with Durack et al. [2012] later quan-
tifying this change to report a 4% intensification in the cycle from 1950 to 2000. This implies elevated salt
content in evaporation dominated regions (midlatitudes) and freshening in precipitation dominated regions
(high latitudes). The prevalence of negative diabatic salt anomalies near the surface and in recently venti-
lated water masses south of the Polar Front (Figure 6) supports this hypothesis of increased precipitation in
the high latitudes. The cause of the diabatic subsurface salinification throughout the ACC south of the SAF
is unclear (Figure 6), however the freshening north of the SAF throughout the SAZ may be explained by the
positive SAM. During a positive SAM, more warm moist air is able to shift further south with the poleward
displacement of the atmospheric systems, thereby allowing for a freshening of the surface layers [Hall and
Visbeck, 2002; Morrow et al., 2008; Sall�ee et al., 2010]. In addition, Subtropical air masses overlying polar
water masses would drive increased heat flux from the atmosphere to the ocean, resulting in a diabatic
warming of the upper ocean as is seen above 200 dbar south of the SAF (Figure 6).

Recent studies have shown that there has been a significant warming of the world’s oceans [Roemmich
et al., 2015]. Levitus et al. [2005] suggested from observations that over the past 40 years, approximately
84% of the total heating of the Earth’s system has gone into the oceans. Two subsequent studies using the
independent climate models Parallel Climate Model (PCM) and the Hadley Centre Coupled Model (HadCM3)
concluded that results leave little doubt that a large portion of the signal is human induced and that the
observed and model simulated anthropogenic warming are in agreement [Barnett et al., 2005; Pierce et al.,
2006]. Roemmich et al. [2015] showed that from 2002 to 2013 ocean heat gain over the upper 2000 m of
the world ocean continued at a rate of 0.4–0.6 W m22, with a broad intermediate depth maximum in heat
gain between 700 and 1400 m. The model study of Sall�ee et al. [2010] further supports this, with the most
consistent change under increased radiative forcing simulated across all models and water masses being a
warming throughout the water-column. This warming is predicted to be largest in mode and intermediate
layers, where a freshening is also reported to occur [Sall�ee et al., 2010]. It is thought that the Southern Ocean
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is warming at a rate faster than the global average, and that this warming is largely localized to the ACC
[Gille, 2002, 2008]. Estimates of ocean warming may be underestimated due to the conservative estimates
in data sparse regions, such as the Southern Ocean where, until the recent introduction of Argo floats, the
ability to detect upper ocean heat gain has been limited [Durack et al., 2012; Roemmich et al., 2015]. The
results reported here are in line with observations and predictions from coupled numerical models (Figure
8). The net increase in HC in the sector of the ACC south of Africa (Figure 7a) is consistent with predictions
of the oceanic response to climate change [Bindoff and McDougall, 1994; Banks and Bindoff 2003; Aoki et al.,
2005; Mayewski et al., 2009; Sall�ee et al., 2010].

6.2. The Evolution of AAIW
Previous studies relying on observations alone have reported an overall warming and freshening of the ACC,
with largest changes located in mode and intermediate layers [Boyer et al., 2005; Gille, 2008; B€oning et al.,
2008]. However, there have been some contradicting reports regarding the circumpolar alteration of the
AAIW layer specifically, with Arbic and Owens [2001] reporting a climatic warming, and Oke and England
[2004] finding a cooling along with an increase in formation rate. A study based on observations in the Drake
Passage from 1969 to 2005 by Naveira Garabato et al. [2009] reported that ENSO dominates the forcing of
inter-annual variations in AAIW properties resulting in a circumpolar warming and freshening of AAIW over
the last five decades. The alteration of AAIW within the two frontal zones presented here exhibit entirely
opposing net trends, thereby explaining a possible source of some of the contradicting conclusions of previ-
ous research. Even though the adiabatic changes throughout the ACC shown in Figure 5 posses positive aver-
age trends, the large negative diabatic changes in the SAZ (Figure 6) drive an overall decrease in heat and salt
of the water mass in this area, compared to the positive diabatic changes in the PFZ that enforce the positive
adiabatic trends resulting in an increase in T and S of AAIW in this zone. The warming trends of the PFZ could
possibly be driven by increased heat flux due to the southward penetration of warmer air masses related to
both the positive SAM and westerly wind shift. This air temperature-driven warming would only apply to shal-
low waters however, and thus a possible contribution to the subsurface diabatic salinification could be an
increase in the upwelling of Circumpolar Deep Water (CDW). The results presented here highlight the impor-
tance of local investigations and separation of the temporal trends into adiabatic and diabatic components.

The differing thermohaline trends in AAIW between the SAZ and PFZ indicate that the water mass does not
undergo high levels of meridional along-isopcynal mixing in Southern Ocean near the GoodHope line. It is
hypothesized therefore that in this area, there is limited communication between AAIW residing within the
same density class in the PFZ and the deep layers north of the SAF. This, in turn, implies that it is changes in
the formation region of AAIW and modification along its path downstream that are more important in
determining intermediate water variability than changes due to lateral mixing in the area. This hypothesis
requires robust testing in future studies that take a closer look at the evolution of AAIW as it travels from its
formation region to the subtopics.

An investigation into the temporal evolution of AAIW in the southeast Atlantic Ocean is highly relevant as
the climatic equilibrium of the Atlantic depends on the preconditioning of waters in the southernmost sec-
tor [Broecker, 1991; Marchesiello et al., 1998]. The African choke point is where ACC transport and properties
are thought to be the most variable [Swart et al., 2008], which has important implications for AAIW evolu-
tion in this region as instabilities in the ACC are thought to have a significant impact in the properties of
AAIW [Piola and Georgi, 1982]. The sizeable magnitude of T trends, 20.178C decade21 (r 5 20.76) in the
SAZ and 0.318C decade21 (r 5 0.83) PFZ, and the opposing trends within the same density class between
frontal regions, together indicate that complex changes are occurring within the AAIW water mass in the
ACC south of Africa.

7. Conclusion

The Southern Ocean is thought to be warming at a rate greater than the global ocean; however, due to lim-
ited observations, the specific regional variability of change is poorly understood [Gille, 2002, 2008; Mayew-
ski et al., 2009]. The AD-AGEM presented here provides a robust technique to investigate the thermohaline
evolution of the ACC in the southeast Atlantic. The AGEM projection combined with differences in temporal
GEMs enable the separation of the observed changes into their adiabatic and diabatic components. These
trends show an adiabatic overall warming of the upper 2000 dbar of the ACC south of Africa with strongest
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changes located in the surface waters of the SAZ. Adiabatic salinification evident in the upper 1000 dbar in
the SAZ is contrasted with significant freshening at intermediate depths of the PFZ. Diabatic trends in the
SAZ produced thermohaline changes entirely opposed to the trends due to a shift in fronts, dominating the
net changes in this area. Positive diabatic trends in the PFZ, on the other hand, act to amplify the adiabatic
trends in this zone thereby resulting in net warming and salinification signals. The mean property changes
for the top 2000 dbar of the ACC south of Africa from the AD-AGEM (adiabatic 1 diabatic changes AGEM)
indicate a warming of 0.12 6 0.0878C decade21 and a minor freshening of 20.0039 6 0.0017 decade21.
Both the unmodified GEM and AD-AGEM possess trends indicating an increase in mean heat content of the
upper 2000 dbar of the ACC in the region.

Mean trends of AAIW in the SAZ were comprised of positive adiabatic trends and negative diabatic trends,
with the latter having a dominant effect producing results that show a cooling and freshening of intermedi-
ate water in the northern domain of the ACC south of Africa. Overall, positive adiabatic and diabatic trends
in the PFZ create a cumulative warming and salinification effect to the south of the SAF. These apparent dif-
fering trends imply that either the water masses of the same density class in these zones undergo very little
mixing along density surfaces, or that there is a high degree of spatial variability in the surface forcing and
that the time scales over which this study is conducted are not long enough to capture the mixing effect of
a warming and salinification in the south, on the water mass layer to the north. Despite the limitations that
exist when using the GEM proxy technique, the resultant AD-AGEM weekly updated thermohaline sections
of the Southern Ocean south of Africa have proven their usefulness in investigating the thermohaline evolu-
tion of water masses in this critical choke point of the ACC over the past 20 years.
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