110 research outputs found

    The variability and dynamics of the Antartic Circumpolar Current south of Africa using proxy techniques

    Get PDF
    The general circulation of the Southern Ocean is dominated by the eastward flowing Antarctic Circumpolar Current (ACC). This is a continuous feature linking the three major ocean basins and thus forms a vital link in the transport of heat and salt on a global scale. These exchanges provide a vital mechanism for the global thermohaline circulation (THC), which regulates the Earth's climate. In the high latitudes, where conditions are hostile, routine hydrographic observations are scarce resulting in a poor understanding of the physical and dynamic processes controlling the variability of the ACC and its influence on the THC. The GoodHope program launched in early 2004 aimed to establish an intensive monitoring platform that would provide detailed information on the physical structure and volume flux of water masses south of Africa. Sustained observations along the GoodHope cruise track provide the means to monitor the vertical structure and variability of the ACC and its associated fronts south of Africa. Such intense monitoring has been under way in the Drake Passage and south of Australia since the 1970s. A major objective of this thesis is to provide sound estimates of ACC transport and variability using both in situ measurements and remote sensing techniques. These estimates are crucial in understanding the role the ACC plays in the global thermohaline circulation (THC) and how the region south of Africa acts as a major conveyor of heat and salt to the higher latitudes. Baroclinic transports of the ACC, relative to 2500 dbar, are calculated from altimetry data alone. These transports agree with simultaneous observed estimates (rms difference in net transport is 5.2 Sv). These observations suggest that sea level anomalies largely reflect baroclinic transport variations above 2500 dbar. The transports contribution per ACC front shows that the SAF is responsible for the highest variability signals (>50%) even though its net transport contribution to the ACC was less (9%) than the APF. Furthermore, direct measurements of heat and salt content in the Southern Ocean are based on the few synoptic transects, the majority of which are restricted in the austral summer. To overcome the poor temporal and spatial resolution of measurements in the south African sector of the Southern Ocean, this thesis makes use of the gravest empirical mode (GEM) method and applies this technique to weekly composites of satellite altimetry data. The GEM method makes use of all available hydrographic casts from the south-east Atlantic Ocean and projects the data into a baroclinic stream function space parameterised by pressure and dynamic height. The GEM fields were shown to compare closely with independent in situ observations of the water column, capturing more than 97% of the total temperature and density variance in the ACC domain. The GEM-derived heat and salt content estimates attempt to determine the variability signals of the ACC due to external influences, such as topographical obstacles and oceanic features originating from subtropical regions. The exploitation of such proxy methods is useful in improving our understanding of the subsurface properties of the Southern Ocean and more importantly the influences temporal changes in the system have on the structure and transport of the ACC. With time, these methods will be refined with the input of new observations, thereby enhancing their ability to determine the dynamic nature of the ACC and its impact on the Earth's system

    Submesoscale processes promote seasonal restratification in the Subantarctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2960–2975, doi:10.1002/2016JC012494.Traditionally, the mechanism driving the seasonal restratification of the Southern Ocean mixed layer (ML) is thought to be the onset of springtime warming. Recent developments in numerical modeling and North Atlantic observations have shown that submesoscale ML eddies (MLE) can drive a restratifying flux to shoal the deep winter ML prior to solar heating at high latitudes. The impact of submesoscale processes on the intraseasonal variability of the Subantarctic ML is still relatively unknown. We compare 5 months of glider data in the Subantarctic Zone to simulations of a 1-D mixing model to show that the magnitude of restratification of the ML cannot be explained by heat, freshwater, and momentum fluxes alone. During early spring, we estimate that periodic increases in the vertical buoyancy flux by MLEs caused small increases in stratification, despite predominantly down-front winds that promote the destruction of stratification. The timing of seasonal restratification was consistent between 1-D model estimates and the observations. However, during up-front winds, the strength of springtime stratification increased over twofold compared to the 1-D model, with a rapid shoaling of the MLD from >200 m to <100 m within a few days. The ML stratification is further modified under a negative Ekman buoyancy flux during down-front winds, resulting in the destruction of ML stratification and deepening of the MLD. These results propose the importance of submesoscale buoyancy fluxes enhancing seasonal restratification and mixing of the Subantarctic ML.South African NRF-SANAP Grant Number: SNA14071475720; NSF Grant Number: OCE-I4347882017-10-0

    Vertical Convergence of Turbulent and Double-Diffusive Heat Flux Drives Warming and Erosion of Antarctic Winter Water in Summer

    Get PDF
    The seasonal warming of Antarctic Winter Water (WW) is a key process that occurs along the path of deep water transformation to intermediate waters. These intermediate waters then enter the upper branch of the circumpolar overturning circulation. Despite its importance, the driving mechanisms that mediate the warming of Antarctic WW remain unknown, and their quantitative evaluation is lacking. Using 38 days of glider measurements of microstructure shear, we characterize the rate of turbulent dissipation and its drivers over a summer season in the northern Weddell Sea. Observed dissipation rates in the surface layer are mainly forced by winds and explained by the stress scaling (r2 = 0.84). However, mixing to the base of the mixed layer during strong wind events is suppressed by vertical stratification from sea ice melt. Between the WW layer and the warm and saline circumpolar deep water, a subsurface layer of enhanced dissipation is maintained by double-diffusive convection (DDC). We develop a WW layer temperature budget and show that a warming trend (0.2°C over 28 days) is driven by a convergence of heat flux through mechanically driven mixing at the base of the mixed layer and DDC at the base of the WW layer. Notably, excluding the contribution from DDC results in an underestimation of WW warming by 23%, highlighting the importance of adequately representing DDC in ocean models. These results further suggest that an increase in storm intensity and frequency during summer could increase the rate of warming of WW with implications for rates of upper-ocean water mass transformation.publishedVersio

    Southern Ocean Seasonal Restratification Delayed by Submesoscale Wind–Front Interactions

    Get PDF
    Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean

    Submesoscale Fronts in the Antarctic Marginal Ice Zone and Their Response to Wind Forcing

    Get PDF
    Submesoscale flows in the ocean are energetic motions, O(1–10 km), that influence stratification and the distributions of properties, such as heat and carbon. They are believed to play an important role in sea‐ice‐impacted oceans by modulating air‐sea‐ice fluxes and sea‐ice extent. The intensity of these flows and their response to wind forcing are unobserved in the sea‐ice regions of the Southern Ocean. We present the first submesoscale‐resolving observations in the Antarctic marginal ice zone (MIZ) collected by surface and underwater autonomous vehicles, for >3 months in austral summer. We observe salinity‐dominated lateral density fronts occurring at sub‐kilometer scales. Surface winds are shown to modify the magnitude of the mixed‐layer density fronts, revealing strongly coupled atmosphere‐ocean processes. We posture that these wind‐front interactions occur as a continuous interplay between front slumping and vertical mixing, which leads to the dispersion of submesoscale fronts. Such processes are expected to be ubiquitous in the Southern Ocean MIZ

    Submesoscale Fronts in the Antarctic Marginal Ice Zone and Their Response to Wind Forcing

    Get PDF
    Submesoscale flows in the ocean are energetic motions, O(1–10 km), that influence stratification and the distributions of properties, such as heat and carbon. They are believed to play an important role in sea‐ice‐impacted oceans by modulating air‐sea‐ice fluxes and sea‐ice extent. The intensity of these flows and their response to wind forcing are unobserved in the sea‐ice regions of the Southern Ocean. We present the first submesoscale‐resolving observations in the Antarctic marginal ice zone (MIZ) collected by surface and underwater autonomous vehicles, for >3 months in austral summer. We observe salinity‐dominated lateral density fronts occurring at sub‐kilometer scales. Surface winds are shown to modify the magnitude of the mixed‐layer density fronts, revealing strongly coupled atmosphere‐ocean processes. We posture that these wind‐front interactions occur as a continuous interplay between front slumping and vertical mixing, which leads to the dispersion of submesoscale fronts. Such processes are expected to be ubiquitous in the Southern Ocean MIZ

    Abrupt Transitions in Submesoscale Structure in Southern Drake Passage: Glider Observations and Model Results

    Get PDF
    Enhanced vertical velocities associated with submesoscale motions may rapidly modify mixed layer depths and increase exchange between the mixed layer and the ocean interior. These dynamics are of particular importance in the Southern Ocean, where the ventilation of many density classes occurs. Here we present results from an observational field program in southern Drake Passage, a region preconditioned for submesoscale instability owing to its strong mesoscale eddy field, persistent fronts, strong down-front winds, and weak vertical stratification. Two gliders sampled from December 2014 through March 2015 upstream and downstream of the Shackleton Fracture Zone (SFZ). The acquired time series of mixed layer depths and buoyancy gradients enabled calculations of potential vorticity and classifications of submesoscale instabilities. The regions flanking the SFZ displayed remarkably different characteristics despite similar surface forcing. Mixed layer depths were nearly twice as deep, and horizontal buoyancy gradients were larger downstream of the SFZ. Upstream of the SFZ, submesoscale variability was confined to the edges of topographically steered fronts, whereas downstream these motions were more broadly distributed. Comparisons to a one-dimensional (1D) mixing model demonstrate the role of submesoscale instabilities in generating mixed layer variance. Numerical output from a submesoscale-resolving simulation indicates that submesoscale instabilities are crucial for correctly reproducing upper-ocean stratification. These results show that bathymetry can play a key role in generating dynamically distinct submesoscale characteristics over short spatial scales and that submesoscale motions can be locally active during summer months

    Frontiers in Fine-Scale in situ Studies: Opportunities During the SWOT Fast Sampling Phase

    Get PDF
    Conceived as a major new tool for climate studies, the Surface Water and Ocean Topography (SWOT) satellite mission will launch in late 2021 and will retrieve the dynamics of the oceans upper layer at an unprecedented resolution of a few kilometers. During the calibration and validation (CalVal) phase in 2022, the satellite will be in a 1-day-repeat fast sampling orbit with enhanced temporal resolution, sacrificing the spatial coverage. This is an ideal opportunity – unique for many years to come – to coordinate in situ experiments during the same period for a focused study of fine scale dynamics and their broader roles in the Earth system. Key questions to be addressed include the role of fine scales on the ocean energy budget, the connection between their surface and internal dynamics, their impact on plankton diversity, and their biophysical dynamics at the ice margin
    • 

    corecore