2,087 research outputs found

    A method of classification for multisource data in remote sensing based on interval-valued probabilities

    Get PDF
    An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method

    Method of Classification for Multisource Data in Remote Sensing Based on Interval-VaIued Probabilities

    Get PDF
    This work was supported by NASA Grant No. NAGW-925 “Earth Observation Research - Using Multistage EOS-Iike Data” (Principal lnvestigators: David A. Landgrebe and Chris Johannsen). The Anderson River SAR/MSS data set was acquired, preprocessed, and loaned to us by the Canada Centre for Remote Sensing, Department of Energy Mines, and Resources, of the Government of Canada. The importance of utilizing multisource data in ground-cover^ classification lies in the fact that improvements in classification accuracy can be achieved at the expense of additional independent features provided by separate sensors. However, it should be recognized that information and knowledge from most available data sources in the real world are neither certain nor complete. We refer to such a body of uncertain, incomplete, and sometimes inconsistent information as “evidential information.” The objective of this research is to develop a mathematical framework within which various applications can be made with multisource data in remote sensing and geographic information systems. The methodology described in this report has evolved from “evidential reasoning,” where each data source is considered as providing a body of evidence with a certain degree of belief. The degrees of belief based on the body of evidence are represented by “interval-valued (IV) probabilities” rather than by conventional point-valued probabilities so that uncertainty can be embedded in the measures. There are three fundamental problems in the muItisource data analysis based on IV probabilities: (1) how to represent bodies of evidence by IV probabilities, (2) how to combine IV probabilities to give an overall assessment of the combined body of evidence, and (3) how to make a decision when the statistical evidence is given by IV probabilities. This report first introduces an axiomatic approach to IV probabilities, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach the report focuses on representation of statistical evidence by IV probabilities and combination of multiple bodies of evidence. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. This report also focuses on the development of decision rules over IV probabilities from the viewpoint of statistical pattern recognition The proposed method, so called “evidential reasoning” method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data* Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor, in each case, a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a Divide-and-Combine process, the method is able to utilize more features than the conventional Maximum Likelihood method

    Methods for Multisource Data Analysis in Remote Sensing

    Get PDF
    Methods for classifying remotely sensed data from multiple data sources are considered. Special interest is in general methods for multisource classification and three such approaches are considered: Dempster-Shafer theory, fuzzy set theory and statistical multisource analysis. Statistical multisource analysis is investigated further. To apply this method successfully it is necessary to characterize the reliability of each data source. Separability measures and classification accuracy are used to measure the reliability. These reliability measures are then associated with reliability factors included in the statistical multisource analysis. Experimental results are given for the application of statistical multisource analysis to multispectral scanner data where different segments of the electromagnetic spectrum are treated as different sources. Finally, a discussion is included concerning future directions for investigating reliability measures

    Efficient Contextual Measures for Classification of Multispectral Image Data

    Get PDF
    The most common method for labeling multispectral image data classifies each pixel entirely on the basis of its own spectral signature. Such a method neither utilizes contextual information in the image nor does it incorporate secondary information related to the scene. This exclusion is generally due to the poor cost/performance efficiency of most contextual algorithms and a lack of knowledge concerning how to relate variables from different sources. In this research, several efficient spatial context measures are developed from different structural models for four-nearest-neighbor neighborhoods. Most of these measures rely on simple manipulations of label probabilities generated by a noncontextual classifier. They are efficient computationally and are effective in improving classification accuracy over the noncontextual result. Among other schemata, the measures include: average label probabilities in a neighborhood; label probabilities; combined as a function of a metric in the label probability space; and context through semantic constraints within a Bayesian framework. In addition, an efficient implementation of a contextual classifier based on compound decision theory is developed through a simplification of the structure of the contextual prior probability^ No accuracy is lost through the simplification, but computational speed is increased 15-fold. Finally, a procedure to combine label probabilities from independent data sources is proposed. A mechanism for combining the label probabilities from each of the sources as a function of their independent classification accuracies is created and evaluated

    Statistical methods and neural network approaches for classification of data from multiple sources

    Get PDF
    Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results

    Contextual Classification of Multispectral Image Data: An Unbiased Estimator for the Context Distribution

    Get PDF
    Recent investigations have demonstrated the effectiveness of a contextual classifier that combines spatial and spectral information employing a general statistical approach. This statistical classification algorithm exploits the tendency of certain groundcover classes to occur more frequently in some spatial contexts than in others. Indeed, a key input to this algorithm is a statistical characterization of the context: the context distribution. Here we discuss an unbiased estimator of the context distribution which, besides having the advantage of statistical unbiasedness, has the additional advantage over other estimation techniques of being amenable to an adaptive implementation in which the context distribution estimate varies according to local contextual information. Results from applying the unbiased estimator to the contextual classification of three real Landsat data sets are presented and contrasted with results from non-contextual classifications and from contextual classifications utilizing other context distribution estimation techniques

    Parallel Processing Implementations of a Contextual Classifier for Multispectral Remote Sensing Data

    Get PDF
    Contextual classifiers are being developed as a method to exploit the spatial/spectral context of a pixel to achieve accurate classification. Classification algorithms such as the contextual classifier typically require large amounts of computation time. One way to reduce the execution time of these tasks is through the use of parallelism. The applicability of the CDC Flexible Processor system and of a proposed multimicroprocessor system (PASM) for implementing contextual classifiers is examined

    Contextual Classification of Multispectral Remote Sensing Data Using a Multiprocessor System

    Get PDF
    Abstract-A statistical model of spatial context is described and procedures for classifying remote sensing data using a context classifier are outlined. Experimental results are presented. Because the computational requirements of the context classifier are very large, its implementation on multiprocessor systems is investigated. Some of the special considerations necessary for such implementations are described, with particular reference to implementation on an array of Control Data Corporation Flexible Processors

    Hematopoietic Stem Cells Contribute to Lymphatic Endothelium

    Get PDF
    Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC). mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors.Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation
    • …
    corecore