102 research outputs found
Supercritical biharmonic equations with power-type nonlinearity
The biharmonic supercritical equation , where and
, is studied in the whole space as well as in a
modified form with as right-hand-side with an additional
eigenvalue parameter in the unit ball, in the latter case together
with Dirichlet boundary conditions. As for entire regular radial solutions we
prove oscillatory behaviour around the explicitly known radial {\it singular}
solution, provided , where
is a further critical exponent, which was introduced in a recent work by
Gazzola and the second author. The third author proved already that these
oscillations do not occur in the complementing case, where .
Concerning the Dirichlet problem we prove existence of at least one singular
solution with corresponding eigenvalue parameter. Moreover, for the extremal
solution in the bifurcation diagram for this nonlinear biharmonic eigenvalue
problem, we prove smoothness as long as
Special relativity constraints on the effective constituent theory of hybrids
We consider a simplified constituent model for relativistic
strong-interaction decays of hybrid mesons. The model is constructed using
rules of renormalization group procedure for effective particles in light-front
quantum field theory, which enables us to introduce low-energy phenomenological
parameters. Boost covariance is kinematical and special relativity constraints
are reduced to the requirements of rotational symmetry. For a hybrid meson
decaying into two mesons through dissociation of a constituent gluon into a
quark-anti-quark pair, the simplified constituent model leads to a rotationally
symmetric decay amplitude if the hybrid meson state is made of a constituent
gluon and a quark-anti-quark pair of size several times smaller than the
distance between the gluon and the pair, as if the pair originated from one
gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure
Analysis of the radiative decays among the charmonium states
In this article, we study the radiative decays among the charmonium states
with the heavy quark effective theory, and make predictions for the ratios
among the radiative decay widths of an special multiplet to another multiplet.
The predictions can be confronted with the experimental data in the future and
put additional constraints in identifying the , , charmonium-like
mesons.Comment: 12 pages, revised revisio
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Voting on sustainable transport: communication and governance challenges in Greater Manchester's ‘congestion charge’ referendum
In December 2008, the Greater Manchester electorate voted to reject a £3 billion package of transport measures that would have included investment in the conurbation's bus, tram and rail networks and walking and cycling infrastructure, together with, and partially funded by, the introduction of a congestion charge. The proposals followed a successful bid to the UK Government Transport Innovation Fund (TIF). High levels of car use present challenges to cities, and the TIF bid can be seen as an attempt to address these by promoting and facilitating a modal shift. The paper reflects on the debates surrounding the proposals, which led to a referendum. In particular, it explores the challenges of communicating complex, controversial plans in a fragmented and contested political arena
Search for the associated production of the Higgs boson with a top-quark pair
A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb −1 and 19.7 fb −1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, μ = σ/σ SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV
- …