3,347 research outputs found

    Systems analysis of host-parasite interactions.

    Get PDF
    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies

    Cold Plasma Therapy: Can One Device Change the World?

    Get PDF

    Undermining anarchy: Facebook’s influence on anarchist principles of organisation in Occupy Wall Street

    Get PDF
    This paper contributes to debates around the political potential of social media by examining Occupy Wall Street and activist’s use of Facebook. Drawing on concepts rooted in cybernetics and anarchist political theory, the paper argues that the shift in Occupy Wall Street from being a physical protest camp in late 2011 to an online movement in 2012 coincided with a shift in social media activity. On the one hand, analysis of Facebook activity suggests a move from functional to anatomical hierarchy; on the other, it points towards a move from many-to-many communication to one-to-many communication. In conclusion, we argue that this development has served to undermine the movement’s anarchist principles of organisation

    Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research

    Get PDF
    The development of a rapid and non-destructive method to assess purity levels in samples of biogenic silica prior to geochemical/isotope analysis remains a key objective in improving both the quality and use of such data in environmental and palaeoclimatic research. Here a Fourier Transform Infrared Spectroscopy (FTIR) mass-balance method is demonstrated for calculating levels of contamination in cleaned sediment core diatom samples from Lake Baikal, Russia. Following the selection of end-members representative of diatoms and contaminants in the analysed samples, a mass-balance model is generated to simulate the expected FTIR spectra for a given level of contamination. By fitting the sample FTIR spectra to the modelled FTIR spectra and calculating the residual spectra, the optimum best-fit model and level of contamination is obtained. When compared to X-ray Fluorescence (XRF) the FTIR method portrays the main changes in sample contamination through the core sequence, permitting its use in instances where other, destructive, techniques are not appropriate. The ability to analyse samples of <1 mg enables, for the first time, routine analyses of small sized samples. Discrepancies between FTIR and XRF measurements can be attributed to FTIR end-members not fully representing all contaminants and problems in using XRF to detect organic matter external to the diatom frustule. By analysing samples with both FTIR and XRF, these limitations can be eliminated to accurately identify contaminated samples. Future, routine use of these techniques in palaeoenvironmental research will therefore significantly reduce the number of erroneous measurements and so improve the accuracy of biogenic silica/diatom based climate reconstructions

    Observing the earliest moments of supernovae using strong gravitational lenses

    Get PDF
    We determine the viability of exploiting lensing time delays to observe strongly gravitationally lensed supernovae (gLSNe) from first light. Assuming a plausible discovery strategy, the Legacy Survey of Space and Time (LSST) and the Zwicky Transient Facility (ZTF) will discover ∼\sim 110 and ∼\sim 1 systems per year before the supernova (SN) explosion in the final image respectively. Systems will be identified 11.7−9.3+29.811.7^{+29.8}_{-9.3} days before the final explosion. We then explore the possibility of performing early-time observations for Type IIP and Type Ia SNe in LSST-discovered systems. Using a simulated Type IIP explosion, we predict that the shock breakout in one trailing image per year will peak at ≲\lesssim 24.1 mag (≲\lesssim 23.3) in the BB-band (F218WF218W), however evolving over a timescale of ∼\sim 30 minutes. Using an analytic model of Type Ia companion interaction, we find that in the BB-band we should observe at least one shock cooling emission event per year that peaks at ≲\lesssim 26.3 mag (≲\lesssim 29.6) assuming all Type Ia gLSNe have a 1 M⊙_\odot red giant (main sequence) companion. We perform Bayesian analysis to investigate how well deep observations with 1 hour exposures on the European Extremely Large Telescope would discriminate between Type Ia progenitor populations. We find that if all Type Ia SNe evolved from the double-degenerate channel, then observations of the lack of early blue flux in 10 (50) trailing images would rule out more than 27% (19%) of the population having 1 M⊙_\odot main sequence companions at 95% confidence.Comment: 17 pages, 15 figures (including appendices). Accepted by MNRAS 3rd May 202

    LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    Get PDF
    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described

    Applicability of Infrared Photorefraction for Measurement of Accommodation in Awake-Behaving Normal and Strabismic Monkeys

    Get PDF
    Purpose: This study was designed to use infrared photorefraction to measure accommodation in awake-behaving normal and strabismic monkeys and describe properties of photorefraction calibrations in these monkeys. Methods: Ophthalmic trial lenses were used to calibrate the slope of pupil vertical pixel intensity profile measurements that were made with a custom-built infrared photorefractor. Day to day variability in photorefraction calibration curves, variability in calibration coefficients due to misalignment of the photorefractor Purkinje image and the center of the pupil, and variability in refractive error due to off-axis measurements were evaluated. Results: The linear range of calibration of the photorefractor was found for ophthalmic lenses ranging from ?1 D to +4 D. Calibration coefficients were different across monkeys tested (two strabismic, one normal) but were similar for each monkey over different experimental days. In both normal and strabismic monkeys, small misalignment of the photorefractor Purkinje image with the center of pupil resulted in only small changes in calibration coefficients, that were not statistically significant (P > 0.05). Off-axis measurement of refractive error was also small in the normal and strabismic monkeys (?1 D to 2 D) as long as the magnitude of misalignment was <10°. Conclusions: Remote infrared photorefraction is suitable for measuring accommodation in awake, behaving normal, and strabismic monkeys. Specific challenges posed by the strabismic monkeys, such as possible misalignment of the photorefractor Purkinje image and the center of the pupil during either calibration or measurement of accommodation, that may arise due to unsteady fixation or small eye movements including nystagmus, results in small changes in measured refractive error
    • …
    corecore