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a b s t r a c t

In pharmaceutical drug design, an important tool is the prediction of physicochemical,
pharmacological and toxicological properties of compounds directly from their structure.
In this regard, theWiener index, first defined in 1947, has beenwidely researched, both for
its chemical applications andmathematical properties. Many other indices have since been
considered, and in 1997, Sharma, Goswami andMadan introduced the eccentric connectivity
index, which has been identified to give a high degree of predictability. If G is a connected
graph with vertex set V , then the eccentric connectivity index of G, ξ C (G), is defined as∑

v∈V deg(v)ec(v), where deg(v) is the degree of vertex v and ec(v) is its eccentricity.
Several authors have determined extremal graphs, for various classes of graphs, for this
index. We show that a known tight lower bound on the eccentric connectivity index for a
tree T , in terms of order and diameter, is also valid for a general graph G, of given order and
diameter.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Topological indices, such as the eccentric connectivity index, are graph-theoretical invariants designed to find
relationships between the structure of chemical molecules and their physical properties. These indices have been used
for isomer discrimination, chemical documentation, drug design, quantitative structure versus activity (or property)
relationships (QSAR/QSPR’s), combinatorial library design, and toxicology hazard assessments [4,5,7,11]. In pharmaceutical
research, QSAR information is used to select the most promising compounds for a desired property, and hence decreases
the number of compounds which need to be synthesized during the process of designing new drugs [3,9,12].

Many topological indices have been defined and used. The first, the Wiener index, was introduced in 1947. The Hosoya
index, Randić’s molecular connectivity index, Zagreb group parameters and Balaban’s index were introduced in the 1970’s
and 1980’s [8]. Dozens of other topological descriptors can be found in the literature. In 1997, the eccentric connectivity
index was put forward by Sharma et al. [16].

Research continues on the eccentric connectivity index [7,10] with current focus on nanotubes [1,2,15]. In this paper, we
investigate mathematical properties of the eccentric connectivity index. More specifically, we will consider extremal values
of this molecular descriptor. The investigation of extremal values is closely linked to isomer enumeration [13]. Suppose an
integral index X is shown to have minimum and maximum values of Xm and XM respectively, and that a particular class
of chemical compounds under consideration has N isomers. If N > (XM − Xm) , then two or more isomers will have the
same value of the chosen index X . This type of ‘degeneracy’ is a serious problem encountered with topological indices. The
eccentric connectivity index has been found to have quite low degeneracy [6].
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Fig. 1. Volcano graphs V15, 9 , and V11, 6 .

2. Definitions and preliminaries

Consider a simple connected graphG, and let V (G) and E(G) denote its vertex and edge sets, respectively. |V (G)| = n(G) is
called the order of G. The distance between u and v in V (G), dG(u, v), is the length of a shortest u–v path in G. The eccentricity,
ecG(u), of a vertex u ∈ V (G) is the maximum distance between u and any other vertex in G. The diameter of G, d, is defined
as the maximum value of the eccentricities of the vertices of G. Similarly, the radius of G is defined as the minimum value
of the eccentricities of the vertices of G. A central vertex of G is any vertex whose eccentricity is equal to the radius of G.
The centre of a graph is the subgraph induced by its central vertices. Denote by C(G) the set of central vertices of G. Also,
the degree of a vertex w ∈ V (G), degG(w), is the number of edges incident to w. A vertex of degree 1 is called a pendant
vertex. The neighbourhood of a vertex v ∈ V (G), NG(v), consists of all vertices which are adjacent to v. Similarly, for H ⊆ G,
the neighbourhood of H , N(H), is composed of the neighbours of all the vertices in H . A vertex is a cut-vertex if its removal
disconnects the graph. If no ambiguity is possible, the subscript G may be omitted in these notations.

The eccentric connectivity index ξ C (G) of G is defined as

ξ C (G) =

−
v∈V (G)

ec(v) deg(v).

Formulae for the eccentric connectivity index of the complete graph Kn, complete bipartite graph Kp,q, cycle graph Cn,
star graph Sn and the path Pn have been calculated independently by several authors [6,14,18].

The volcano graph Vn, d, first defined in [14], is a graph obtained from a path Pd+1 and a set S of n−d−1 vertices, by joining
each vertex in S to a central vertex of Pd+1. See Fig. 1. Note that for a fixed value of n, when d is even, the volcano graph Vn,d is
unique; whereas when d is odd, there may be several non-isomorphic volcano graphs Vn,d. The eccentric connectivity index
for the volcano graph Vn, d is

ξ C (Vn, d) =


n(d + 1) + d2/2 − 2d − 1 for d even
n(d + 2) + d2/2 − 3d − 3/2 for d odd.

A number of authors have recently considered the extremal values for the eccentric connectivity index. It was proved
independently byMorgan et al. [14], as well as Zhou and Du [18], that theminimum eccentric connectivity index for a graph
of order n is attained by the star graph. An asymptotic maximum has also been identified [6,14], and the exact formula for
the eccentric connectivity index of this extremal graph has been calculated [14]. Not surprisingly, themaximum index value
for trees of order n is attained by the path graph [6,14,18]. For trees of order n and diameter d, a sharp upper bound has been
found [14]. The lower bound is attained by the volcano graph. Thus, if T is a tree of order n ≥ 3 and diameter d, then

ξ C (T ) ≥ ξ C (Vn, d). (1)

This inequality was derived, using different approaches, by Morgan et al. [14], by Zhou and Du [18]; and Yu et al. [17]
indirectly deduced the same result.

In this paper, we generalize inequality (1), by proving that the volcano graph achieves the lowest value for the eccentric
connectivity index over all general graphs (rather than only trees), of fixed order n and diameter d.

This simple generalization has been quite challenging to prove. The difficulty in achieving the sharp bound lieswith some
‘problem vertices’.

Observe that since the eccentricity of any vertex is bounded below by the radius of the graph, we have that

for all verticesw ∈ V (G), ec(w) ≥ ⌈d/2⌉. (2)

The problem vertices have degree two, and precisely meet this eccentricity lower bound.
Notation

Given a connected graph G with diameter d, we denote by t(G) the number of vertices in G of degree 2 and eccentricity
precisely ⌈d/2⌉, i.e.,

t(G) := |{x ∈ V (G) | deg(x) = 2 and ec(x) = ⌈d/2⌉}|.

3. Results

Consider a connected graph G of order n and diameter d. If d = 2, note that from the previous section, ξ C (G) ≥ ξ C (Sn) =

ξ C (Vn, 2).
Hence from now onwards in this paper, we only consider d ≥ 3.
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Theorem 1. Let G = (V , E) be a connected graph of order n, and diameter d ≥ 3. Then

ξ C (G) ≥ ξ C (Vn, d).

Proof. Part A
We first prove that the theorem holds when G contains at least one problem vertex. So, assume that t(G) ≥ 1. We must

show that ξ C (G) ≥ ξ C (Vn, d).
Suppose, to the contrary, that there exists a counterexample G, for which t(G) ≥ 1 and

ξ C (G) < ξ C (Vn, d). (3)

Of all such counterexamples, choose G to have the smallest possible order, n. Hence, any graph G′ with diameter d′, at least
one problem vertex, and n′ < n vertices, will satisfy

ξ C (G′) ≥ ξ C (Vn′, d′). (4)

Let P : v0, v1, . . . , vd be a diametral path in G, and define S = V − V (P).
We will need two general properties of the distance from a vertex w ∈ G to v0 or vd, for any arbitrary graph G.

For all verticesw ∈ V (G), d(w, v0) ≥ ⌈d/2⌉ or d(w, vd) ≥ ⌈d/2⌉. (5)

To see that (5) holds, suppose, by contradiction, that both d(w, v0) < ⌈d/2⌉ and d(w, vd) < ⌈d/2⌉. By the triangle
inequality, d = d(v0, vd) ≤ d(v0, w) + d(w, vd) which implies

d ≤ (⌈d/2⌉ − 1) + (⌈d/2⌉ − 1) = 2 ⌈d/2⌉ − 2 =


d − 2 for d even
d − 1 for d odd,

which is impossible, and (5) is proven.
It follows from the definition of eccentricity, and (5), that

for w ∈ V (G), if ec(w) = ⌈d/2⌉, then d(w, v0) = ⌈d/2⌉ or d(w, vd) = ⌈d/2⌉. (6)

We will apply these two general properties of graphs to our counterexample graph G.

Claim A1. There are no pendant vertices in S.

Proof of Claim A1. Suppose to the contrary, that S contains a pendant vertex x, and let y be the neighbour of x. Form G′ by
removing the vertex x, viz. set G′

= G − x.

Fact 1. (i) The diameter of G′ is d, since x is not on the diametral path P .
(ii) n(G′) = n − 1 < n(G).
(iii) t(G′) ≥ 1.

To establish (iii), we show that G′ indeed has a problem vertex. Since t(G) ≥ 1, let z be a problem vertex of G,
i.e., degG(z) = 2 and ecG(z) = ⌈d/2⌉. We first show that z ≠ y. If z is equal to y, then degG(y) = 2. Let w be the other
neighbour of y. Note that any path from {v0, vd} to y must pass through w. We can assume, without loss of generality, that
dG(w, vd) ≥ dG(w, v0). Then, by (5),

ecG(y) ≥ dG(y, vd) = dG(y, w) + dG(w, vd) ≥ 1 + ⌈d/2⌉,

and this contradicts the fact that ecG(y) = ecG(z) = ⌈d/2⌉. Thus, z ≠ y, and this implies that degG′(z) = 2.
Since ecG(z) = ⌈d/2⌉, (6) implies that in G, z is at distance ⌈d/2⌉ from one of v0 or vd, say, vd. Then, since x is not

on any such shortest path between z and vd, ⌈d/2⌉ = dG(z, vd) = dG′(z, vd). So, ecG′(z) ≥ ⌈d/2⌉. But the removal of a
pendant vertex cannot increase the eccentricity of any other vertex in the graph (ecG′(z) ≤ ecG(z)), so we conclude that
ecG′(z) = ⌈d/2⌉, and hence z is a problem vertex of G′. This completes the proof of Fact 1.

From Fact 1, G′ is not a counterexample, and thus by (4)

ξ C (G′) ≥ ξ C (Vn−1, d). (7)

Note that for all u ∈ V (G′) − {y}, degG(u) = degG′(u), and ecG(u) ≥ ecG′(u). Also, ecG(y) = ecG′(y). These observations,
as well as (2), imply

ξ C (G) − ξ C (G′) ≥ degG(x) ecG(x) + degG(y) ecG(y) − degG′(y) ecG′(y)
= 1 · ecG(x) + degG(y) ecG(y) − (degG(y) − 1) ecG′(y)
= ecG(x) + 1 · ecG(y)
≥ (⌈d/2⌉ + 1) + ⌈d/2⌉
= 2(⌈d/2⌉) + 1.
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Thus

ξ C (G′) + 2(⌈d/2⌉) + 1 ≤ ξ C (G).

Combining this with (7) yields

ξ C (Vn−1, d) + 2(⌈d/2⌉) + 1 ≤ ξ C (G),

and since G is a counterexample, (3) gives

ξ C (Vn−1, d) + 2(⌈d/2⌉) + 1 ≤ ξ C (G) < ξ C (Vn, d). (8)

But, straightforward calculations yield

ξ C (Vn−1, d) + 2(⌈d/2⌉) + 1 =


(n − 1)(d + 1) + d2/2 − 2d − 1 + (d + 1) for d even
(n − 1)(d + 2) + d2/2 − 3d − 3/2 + (d + 2) for d odd

=


n(d + 1) + d2/2 − 2d − 1 for d even
n(d + 2) + d2/2 − 3d − 3/2 for d odd

= ξ C (Vn, d).

So (8) reduces to ξ C (Vn, d) < ξ C (Vn, d), a contradiction. Therefore, Claim A1 is proven. �

Fact 2. Every vertex in G has degree at least 2, except possibly for v0 and vd.

To see that Fact 2 holds, recall that V = S ∪ {v1, v2, . . . , vd−1} ∪ {v0, vd}. Then, observe that by Claim A1, every vertex
in S has degree at least 2. Also, for every vi, i = 1, . . . , (d− 1), on P , we have deg(vi) ≥ 2, and hence, Fact 2 is established.

We now look at two cases separately, depending on the parity of d. In each case, we will partition the vertex set of the
counterexample graph G into several sets, in order to calculate a lower bound on the eccentric connectivity index of G in
terms of the index value of the volcano graph Vn, d, in order to arrive at a contradiction.

Case 1. d is even.
Here ⌈d/2⌉ = d/2. Let Q be the set of problem vertices, i.e., Q := {x ∈ V (G) | deg(x) = 2, ec(x) = d/2}.

Claim 2. Every vertex u ∈ Q is adjacent to some vertex u′ satisfying

ec(u′) ≥ (d/2) + 1.

Proof of Claim 2. Consider a problem vertex u ∈ Q . Since ec(u) = ⌈d/2⌉, (6) implies that u is at a distance d/2 from one of
v0 or vd, say, vd. Consider a shortest path connecting u and vd : u, u1, u2, . . . , vd. Since d(u, vd) = d/2, and u, u1, u2, . . . , vd
is a shortest path, then d(u1, vd) = (d/2) − 1. We show that d(u1, v0) ≥ (d/2) + 1. If not, then by the triangle inequality,

d = d(v0, vd) ≤ d(v0, u1) + d(u1, vd) ≤ (d/2) + ((d/2) − 1) = d − 1

which is impossible. Thus, d(u1, v0) ≥ (d/2) + 1, and hence ec(u1) ≥ (d/2) + 1. Setting u′
= u1, completes the proof of

Claim 2. �

For every u ∈ Q , choose a vertex u′ as found in Claim 2, and denote it by f (u).
Let Q ′

:= {f (u) | u ∈ Q }, and set |Q | = q and |Q ′
| = q′. Since the mapping f (u) = u′ is not necessarily injective, we

have that q′
≤ q.

Observe that Claim 2 gives ec(f (u)) ≥ (d/2)+1, and this implies thatQ ′ cannot contain any problem vertices. Therefore,
Q ∩ Q ′

= ∅.

Fact 3. deg(u′) ≥ 2 for all u′
∈ Q ′.

To prove this fact, it suffices, by Fact 2, to show that if u′
∈ Q ′, then u′

∉ {v0, vd}. Suppose, to the contrary, that
u′

∈ {v0, vd}. Then ec(u′) = d. Also, since u′
∈ Q ′, u′ is a neighbour of some problem vertex u ∈ Q . Thus |ec(u′)−ec(u)| ≤ 1,

i.e., | d − d/2| ≤ 1, which contradicts the fact that d ≥ 3. Hence, Fact 3 is proven.
We now find a lower bound for

∑
w∈Q ′ ec(w) deg(w).

By Fact 3,
∑

w∈Q ′ deg(w) ≥ 2 q′. On the other hand, since every vertex in Q is adjacent to some vertex in Q ′, we have∑
w∈Q ′ deg(w) ≥ q. Summing these two inequalities gives 2

∑
w∈Q ′ deg(w) ≥ 2 q′

+ q. Therefore,−
w∈Q ′

deg(w) ≥ q′
+ q/2. (9)
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For w ∈ Q ′, by Claim 2, we have that ec(w) ≥ (d/2) + 1. This, in conjunction with (9), yields−
w∈Q ′

ec(w) deg(w) ≥

−
w∈Q ′

((d/2) + 1) deg(w)

= ((d/2) + 1)
−
w∈Q ′

deg(w)

≥ ((d/2) + 1) (q′
+ q/2).

Hence, from the definition of Q , and the above inequality, we have−
v∈(Q∪Q ′)

ec(v) deg(v) =

−
v∈Q

ec(v) deg(v) +

−
w∈Q ′

ec(w) deg(w)

≥ 2 q (d/2) + ((d/2) + 1) (q′
+ q/2)

= q · ((5d + 2)/4) + q′
· ((d/2) + 1). (10)

Next, set P ′
:= {v0, . . . , v(d/2)−2, v(d/2)+2, . . . , vd}. (If d = 4, then P ′

:= {v0, v4}.)
It can be seen that Q , Q ′ and P ′ are all pairwise disjoint. Note that |P ′

| = d − 2.
A bound for the eccentric connectivity index of P ′ can be found by direct calculation. If d ≥ 6 we have:−

v∈P ′

ec(v) deg(v) = ec(v0) deg(v0) + ec(vd) deg(vd) +

(d/2)−2−
i=1

ec(vi) deg(vi) +

d−1−
i=(d/2)+2

ec(vi) deg(vi)

≥ d · 1 + d · 1 + 2
(d/2)−2−

i=1

(d − i) · 2

= 2d + 4 ·

(d/2)−2−
i=1

(d − i)

= 3 d2/2 − 3d − 4. (11)

(And if d = 4, (11) still holds.)
Define S ′

= V − (P ′
∪ Q ∪ Q ′).

Since v0, vd ∈ P ′, then v0, vd ∉ S ′, and it follows from Fact 2 that S ′ has no pendant vertices. This allows us to partition
S ′ as follows:

let A = {x ∈ S ′
| deg(x) = 2}, B = {x ∈ S ′

| deg(x) ≥ 3}. Setting |A| = a, and |B| = b, we obtain

a + b + (d − 2) + q + q′
= n. (12)

Combining (2) with the fact that there are no problem vertices in S ′, we have that for all vertices x in A, ec(x) ≥ (d/2) + 1.
Applying this inequality, (2), (10) and (11), we calculate

ξ C (G) =

−
x∈A

ec(x) deg(x) +

−
u∈B

ec(u) deg(u)

+

−
v∈P ′

ec(v) deg(v) +

−
v∈Q

ec(v) deg(v) +

−
w∈Q ′

ec(w) deg(w)

≥ 2a (d/2 + 1) + 3b (d/2) + (3 d2/2 − 3d − 4) + q · ((5d + 2)/4) + q′
· ((d/2) + 1)

= a (d + 2) + b (3d/2) + (3 d2/2 − 3d − 4) + q ((5d + 2)/4) + q′


1
2
d + 1


. (13)

We will minimize (13) by optimizing the coefficients a, b, q and q′ in two stages. First, recall that q′
≤ q. Fixing a and b,

the sum of the last two terms in (13) is as small as possible when q′ is as large as possible, i.e., when q′
= q. This gives

ξ C (G) ≥ a(d + 2) + b(3d/2) + (3/2) d 2
− 3d − 4 + q · ((7d + 6)/4), (14)

and now (12) has been reduced to a + b + 2q = n − d + 2.
Second, if d ≥ 4, (14) is minimized for b = 0, q = 0, and a = n − d + 2. Thus,

ξ C (G) ≥ (n − d + 2)(d + 2) + (3/2) d 2
− 3d − 4

= n(d + 1) + n − d2 − 2d + 2d + 4 + (3/2) d 2
− 3d − 4

= n(d + 1) + d 2/2 − 2d − 1 + n − d + 1
= ξ C (Vn,d) + n − d + 1.
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Since n ≥ d + 1 > d − 1, we have ξ C (G) ≥ ξ C (Vn, d) + n − d + 1 > ξ C (Vn, d), which contradicts (3). It follows that for d
even, ξ C (G) ≥ ξ C (Vn,d).

Continuing in Part A, we now turn to the case with d odd.
Case 2. d is odd.

Here ⌈d/2⌉ = (d + 1)/2. In this case, a class of problem vertices with both neighbours in the centre of the graph, will
require special attention. So, it will now be necessary to partition the vertex set of the counterexample graph G into even
more sets than were needed in the d even case.

Let R = {x ∈ V | deg(x) = 2, ec(x) = ⌈d/2⌉}. So R is the set of problem vertices of G, and clearly, |R| = t ≥ 1.
Partition R as follows: R = Q ∪ H, where

Q := {x ∈ R | x is adjacent to a vertex outside C(G)} and
H := {x ∈ R | both neighbours of x are in C(G)}.

Since they partition R, we have that

Q ∩ H = ∅. (15)

Claim 2′. Every vertex u ∈ Q is adjacent to some vertex u′ satisfying

ec(u′) ≥ ((d + 1)/2) + 1.

Proof of Claim 2′. Consider u ∈ Q . By the definition of Q , the problem vertex u is adjacent to a vertex, u′, which is not a
central vertex. So, ec(u′) ≥ (d + 1)/2 + 1, and Claim 2′ is proven. �

For every u ∈ Q , choose a vertex u′ as found in Claim 2′, and denote it by f (u).
Let Q ′

:= {f (u) | u ∈ Q }, and set |Q | = q and |Q ′
| = q′. Since the mapping f (u) = u′ is not necessarily injective, we

have that q′
≤ q. Also, Claim 2′ gives ec(f (u)) ≥ ((d + 1)/2) + 1, while all vertices in Q have eccentricity (d + 1)/2, so

Q ∩ Q ′
= ∅. (16)

Claim 3.−
w∈Q ′

ec(w) deg(w) ≥ q((d + 3)/4) + q′((d + 3)/2) − 3. (17)

Proof of Claim 3. Since every vertex in Q is adjacent to some vertex in Q ′, we have−
w∈Q ′

deg(w) ≥ |Q | = q. (18)

Then, Claim 2′ and (18) give−
w∈Q ′

ec(w) deg(w) ≥ (((d + 1)/2) + 1) q. (19)

Observe that by Fact 2, Q ′ can contain at most 2 pendant vertices, possibly v0 or vd. We look at three cases, separately.
(i) If Q ′ contains no pendant vertices, then

∑
w∈Q ′ deg(w) ≥

∑
w∈Q ′ 2 = 2q′. Summing this inequality with (18) gives

2
∑

w∈Q ′ deg(w) ≥ q + 2q′, and therefore∑
w∈Q ′ deg(w) ≥ q/2 + q′. From this result, and Claim 2′, it follows that−
w∈Q ′

ec(w) deg(w) ≥

−
w∈Q ′

(((d + 1)/2) + 1) deg(w)

≥ (((d + 1)/2) + 1) (q/2 + q′)

= q((d + 3)/4) + q′((d + 3)/2)
> q((d + 3)/4) + q′((d + 3)/2) − 3

and (17) holds for case (i).
(ii) If Q ′ contains exactly one pendant vertex, say, without loss of generality, v0, then, by Claim 2′,−

w∈Q ′

ec(w) deg(w) = ec(v0) deg(v0) +

−
w∈Q ′−{v0}

ec(w) deg(w)

≥ d · 1 + 2 · (q′
− 1)(((d + 1)/2) + 1).
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Summing this with (19) gives

2
−
w∈Q ′

ec(w) deg(w) ≥ d + 2 · (q′
− 1)((d + 1)/2 + 1) + q (((d + 1)/2) + 1)

= q′ (d + 3) + q ((d + 3)/2) − 3

and this simplifies to−
w∈Q ′

ec(w) deg(w) ≥ q ((d + 3)/4) + q′ ((d + 3)/2) − 3/2

> q((d + 3)/4) + q′((d + 3)/2) − 3

and (17) holds for case (ii).
The final case is
(iii) if both v0 and vd are in Q ′, and they both have degree 1. Proceeding as in case (ii), we have that−

w∈Q ′

ec(w) deg(w) ≥ 2 d + 2 · (q′
− 2)(((d + 1)/2) + 1).

Summing this with (19) gives

2
−
w∈Q ′

ec(w) deg(w) ≥ 2 d + 2 · (q′
− 2)((d + 1)/2 + 1) + q((d + 3)/2)

and this simplifies to−
w∈Q ′

ec(w) deg(w) ≥ q ((d + 3)/4) + q′ ((d + 3)/2) − 3,

which completes case (iii), and hence, Claim 3 is proven. �

Thus, from the fact that Q ⊆ R, and Claim 3,−
v∈(Q∪Q ′)

ec(v) deg(v) =

−
v∈Q

ec(v) deg(v) +

−
v∈Q ′

ec(v) deg(v)

≥ 2q((d + 1)/2) + q((d + 3)/4) + q′((d + 3)/2) − 3

= q((5d + 7)/4) + q′((d + 3)/2) − 3. (20)

Next we consider the extra vertex set H and define its neighbourhood, H ′
:= N(H). Note that by the definition of H ,

N(H) ⊆ C(G). Set |H| = h and |H ′
| = h′. Since each vertex in H has degree 2, and H ′ is the neighbourhood of H , we have

that h′
≤ 2h. Also note that by Claim 2′, ec(u′) ≥ ((d + 1)/2) + 1, for each u′

∈ Q ′; whereas all the vertices in H , and in H ′

are central vertices. This implies that

Q ′
∩ (H ∪ H ′) = ∅. (21)

In order to find a bound on the degrees of the vertices in H ′, we need the following two claims.

Claim 4. Let x ∈ H. Then its two neighbours each have degree at least 3.

Proof of Claim 4. Let w and y be the two neighbours of x. So, by the definition of H , they are both central vertices,
i.e., ec(w) = (d + 1)/2 = ec(y). This immediately implies

d(w, v0), d(w, vd) ≤ (d + 1)/2. (22)

Also, by (6) we have that y lies at a distance (d + 1)/2 from v0 or vd. Assume, without loss of generality, that

d(y, vd) = (d + 1)/2. (23)

First, we show that d(w, v0) ≥ (d − 1)/2. If not, then by (22) and the triangle inequality

d = d(v0, vd) ≤ d(v0, w) + d(w, vd) ≤ ((d − 1)/2 − 1) + ((d + 1)/2) = d − 1,

which is impossible. So,

d(w, v0) ≥ (d − 1)/2. (24)

Similarly,

d(w, vd) ≥ (d − 1)/2. (25)

Now, continuing the proof of Claim 4, assume by contradiction, that deg(y) ≤ 2.
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Since y ∈ C(G), y ≠ v0, vd, and hence, by Fact 2, deg(y) ≠ 1.
It follows that deg(y) = 2. Then label as z, the second neighbour of y.
If z = w, then w is a cut-vertex, since its removal would disconnect the edge xy from the rest of the graph. Thus, every

path from {v0, vd} to ymust go throughw. But then (5) implies that ec(y) ≥ 1+max{d(w, v0), d(w, vd)} ≥ 1+ (d+1)/2,
which contradicts the fact that ec(y) = (d + 1)/2. So, z ≠ w.

Next, by (24) and (25), any shortest path from {v0, vd} to ywhich goes through w and x, has length at least (d − 1)/2 +

d(w, x)+d(x, y) = (d+1)/2+1. Hence, since ec(y) = (d+1)/2, we have that any shortest path from {v0, vd} to y cannot
pass through w and x. Note again that since y ∈ C(G), y ≠ v0, vd. Hence, any shortest path from y to {v0, vd} must pass
through z. Thus, from (23), and since any shortest y–vd path must pass through z, we have that d(z, vd) = (d + 1)/2 − 1.
However, this then gives that d(z, v0) ≥ (d + 1)/2, since otherwise, by the triangle inequality

d = d(v0, vd) ≤ d(v0, z) + d(z, vd) ≤ ((d + 1)/2 − 1) + (((d + 1)/2) − 1) = d − 1

which is impossible. So, d(z, v0) ≥ (d + 1)/2, which in turn implies that a shortest y–v0 path which passes through z must
have length at least ((d+ 1)/2)+ 1, contrary to the fact that ec(y) = (d+ 1)/2. Therefore, a shortest v0–y path cannot pass
through z, a contradiction. So, deg(y) ≠ 2.

Thus, deg(y) ≰ 2, i.e., deg(y) ≥ 3. By an equivalent argument, deg(w) ≥ 3, which completes the proof of Claim 4. �

From Claim 4 we have that all the vertices of H ′ have degree at least 3; whereas all the vertices in H and Q have degree
2, since they are problem vertices. Thus,

H ′
∩ (Q ∪ H) = ∅. (26)

Summarizing, thus far, by (15), (16), (21) and (26) we have shown that Q , Q ′, H and H ′ are all pairwise disjoint.

Claim 5.
∑

x∈H ′ deg(x) ≥ h + (3/2)h′.

Proof of Claim 5. On the one hand, since by Claim 4, deg(x) ≥ 3, for all x ∈ H ′, we have that
∑

x∈H ′ deg(x) ≥ 3h′. On the
other hand, since every vertex inH has two neighbours inH ′, we have

∑
x∈H ′ deg(x) ≥ 2h. Summing these two inequalities,

we get 2
∑

x∈H ′ deg(x) ≥ 2h + 3h′, and upon division by 2, Claim 5 is proven. �

Claim 5, and the definitions of H and H ′, give a lower bound for the eccentric connectivity index over H ∪ H ′ as follows:−
x∈(H∪H ′)

ec(x) deg(x) =

−
x∈H

ec(x) deg(x) +

−
x∈H ′

ec(x) deg(x)

= h((d + 1)/2) · 2 + ((d + 1)/2)
−
x∈H ′

deg(x)

≥ h(d + 1) + ((d + 1)/2)(h + (3/2)h′)

= h(3(d + 1)/2) + h′(3(d + 1)/4). (27)

Next, set P ′
:= {v0, . . . , v(d−5)/2, v(d+5)/2, . . . , vd}. (If d = 3, then P ′

:= ∅ ; whereas if d = 5, then P ′
:= {v0, v5}.) It can

be seen that P ′
∩ (Q ∪ Q ′

∪ H ∪ H ′) = ∅. Note that |P ′
| = d − 3.

A bound for the eccentric connectivity index of P ′ can be found by direct calculation. If d ≥ 7, we have:−
v∈P ′

ec(v) deg(v) = ec(v0) deg(v0) + ec(vd) deg(vd) +

(d−5)/2−
i=1

ec(vi) deg(vi) +

d−1−
i=(d+5)/2

ec(vi) deg(vi)

≥ d · 1 + d · 1 + 2
(d−5)/2−

i=1

(d − i) · 2

= 2d + 4 ·

(d−5)/2−
i=1

(d − i)

= 3 d2/2 − 4d − 15/2. (28)

(And (28) also holds for d = 5.)
For d = 3, we have−

v∈P ′

ec(v) deg(v) = 0. (29)

Define S ′
= V − (Q ∪ Q ′

∪ H ∪ H ′
∪ P ′).

For now, assume that d ≥ 5. (We will consider the case for d = 3, below.) Since v0, vd ∈ P ′, then v0, vd ∉ S ′. It follows
from Fact 2, that S ′ has no pendant vertices, and this allows us to partition S ′ as follows:
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let A = {x ∈ S ′
| deg(x) = 2}, B = {x ∈ S ′

| deg(x) ≥ 3}. Setting |A| = a, and |B| = b, we obtain

a + b + q + q′
+ h + h′

+ (d − 3) = n. (30)

Combining (2)with the fact that there are noproblemvertices in S ′, we have that for all vertices x inA, ec(x) ≥ ((d+1)/2)+1.
Applying this inequality, and (2), an upper bound for the index over the vertices of S ′ is−

x∈A

ec(x) deg(x) +

−
u∈B

ec(u) deg(u) ≥ 2a((d + 1)/2 + 1) + 3b((d + 1)/2)

= a(d + 3) + b(3(d + 1)/2).

Combining this inequality, (20), (27) and (28) we have

ξ C (G) =

−
x∈A

ec(x) deg(x) +

−
u∈B

ec(u) deg(u) +

−
v∈Q

ec(v) deg(v) +

−
w∈Q ′

ec(w) deg(w) +

−
v∈H

ec(v) deg(v)

+

−
v∈H ′

ec(v) deg(v) +

−
v∈P ′

ec(v) deg(v)

≥ a(d + 3) + b(3(d + 1)/2) + q((5d + 7)/4) + q′((d + 3)/2) − 3

+ h(3(d + 1)/2) + h′(3(d + 1)/4) + 3 d2/2 − 4d − 15/2. (31)

We will minimize (31) by optimizing the coefficients a, b, q, q′, h, and h′ in three stages. First, recall that q′
≤ q. Fixing

a, b, h and h′, (31) is as small as possible when q′ is as large as possible, i.e., when q′
= q. This gives

ξ C (G) ≥ a(d + 3) + b(3(d + 1)/2) + q ((7d + 13)/4) − 3

+ h(3(d + 1)/2) + h′(3(d + 1)/4) + 3 d2/2 − 4d − 15/2 (32)

and now (30) has been reduced to

a + b + 2q + h + h′
= n − d + 3. (33)

Second, recall that h′
≤ 2h. Fixing a, b and q, (32) is as small as possible when h′ is as large as possible, i.e., when h′

= 2h.
This gives

ξ C (G) ≥ a(d + 3) + b(3(d + 1)/2) + q((7d + 13)/4) − 3

+ h (3(d + 1)) + 3 d2/2 − 4d − 15/2 (34)

and now (33) has been reduced to a + b + 2q + 3h = n − d + 3.
Third, if d ≥ 3, (34) is minimized for b = q = h = 0 and a = n − d + 3, to give

ξ C (G) ≥ (n − d + 3)(d + 3) − 3 + (3/2) d 2
− 4d − 15/2

= n(d + 2) + d 2/2 − 3d − 3/2 + n − d
= ξ C (Vn, d) + n − d.

Since n ≥ d + 1 ≥ d, we have ξ C (G) ≥ ξ C (Vn, d) + n − d ≥ ξ C (Vn, d), which contradicts (3), and Case 2, for d ≥ 5 odd, is
complete.

Now, assume that d = 3. Here we partition S ′ as S ′
= F ∪ A ∪ B, where F = {v0, v3}, and where A and B are defined as

previously, i.e., A = {x ∈ S ′
| deg(x) = 2}, B = {x ∈ S ′

| deg(x) ≥ 3}. Setting |A| = a, and |B| = b, we obtain

2 + a + b + q + q′
+ h + h′

+ 0 = n. (35)

Notice that
∑

x∈F ec(x) deg(x) ≥ d + d.
Using this, (29), and as in (31), we get

ξ C (G) ≥ a(d + 3) + b(3(d + 1)/2) + q((5d + 7)/4) + q′((d + 3)/2) − 3

+ h(3(d + 1)/2) + h′(3(d + 1)/4) + 0 + 2d. (36)

Minimizing as above, after the second stage, (35) reduces to

a + b + 2q + 3h = n − 2.

Then, for the third stage, we set b = q = h = 0 and a = n − 2. Thus, (36) becomes

ξ C (G) ≥ (n − 2)(d + 3) − 3 + 2d
= 6n − 9
= ξ C (Vn, 3) + n − d,

and as above, we get a contradiction to (3). Thus, Case 2, for d = 3, is complete.
This concludes the proof for Part A, and we have shown that for t(G) ≥ 1, ξ C (G) ≥ ξ C (Vn,d).
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Part B
The remaining part of the proof of the theorem is for t(G) = 0 (no problem vertices). The proof will parallel the proof

given in Part A, but with the even and odd cases considered simultaneously. Again we must show that ξ C (G) ≥ ξ C (Vn, d).
Suppose, to the contrary, that there exists a counterexample G, for which t(G) = 0, and

ξ C (G) < ξ C (Vn, d). (37)

Of all such counterexamples, choose G to have the smallest possible order, n. Hence, any graph G′ with diameter d′, no
problem vertices, and n′ < n vertices, will satisfy

ξ C (G′) ≥ ξ C (Vn′, d′). (38)

Let P : v0, v1, . . . , vd be a diametral path in G, and define S = V − V (P).

Claim B1. There are no pendant vertices in S.

Proof of Claim B1. Suppose to the contrary, that S contains a pendant vertex x, and let y be the neighbour of x. SetG′
= G−x.

Fact 4. (i) The diameter of G′ is d, since x is not on the diametral path P .
(ii) n(G′) = n − 1 < n(G).

We now show that

ξ C (G′) ≥ ξ C (Vn−1, d). (39)

If on the one hand t(G′) = 0, then along with Fact 4, we conclude that G′ is not a counterexample, (38) applies, and (39)
follows. If on the other hand t(G′) ≥ 1, then G′ satisfies the conditions of Part A, and (39) follows immediately.

Continuing from this point onwards, the proof of Claim B1 is identical to that of Claim A1. We arrive at a contradiction,
and thus Claim B1 is proven. �

Claim B1 allows us to partition S as follows:
let A = {x ∈ S | deg(x) = 2}, B = {x ∈ S | deg(x) ≥ 3}. Setting |A| = a, and |B| = b, we obtain

a + b + d + 1 = n. (40)

Analogous to (11), a simple calculation gives

−
v∈V (P)

ec(v) deg(v) ≥


3
2
d2 for d even

3
2
d2 + 1/2 for d odd.

(41)

Combining (2) with t(G) = 0, we have that for all vertices x in A, ec(x) ≥ ⌈d/2⌉ + 1. This inequality, in conjunction with
(2) and (41), gives us

ξ C (G) =

−
v∈V (P)

ec(v) deg(v) +

−
x∈A

ec(x) deg(x) +

−
u∈B

ec(u) deg(u)

≥

−
v∈V (P)

ec(v) deg(v) + 2 a(⌈d/2⌉ + 1) + 3 b(⌈d/2⌉)

≥


3
2
d 2

+ a (d + 2) + b (3d/2) for d even

3
2
d 2

+ 1/2 + a (d + 3) + b (3 (d + 1)/2) for d odd.
(42)

We will minimize (42) by optimizing the coefficients a and b. If d ≥ 3, the right hand side of the inequality is minimized
when a is as large as possible, so, by (40), set a = n − d − 1, and b = 0. Thus,

ξ C (G) ≥


(n − d − 1)(d + 2) +

3
2
d 2 for d even

(n − d − 1)(d + 3) +
3
2
d 2

+ 1/2 for d odd

=


n(d + 1) + n +

3
2
d 2

− d2 − 2d − d − 2 for d even

n(d + 2) +
3
2
d 2

+ n − d2 − 3d − d − 3 + 1/2 for d odd



258 M.J. Morgan et al. / Discrete Applied Mathematics 160 (2012) 248–258

=


n(d + 1) +

1
2
d 2

− 2d − 1 + n − d − 1 for d even

n(d + 2) +
1
2
d 2

− 3d − 3/2 + n − d − 1 for d odd

= ξ C (Vn, d) + n − d − 1.

Finally, since n ≥ d + 1, we have ξ C (G) ≥ ξ C (Vn, d) + n − d − 1 ≥ ξ C (Vn, d), which contradicts (37). This contradiction
completes the proof of Part B, and hence completes the proof of the theorem. �
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