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ABSTRACT

The importance of utilizing multisource data in ground-cover ̂ classifica- 
tion Jies in the fact that improvements in classification accuracy can be achieved 
at the expense of additional independent features provided by separate 
sensors. However, it should be recognized that information and knowledge 
from most available data sources in the real world are neither certain nor 
complete. We refer to such a body of uncertain, incomplete, and sometimes 
inconsistent information as “evidential information.”

The objective of this research is to develop a mathematical framework 

within which various applications can be made with multisource data in remote 

sensing and geographic information systems. The methodology described in 
this report has evolved from “evidential reasoning,” where each data source is 

considered as providing a body of evidence with a certain degree of belief. The 
degrees of belief based on the body of evidence are represented by “interval- 
valued (IV) probabilities” rather than by conventional point-valued probabilities 
so that uncertainty can be embedded in the measures.

There are three fundamental problems in the muItisource data analysis 
based on IV probabilities: (1) how to represent bodies of evidence by IV 
probabilities, (2) how to combine IV probabilities to give an overall assessment 
of the combined body of evidence, and (3) how to make a decision when the 

statistical evidence is given by IV probabilities.

This report first introduces an axiomatic approach to IV probabilities, 
where the IV probability is defined by a pair of set-theoretic functions which 
satisfy some pre-specified axioms. On the basis of this approach the report 
focuses on representation of statistical evidence by IV probabilities and 

combination of multiple bodies of evidence.
Although IV probabilities provide an innovative means for the 

representation and combination of evidential information, they make the 

decision process rather complicated. It entails more intelligent strategies for



making d ec is ions . This report also focuses on the development of decision 
rules over IV probabilities from the viewpoint of statistical pattern recognition.

applied to the grbund-cover classifibatiph of a rhultisource data set consisting of 
Multispectral Scanner (MSS) data* Synthetic Aperture Radar (SAR) data, and 
digital terrain data such as elevation, slope, and aspect. By treating the data 
sources separately, the method is able to capture both parametric and 

nonparametric information and to combine them.

Then the method is applied to two separate cases of classifying multi- 
band data obtained by a single sensor, in each case, a set of multiple sources 
is obtained by dividing the dimensionally huge data into smaller and more 
manageable pieces based on the global statistical correlation information. By a 
Divide-and-Combine process, the method is able to utilize more features than 
the conventional Maximum Likelihood method. -



C H A F T p R t

INTRODUCTION

1 4 ; lac kg ro u n d

'.v: Since the developments of the digital computer and sensor systems 
rnade it possible to apply the quantitative approach to remote sensing in 1960s, 
information concerning the surface of the Earth and its environment has been 
largely extracted from the multispectral data obtained by a single sensor.

VVithin the last decade, as remote sensing and other data acquisition 
technologies have advanced, there has been a trend towards exploiting 
remotely sensed multispectral data in conjunction with related data from other 
sources for the purpose of extracting higher level information from rnulti-attribute 

data bases. For instance, the topographic Information obtained from digital 
terrain data has been successfully used together with remotely sensed data in 

land cover analysis [Fleming et al. (1979), Franklin et al. (1986), Jones et al. 
(1988), Strahler et al. (1978)]. More recently, many researchers in the 
geographic information processing community have started reconsidering the 
possibility of utilizing remotely sensed data within geographic information 
systems (GIS) [Healey et al. (1988), Quarmby et al. (1988)]. Figure 1,1 depicts a 
typical multi-attribute database in remote sensing and GIS. In general, the 
information obtained from multiple sources is robust and more reliable than that 
from a single source. Furthermore, it may resolve ambiguities which might arise 
from single source analysis,

To a large extent, the methods which have been used for the analysis of 
multispurce data have been ad hoc or often based on qualitativeinterpretation 

techniques, drawing heavily on the expertise and intuition of application 

scientists. Whereas techniques for collecting and storing data from multiple 
sources (e.g., multispectral scanner, side-looking radar, digital terrain model,



MuitispectraI data source #1

Multispeetrai data source #2

Topographic information source
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etc.) have evolved rapidly, techniques for extracting and ahalyzing information 
from such complex data bases are still in the beginning stage. With the 
advancement in designing sensor systems and the increasing availability of 
andHary data, inte rest in extracting the great wealth of higher level information 

contained in geographic and remote sensing contexts has led to extensive 
demand for computer-based, automated (or semi-automated) methods for the 
analysis of multisource data. Their development will be hastened more and 
more by proliferation of various and sophisticated remote sensing platforms and 
sensorsIn the next decades.

UnHKe the situation in which we are dealing with purely spectral data 
from a single sensor, there are some conceivable problems in devising means 

for multisensor and multisource data analysis. Firstly, there is a difficulty in 
describing the disparate range of data types! which have different units of 
measurement; The types of data to be combined cannot be assumed to be 
commensurable. For example, multispectral .data represent the energy 
emanating from the scene of interest in different wavelengths while elevation 
data represent the altitude of the scene. Moreover, map-based ancillary data 

such as a soil map may even be nominal in nature. The situation becomes 
more complicated when the multi-attribute data bases include geometric 
characteristics such as lines, shapes, or sizes.;

Secondly, since spatial variation of the attribute in a geographic context, 
such as vegetation cover, soil type, or slope aspect, has an effect on the 
spectral responses obtained from remote sensors, there are possibly significant 
but unknown interactions among multiple data sources. For example, in the 
visible/infrared spectral range the reflected energy measured by a sensor 
depends on properties such as the pigmentation, moisture content and cellular 
structure of vegetation, the mineral and moisture contents of soils, and the level 
of sedimentation of water. However, when there is insufficient knowledge 
concerning the interactions among data sources, the observations obtained 

from the data sources have been treated as independent variables. Such an 
independence assumption should be adopted with caution in the case of a  
statistical multisource data analysis because the data sources which seem to be 

apparently uninteracting are unlikely to be statistically independent.

Thirdly, while it is often reasonable to adopt the multivariate Gaussian



distribution to model the probability function of multispectral data alone, this 
parametric model is not generally applicable to accommodate geographic or 
topographic data combined with multispectral data when the representation of 
their joint probability function is unknown.

Finally, there is an important factor which must be considered in 
combining multiple sources. Since various data sources are in general not 
equally reliable, the data sources usually provide a wide range of degrees of 
suppbrt for an observation, sometimes even in an inconsistent manner. Such 

information regarding the relative reliabilities of the sources should be included 
in the multisource data analysis.

These problems have been the motivation for the development of the 
techniques by which inferences can be drawn systematically from complex data 
bases composed of disparate, unequally reliable sources, regardless of their 
data types and interactions with the other sources.

1.2. Related Works

During the last decade, there have been a number of different 
approaches to the analysis of multisource data In remote sensing and 
geographic information systems. The approaches listed in this section are not 
exhaustive of the related works but are representative.

First,:Of..all,vthej-1stabked;veGtor”. approach is the most straightforward 
method in which all data sources are considered simultaneously by organizing 
the respective measurements into a single vector. The resulting compound 
vectors are treated as data from a single source. Although this approach has 
been successfully applied to combined multispectral data and terrain data 

[Hoffer et al. (1975)], its use is limited to the situation where the source are 

similar and their interactions are easily modeled.

The “layered” approach employed by Fleming et al. (1979) is more 

general in the sense that it can deal with multiple sources of diverse data types 
by treating them separately. This approach has been used for mapping forest 
cover types based on multispectral data and topographic data. Its idea is to 

classify major cover types based on the multispectral data, and then further



subdivide the cover types to the species level based on the remaining data. 
HutChihson (1982) has developed a similar approach, so called “ambiguity 
reduction” method, whose basic strategy is to stratify the data based on one (or 
more) of data sources, assess the results^ and resort to the other sdurces to 
resolve the remaining ambiguities. A major disadvantage of these two 

approaches is that different groupings or orderings of the sources may produce 
different results. Furthermore, their mathematical schemes cannot incorporate 
the reliabilities and interactions of the sources into the classification process,

Swain et a!. (1985) proposed an approach which can handle an arbitrary 

number of independent data sources. In their mathematical framework, the 
global membership function is derived from Bayes’ formula by applying two 
different statistical independence assumptions. Due to the commutative 

property of the global membership function, different orderings of the sources in 
combination do not have an effect oh final results. This method has been 
extended by Lee et a!. (1987) and Benediktsson et al. (1989a) so that the 
relative quality of the sources Can be accounted for in the global member-ship 
function.

Although their procedures in combining information from multiple data 

sources are different, the numerical representations of information in the above 
approaches are commonly based on the Bayesian inference, where posterior 
probabilities are defined by the multiplication of prior probabilities and 
observational probabilities. It is very irnportanf to recognize that in dealing with 
multispectral data combined with other forms of geographic data, the methods 
employed must be able to cope with uncertainties which arise both from intrinsic 
randomness of data and from ambiguities in modeling and combining disparate 
sources.

Recently, learning procedures based on neural networks have been 

applied to the classification of remotely sensed multisource data [Benediktsson 
et al. (1989b)]. Since it is nonparametric in nature, the neural network approach 

is most useful when the distribution functions of data are hot known. However, 
this approach usually involves a large amount of computational complexity in 

training due to an iterative procedure.

Meanwhile, in the artificial intelligence and knowledge engineering



community, there have been a number of attempts to build plausible models for 
automated reasoning with multiple information sources [Cohen (1985), 
McDermott and Doyle (1979), Shafer (1976a), Zadeh (1965)]. Such attempts 
have been embodied as “inference techniques under uncertainty” [Duda et al, 
(1976), Dubois and Prade (1980), Ginsberg (1984), Lowrance and Garvey
(1982)] and used in various areas of science and engineering [Blonda et al. 
(1989), Diida et aL (1979), Garvey (1987), Garvey et al. (1981), Kim et al. 
(1986), Moon (1989), ShOrtIiffe (1976)]. Applications to muitisource geographic 
and remote sensing data have been rudimentary at best.

1.3. Statement of Problem

The importance of utilizing multisource data in ground-cover 
classification lies in the fact that it is generally correct to assume that 
improvements in terms of classification accuracy can be achieved at the 
expense of additional independent features provided by separate sensors or 
other forms of data sources. However, it should be recognized that information 
and knowledge from most available sources of data in the real world are neither 
certain nor complete. We refer to such a body of uncertain, incomplete, and 

sometimes inconsistent information as “evidential information.”

In order for any methodology for multisource data classification to be 
implemented as a quantitative, computer-based technique, the methodology 
must be able to: (1) represent thepartial inforrnation provided by the individual 
sensors as numerical measures, and (2) combine the mea$ures by a 
combination rule to produce the overall assessment of the total evidence.

Consider the problem of classifying a pixel X = (X 1, ..., x m)T to one of n
classes denoted by Oj for j=1,..., n, where Xi (i = 1..... m) is the feature obtained
from the ith source denoted by Sj and the superscript T denotes the vector 
transposition. Suppose each data source Sj supports A denoting the event of X 

belonging to a certain class owith a degree of belief S(AIxi) = bv Throughout 

the report, the term “degree of belief” or “belief measure” will be used for any 

kind of numerical measure representing one's belief states regarding the 

events. Then, the first problehi above is equivalent to the Construction of belief



measures based on evidential information provided by each data source.

As mentioned earlier, evidential information is characteristically 
uncertain and incomplete. Therefore, the classical Boolean logic is not 
adequate for representing evidence because it cannot have intermediate states 
between "True” and “False.” In other words, the Boolean expressions never 
capture any notion of the relative strength of partial beliefs. Bayesian 
probabilities have been frequently used to represent partial beliefs. Yet this is 

possible only when there is a sufficient amount of data to estimate the statistical 
parameters of an assumed probability model. Further, there is no appropriate 
way for representing “total ignorance” in a Bayesian; framework because the 

Bayesian probabilities should be “additive”, that is,

P(A) + P(A) = I (1.3.1)

where A is the Complementary event of A . To illustrate the Consequence of Ihis 

requifenient, suppose there is no evidence available either for or against the 
occurrence of two exclusive and exhaustive events. In the Bayesian framework, 
both events are equally assigned a probability of which seems quite different

from specifying that nothing is known regarding the occurrence of the events.

Ohce the belief measures based on individual sources are given, the 
next problem is; whether we can find a combined degree of belief B(A | X 1, *-- 

,x^), or equivalently, whether we can build a numerical formula Jr such that

B(A | X1, -  ,xm) = ^(O1..... bm) (1-3.2)

If the data sources are not believed to be equally reliable, the relative 
reliabilities of the sources must be considered in computing the combined 
degree of belief, i.e.,

B(A | X1, -  ,Xm) = f  (O1, ..., bm ; S1, .,., Sfn) (1-3.3)

where SilS denote the relative reliabilities of the sources.

When the numerical representation of belief and the formulation of 
combining function depend on the expertise and intuition of human analysts, 
the solutiphs to the above problems are said to be adhoc.



1.4. Objective of the Research

The objective of the research is to develop a mathematical framework for 
dealing effectively with multisource data in remote sensing and GIS and to 

provide a preliminary demonstration of its value. The methodology described in 
this report has evolved from “evidential reasoning,” where each data source is 
considered as providing a body of evidence concerning propositions with 
certain degrees of belief. The degrees of belief based oh the body of evidence 
are  ̂ represented by “intervahyalued ( IV) probabilities^ rather than by 
conventional additive probabilities so that uncertainty can be embedded in the 
measures.

There are three fundamental problems in the multisource data analysis 
based on IV probabilities: (1) how to represent bodies of evidence by IV 

probabilities, (2) how to combine IV probabilities to give an overall assessment 
of the combined body of evidence, and (3) how to make decisions based on IV 
probabilities.

There have been various approaches to IV probabilities in the areas of 
philosophy of science and statistics. The primary focus of this report is on the 
unification of various concepts of IV probabilities so that IV probabilities can be 
readily accessible to representation and combination of multiple bodies of 
evidence without any conceptual ambiguities. This report pursues an axiomatic 
approach to IV probabilities, where IV probabilities are defined axiomatically 
based on the least of the common properties which are consistently required in 
the various approaches. Secondarily, this report focuses on formal methods of 
representing statistical evidence by IV probabilities, first based on acceptable 
models in robust estimation of probabilities, and then using the likelihood 
function of observed data.

We do not propose any brand-new rule for combining multiple evidence. 
Instead, some existing rules are investigated in terms of their inferencing 
mechanisms when they are expressed as set-theoretic functions. Although IV 

probabilities provide an innovative means for the representation of evidential 
information, they make the decision process rather complicated. We need more 

intelligent strategies for making decisions. This report addresses the 

development of decision rules Over IV probabilities as the counterparts of
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conventionaldecision rules in statistics.

In this report, the problem of multisource data analysis in remote sensing 
and GIS is viewed as an application area for the use of artificial intelligence and 

knowledge engineering techniques.

1.5. Thesis Organization

This report is made up of seven chapters In this introductory chapter.the 
problems in the analysis of multisource data have been addressed^ and the 
objective of the research has been stated. In the following chapter, after 
reviewing various approaches to IV probabilities, an axiomatic approach to IV 
probabilities is introduced. Chapter 3 describes how belief functions for 
statistical evidence can be constructed in the form of iV probabilities. Chapter 4 
examines subjective Bayesian rules and Dempster's rule for OOrhbining 
evidence in the sense of satisfying some desirable properties which agree with 

human intuition. Particularly, attention is paid to the inference mechanisms of 
Dempster's rule. In Chapter 5, decision rules over IV probabilities are defined 
on the basis of well-known decision principles in statistics, such as the 
Likelihood Principle and the Minimax Principle. For the purpose Of general 
assessments of its ability in capturing and utilizing information in multisource 
data, the approach is applied to the problems of ground-cover classification 

based on multispectral data in conjunction with other sources of data in remote 

sensing. The experimental results are presented in Chapter 6 and compared to 
the perfOfmanOe of a traditional maximum posterior probability classification 
method. Finally, Chapter 7 concludes the report by summarizing and 
suggesting directions for further research.

-



' ■: V  \

CHAPTER 2 .

APPROACHES TO INTERVAL-VALUED PROBABILITIES

2.1. Ititroduction

Interval-valued probabilities are  ̂ in general, a more adequate scheme 
than point-yalued probabilities to express one’s state of knowledge in the sense 
of handling uncertain, incomplete evidential information. IV probabilities can be 

thought of as a generalization of conventional additive probabilities, with the 

lower and upper extremes of the interval corresponding to an event being 
bounds for the unknown actual probability of the event. The endpoints of IV 

probabilities are called the “upper probability” and the “lower probability.”

There have been various works introducing the concepts of IV 

probabilities in the areas of philosophy of science and statistics. For example, 
Koopman (1940) derives the upper and lower probabilities based on the 
intuitively evident laws of consistency governing a ll;comparisons in partial 
ordering of non-numerical probabilities. Smith (1961) proposes a system of IV 
probabilities by considering the strength of one's belief in betting odds as an 
interval. Good (1962) considers the upper and lower probabilities of an event 
by analogy with the outer and inner measures of a non-measurable set. 
Dempster (1967) formulates a system of upper and lower probabilities induced 

by a set-theoretic multivalued mapping. Suppes and Zanotti (1977) show how 
a random relation generates upper and lower probabilities in the set-theoretic 

image space. And Walley and Fine (1982) present a frequentist account of IV 
probabilities based on a finite event algebra.

Among the above approaches, only Dempster’s and Walley and Fine’s 

models are useful for parametric statistical inference. Dempster’s work and 
Shafer’s mathematical theory of evidence [Shafer (1976a)], together called 

“Dempster-Shafer theory,” have shown their usefulness in various evidential
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reasoning systems [Garvey (1987), Garvey et al. (1981 Ĵ  Zhang and Ohen 
(1987)]; Waliey and Fine’s approach providesIh e  fundamental concepts of a 

frequentist theory of statistics for IV probabilities. Their results irtdicate that an 
objectivist or frequency-oriented view of probability''';'iql6^3 'hot^aeceissitate'.am 
additive probability concept^ and that IV probability models can represent a type 

of indeterminacy not captured by additive probabilities. In the foIIovving two 
sections, both approaches will be briefly reviewed.

Although the mathematical rationales behind the approaches listed 

above are different, there are some common properties of IV probabilities which 
are consistently required. This chapter introduces an axiomatic approach to IV 
probabilities, where IV probabilities are defined by a pair of set-theoretic 
functions satisfying the Common properties, so that conceptual ambiguities can 
be avoided.

2.2. Dem pster-Shafer Theory

In his 1960’s works, Dempster (1967, 1968) proposed a generalized 
scheme of statistical inference about a parameter space by introducing upper 
and lower probabilities induced by a multivalued mapping. His Scheme has 
been further developed and recast as a “mathematical theory of evidence” by 
Shafer. In this section, after briefly recalling the concepts of Dempster’s upper 
and lower probabilities, we discuss the formal framework of Shafer’s theory in 
the aspect of evidential reasoning.

Suppose we have a pair of spaces X  and £2 denoting respectively a 
sample space and a finite parameter space. Let F be a  multivalued mapping 
which assigns a subset r x c ( )  to every x e X  and let p be a probability 

measure assigning probabilities to the members of the class T  of subsets of X. 
Then, p) is a probability space, and this model corresponds to a random 

experiment where the outcome cannot be precisely observed but can only be 
located in a subset of all possible outcomes.

For any A c  Q , define

A * = { X e TC I Tx A A *  0  } (2.2.1)
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and

f x 6 i l r „ c A , r „ y 0 : } (2.2.2)

A* consists of those Xe X  which can possibly correspond under r  to an coeQ, 
while A* consists of those Xe X  which must lead to an coe Q. Then, the upper

probability and the lower probability of A are defined respectively as :

P+(A)

P*(A) =

P(A+)

P(O+)

P(AJ

p (O j

(2.2.3)

(2.2.4)

where Q* = Q* is the domain of r . Note that P*(A) and P*(A) are defined only if

p (Q *) *  Q. Since A* consists of those X eX  which can possibly correspond 
under T to an co e A, p (a *) rhay be regarded as the largest possible amount of 
probability which can be transferred to the outcomes coe A from the measure ji. 
Similarly, A* consists of those Xe X  which must lead toancoe  A. So, p(A+)

represents the minimal amount of probability which can be transferred to the 
outcomes co e A. The denominator p(Q +) = p(£2+) in eq. (2.2.3) andeq. (2.2.4)

is a hormalizing factor. The normalization is necessary in the case where there 
is any x e X  which does not map into any subset of Q. In this case* the subset 
{ x e X  | Tx = 0  } must be removed from X, and the measure of the remaining 

set O * should be renormalized to unity.

Dempster has assumed that the actual probability measure of A 1 P(A), 
lies in the interval [P*(A), P*(A)] such that

'-'V- P*(A) < P(A) < F (A ) (2.2.5)

The degree of uncertainty concerning the true value of P(A) is represented by 
the width, P*(A) -  Plt5(A), of the interval.

In Shafer’s theory, is called the “frame of discernment” containing a 
finite number of exhaustive and mutually exclusive propositions. 2^ denotes 

the set of all possible subsets of Q.. His theory of evidence may begin by 

defining “basic probability assignment”:



m : 2q  [0, 1 ] (2.2.6)

where m satisfies the following conditions,

(1) nR0) = O, (2-2.7)
.J J  jy jr-J -J J J 'r - \ :'-J'-'j%. -■ ' ■ .

(2) S m ( A )  = I (2.2.8)
ASQ

Given a basic probability assignment m over 2 ° ,  Shafer’s “belief 
function” iBeC-. 2 °  [ 0 ,1 ]  is obtained as:

iBeRA)= ^  m{B) (2.2.9)
BSA

It satisfies the following conditions:

(1) fBeRP) = Q (2.2.10)

(2) iBeRQ.) = 1 (2.2.11)

(3) For every integer nand Svery coIlection A 1, . . . ,A n of subsets of Q 1

iBeRAlKj.. .KjAn) > ^(BeZ(Ai) -  J ^ A iOAj)' +...+ ( - l ) ”+l iBeRA^n...n A n) 
i i<i

The basic probability assignment which produces a given belief function is 

uniquely recovered fromthe belief function by the Inverse formula Of eq. (2.2.9) 
[see Shafer (1976a)]:

Wi(A) -  ^  (-1)IA bI iBeRB) for all A e; Q
J-J--J  BCA

(2.2.13)

where |C| denotes the cardinality of a set C.

The basic probability number of a set A c Q l nRA), may be understood 

as the exact measure of belief that ib e lk n o ^  committed to A,
A is called a “focal element” of the belief function iBet over Q  if nRA) > 0. The 

measure ascribed to the frame of discernment, nRCl), represents the degree of



ignorance, i.e., the portion of belief that could npt be assigned to any smaller 
subset of Q  based on the evidence at hand. It may be committed to some 
subsets with the help of additional information, 'represents the measure
of the total belief committed to A. In fact, eq. (2.2.9) reflects the basic intuition 

that a portion of belief committed to a proposition is also committed to any other 
proposition it implies.

While iBel(A) describes one’s belief about A, it does not reveal to what 

extent one doubts A, i.e., to what extent one believes the negation of A, A. 

Once SeZ(A) is known, the upper probability of A is defined as:

®((A) - I  -SeZ(A) (2.2.14)

In the evidential reasoning based oh the Shafer’s theory, SeZ(A) is called 

“ degree of support” representing the extent to which a given body of evidence 
supports A, while SZ(A) is called “degree of plausibility” fepfesenfing the extent 
to which the body of evidence fails to refute A.

2.3- A Frequentist Theory of Upper and Lower Probabilities

Waliey and Fine (1982) give a limiting frequentist interpretation Of P* and 

P* as ‘iim inf” and “lim sup” of relative frequencies in hypothetical unlinked 

repetitions of an experiment, which is a generalization of the usual limiting 
frequentist interpretation of additive probabilities. Their results provide the 
statistical basis whereby IV probability models of random experiments can be 
inferred from observations made on unlinked repetition. In this section briefly 
described is the link between relative frequencies and IV probabilities.

Let tB be a Boolean algebra of subsets of Q. Suppo$e that propensities
of events Ae tB in independent, identically distributed (iid) repetitions E1...... En
are represented through the lower probability P*. To provide a connection 

between frequency and propensity, P, is inferred or estimated from relative 

frequency data. Let n denote the relative frequencies of all events in E1, ,.., £n. 
More reliable information regarding the underlying marginal probability P* can

be obtained on the basis of the Outcomes of the repeated experiments than the 
relative frequencies observed at any particular single expertment £j. Walley and



Fine propose an estimator

rn = min { n (A ): k(n) < j £ / 7 }  for ail A e  2n (2.3.1)

where k is some function such that k(n) - » «x> and ^ 4  -» O as n (e.g., k(n)

Although it is not “optimal” in any sense, the above minimum estimator 
makes use of the additional information concerning the past evolution of the 
sequence of relative frequencies. The estimator has asymptotic properties in a 
sequence of infinite trials, and parallels the Bernoulli's law of large numbers.

There is no explicit description of Tn in terms of relative frequencies. However, 

the upper probability is given in terms of upper and lower "envelopes" which will 
be described in the next section.

2.4. Axiomatic Approach

A system of IV probability derived from the definitions and specifications 

of a particular mathematical or statistical concept may cause complications 
resulting from the need to satisfy underlying assumptions of the system. In the 

axiomatic approach, IV probabilities are formulated by defining the upper and 

lower probabilities of the interval as set-theoretic functions which satisfy some 
pre-specified axioms.

' '  v Z ;"T r A v  ' "  Z /  7-. i  y : ' v 7- •-> ■; , Z Z 1 7 ' ; 7 ' . ; ■■ 7 ■" •' ■ .■ -v' *’ / 7 " : ' • ■

Definition 2.1. [Suppes (1974)] Let tB be a Boolean algebra of subsets of Q. 
The interval-valued probability [l , Ti] over (B is defined by the set-theoretic 

functions

lower probability function [0,1] (2.4.1)

upper probability function v. : [0,1] (2.4.2)

satisfying the following conditions:

. -
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I Zl(A) > L(A) > O for all A e ^  (2.4.3)

= L(Q) = I

in  For any A, B e tB and AnB = 0 ,

£j(A Kj B) > L(A) + L(B) (Super-additivity of x ) (2.4.5)

zi(A u  B) > eIi(A) + 1U(B) (Sub-additivity of ft) (2.4.6)

L( Â u  B) < i^A) + t/(B) < w(A U B) (Mixed-additivity of L and ft) (2.4.7)

These conditions are the least requirements on L and ft for further development 

of the theory of IV probability. The following lemma sets forth some significant 
properties of IV probabilities as simple consequences of the above definition.

Lemma 2.1. For any A, B e tB, the interval-valued probability [l , iUj has the 

following properties:

(i) LJ(A) + V(K) = 1

(ii) 4 0 )  = ft(0 ) = 0

(iii) If A c B  then 4 A ) < 4B ) and tU(A) < tU(B)

(iv) 4 A ) + £(B) < 1 + X ( A n B )

(v) W(A) + tU(B) >1 + ft(A /S B)

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

Proof. (I) follows immediately from eq. (2.4.4) and eq. (2.4.7). (ii) is obtained by 
eq. (2.4.4) and eq. (2.4.8). For (iii), if A c B  then by eq. (2.4.7)

and by eq. (2.4 5)

Zl(B) = Zl(A u  (B-A)) > Zl(A) + L(B -A )

L(B) =  4 A  U (B-A)) > L(A) +X (B -A )

Since 4 B -A ) > 0 from eq. (2.4.3),

Zi(A) < Zi(B) and X(A) <x(B)



For (iv),

L(A) + L(B) < I -  iU(K) + L(KnB)

= I -  1U(K) + I -  Zi(AnB) 

< 2 -  Zl(KuB)

= 1 + X(AnB)

Likewise, (v) can be proved. M

(By eq. (2.4.8) & eq. (2.4.1G)) 

(By eq. (2.4.8))

(By eq. (2.4.6))

(By eq. (2.4.8))

The following definition given by Huber (1973) connects the upper and 

lower probabilities to the supremum and infimum of a class of probability 
measures. This connection becomes essential later in Section 3.2 where IV 

probabilities are constructed by some models in robust estimation of probability
measures.

Definition 2.2. Let M  be the set of all probability measures on a Boolean 
algebra iB o i all subsets of Q  and Ban  arbitrary non-empty subset of M. [l , ft] is 
said to be "representable" by B  if L  and ft can be defined as:

and

L(A) = ihf { Ti(A): Ti e B)

Zl(A) -- SUp { Ti(A): Tl e B \

(2.4.13)

(2.4.14)

for all As B. In this particular case L  and ft are called a “lower envelope” and 

an “upper envelope” respectively.

It has been proven by Huber and Strassen (1973) that if [l , ft] is an envelope, 

then it is an IV probability. The converse is not always true. The following 
example from Huber (1981) illustrates such a case. In fact, [L, ft] being an IV 

probability does not imply even the existence of the class B of probability 

measures.

Example 2.1. Let Q  have■■ cardinality |Q| = 4, and assume that A(A) and
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W(A) depend only on the cardinality of A c Q , according to the following table:

iAi : O 1 2 :■ .3;.;- v , . ? V 4 i .
. ' :

; x  - O O V 1 : -
2 2

W O
1

■ 2
1
2 .,/ ■1. : : I .Xr-V-

Then [ 4  wj satisfies the IV probability's conditions in Definition 2.1, but there is
I

only a single additive set function between x  and w, namely P(A) *= hence 

[x, v] is not representable.

The following definition and lemma result in interesting subclasses of IV 
probabilities by requiring relatively stronger constraints on x  and iU:

Definition 2.3. [Chqquet (1953)] The lower probability function x in Definition 

2.1 is said to be “monotone of order n “ or briefly “n-monotbne”, where n (> 2) is 
a positive integer, if for every collection A 1, A2, . . ., An of subsets of Q

X(A1U vvUAn) > £x (A j) -X x (A jn A j) +...+ ( - l ) n+1 X(A1T̂ - OAn) (2.4.15)
i ' i<j ' V:'X v V-"

The conjugate upper probability function w is said to be “alternating of order n” 

or “n-alternating” and satisfies

ViA1U ,. .uA n) < ^W (A i) - X ^ ( A i riAj) +• ••+ ( - l ) n+1 W(AjnvvHAn) (2.4.16)
i: . ■ ■ i<j ■

It is known that if x  (V) is monotone (alternating) of order n, then it is also 

monotone (alternating) of order k for any integer 2 < k <  n: In particular, when 
Jc=2, X and w have the following properties:

X(A1UA2) > X(A1) + X(A2) -  X(A1HA2) (2-monotone) 

W(A1UA2) < W(A1) + W(A2) -  W(A1HA2) (2-alternating)

(2.4.17)

(2.4.18)

The following lemma shows that [x, w] satisfying the above equations is an IV 

probability.



Lemma 2.2. if z  and zi are respectively 2-mondtdne and 2-a!ternating and 
satisfy the folldwing Cdnditldns fdr all A e <B :

(I) : Zl(A) > J-(A) > O (2.4.19)

(ii) Zl(Q) = L(Q) =  1 (2.4.20)

(Ni) L(A) + Zl(K) = 1 (2.4.21)

then [l , zi] is an IV prcbability. The cenverse is net necessarily true.

Proof, Tc prove this lemma, we only need to show that z  and zi are super
additive, sub-additive, and mixed-additive as in Definition 2.1. ForanyAs B e pj 
if A nB  -  0  , from eq. (2.4.17) “2-monotone” implies “super-additive”, and from

eq. (2.4.18) “2-alternating” implies “sub-additive.” When A n B  = 0 ,  B =

(AuB)uB. Using eq. (2.4.5) and eq. (2.4.20),

Z(A) = Z((AuB)UB) > Z(AuB ) + Z(B) = 1 -  1Zi(AuB) + Z(B)

1Zi(AuB) > 1Zi(A) + Z(B)

Likewise,

1Zi(B) = <Zi(Au(AuB)) < 1Zi(A) + 1Zi(AuB) = Zl(A) + 1 -  Z(AuB)

Z(AuB) < 1Zi(A) + Z(B)

Hence, z  and zi have mixed-additivity, and the above lemma is proved.

By comparing eq. (2.4.15) with eq. (2.2.11), Shafer’s belief function tB d  is 77- 
monotone. Consequently, TC is /7-alternating., According to the above lemma, 
lBeC along with TC' formulates a subclass of IV probabilities. We can summarize 

the implicative re IV probabilities and its subclasses as
follows:

z  is /7-mOnotPne and Zi is n-alternating for n >2 => z  is 2-mqhotone and 
Zi is 2-alternating => [l , zi] is ah envelope => [z, iZZj is an IV probabilities.



In practical applications, 2-monotone and 2-alternating IV probabilities seem to 
be sufficiently general and mathematically amenable to develop an alternative 
statistical inferencing scheme to Bayesian inferencing.

2.5. Summary

 ̂ in this chapter, we have discussed the axiomatic approach to IV 

probabilities whose mathematical framework is the theoretical basis of the 
contents treated in the rest of this report. The axiomatic IV probability was 
represented first by the pair of set functions and then by the supremum and 
infimum of a class of probability measures. Subclasses of IV probabilities were 

introduced.

IV probabilities as a generalization of additive probal^ft&s give rise to 
some advantages such as representing a certain type of indeterminacy or 
uncertainty not captured by additive probabilities. The choice between 
deterministic, additive probability and IV probability models will depend on our 
background knowledge concerning the context of particular applications, and 
especially the amount and reliability of the information available to help in 

specifying the model.

In this chapter, the contribution of this research is in a unification of 
various concepts of IV probabilities so that IV probabilities can be readily 
accessible to representation and combination of multiple bodies of evidence. 
Lemmas 2.1 and 2.2 are originally formulated and proved in this report.



REPRESENTATION OF

CHAPTER

BELIEF FOR SfATlSTICAL EyiDENCE

3.1. Introduction

When a body of evidence is based on the outcomes of statistical 
experiments known to be governed by any (objective) probability models, it is 

called “statistical evidence.” One of the fundamental problems in applying IV 
probabilities to real-world problems is how to represent a body of statistical 
evidence by IV belief functions. In fact, the utility of any existing systenn of IV 

probabilities is limited by the lack of effective approaches to quantitative 
representation of bodies of evidence. Throughout this chapter a lower 
probability and an upper probability are respectively called a “support function 
(Sp)” and a “plausibility function ('Pl)” implying that they provide belief measures 

for the class of subsets of a finite space Q  based On a body of evidence.

The most extreme type of interval-valued belief function is the “vacuous 
belief function” defined as

Sp(A)
0 if A*Q.
1 if A=Q. (3.1.1)

and

!Pl{A)
0 if A = 0
1 if A * 0

(3.1.2)

The vacuous belief function assigns [0 ,1] to every non-empty subset A of £2, and 

[1,1] to Q  itself. Its only focal element is Q. It is a natural model for representing 
complete ignorance -  no evidence about Q  at all.

The next simple type is a “simple support function”, a belief function 
based on “homogeneous” evidence -  a body of evidence which precisely and



unambiguously supports a single non-empty subset of Q . Suppose Sp is a 
simple support function focused on a subset A, and let Sp(A) = s (0 < s < 1). 
Then the support function f Prtany fi £  O  isgiven by

Sp(B)
0 if B$ A; 
s  if B2 A but B #Q  

LT- if- B=Q
(3.1.3)

It can be easily shown that a simple support function is 2 -monotone. 
Conjugate plausibility function of the above support function is given by

The

Tt(B)
1-s
1

if
if

A o B = 0
A n B *0 (3.1.4)

The effect of the evidence represented by the simple Support function in eq. 
(3.1.3) is limited to providing a degree of support s for A and any subset B of Q  
implied by A.

The next section introduces a possible way of constructing interval
valued belief functions based on some models in robust statistics. Shafer 
(1976b) presents two different methods for constructing belief functions based 

pn--!,a body of statistical evidence: the “linear plausibility method” and the 
“simpiicial plausibility method.” Section 3.3examines the characteristics of the 

belief function in the linear plausibility method and provides its generalized 
scheme by weakening an assumption underlying it. The result of the second 
method, which is the same as that of Dempster’s structure of the second kind 
[Dempster (1968)], is outside the scope of this report because it applies to an 
infinite space Q  which parametrizes all multinomial distributions and 
consequently presents formidable computational difficulties. Sbctipn 3.4  

discusses the quantitative representation of source reliability in the context of 
pixel classification of multiple data sources.

3.2. Beiibf Functions based oft Robust Estitriatidn of Probability 
-^T--Meadtireart.'

In robust statistics, the true underlying probability distribution is asSumeci



to lie in a certain neighborhood of an idealized model distribution. The 
neighborhood describes inaccuracies in the specification of the true distribution. 
This section illustrates how belief functions in thfe form of IV probabilities Can be 
constructed by the supremum and infimum of a class Ofprobability measures 
describing the neighborhood, as defined in eq. (2.4.13) and eq. (2.4.14).

Definition 3,1. [Huber (1973)] Consider any set functions X and -u on TB. I) is 

said to “dominate” X, denoted by e >> X1 when \)(A) > X(A) for all A e rB.

Let (Pv = { n  e M \  v  » jc } be the set of all probability measures n 
dominated by v. The following lemma from Huber and Strassen (1973) shows 
the existence of a 2-alternating upper probability in fPv.

Lemma 3.1. Let v be 2-alternating. Then for every A s  CB there exists a n e  (Pv 
such that It(A) F d(A). This implies that x> coincides with the upper probability 
determined by fPv.

Most of the proposals listed in Huber (1981), such as e-contamination, total 
variation, Prohorov distance, Kolmogorov distance, and Lfevy distance, for 
formalizing the notion of an inexactly specified probability measure lead to a set 
(Pv defined by a certain 2-alternating set function. The following models are the 

ones which make sense in arbitrary probability spaces.

Let e and 8 be fractions between 0 and 1, and P0 denote an idealized 

model distribution as an estimation of the actual distribution:

A. E-contamination or gross error model :

^  (M ) (3.2.1)

For any non-empty set A e %

D(A) = SUPS-, = ( I -E )P 0(A )^ e  (3.2.2)



B. Total variation model ;

Px, = { i t  e M |  Jtc(A) -  P0(A)] <e  for all A e  (B)

For any non-empty set A e (B,

o(A) = sup <pv = min (P0(A) + e, 1}

(3.2.3)

(3.2.4)

For both cases, o is the 2-alternating upper probability'': function,■ and the 

conjugate Ibwer probability fuhction is obtained as ( I - O c), where the superscript 

c denotes the complement.

The e-contamination model assumes that the actual probability haS; a  
gross error with an arbitrary (unknown) distribution, instead of a strict parametric 

■;'rhode.l,.r..The total variation model formalizes the possibility of unknown small 
deviations from the idealized model P0 by assigning a tolerance to it.

In being applied to real problems, both models demand additional labor 
to find ;anvbpti;Enai::ya(ue>-pf Pifferent e’s will result in various IV probabilities. 

Iyidst of the algorithms for robust parameter estimation based on the above 
models adopt iterative procedures [EOm (1986), Huber (1981)]. The iterative 
procedures not only cost tremendous computational complexity but also raise 
another problem of proving convergence of estimators.

In the fQliQvving section, IV belief functions are derived from the likelihood 
functions of observed data. Compared to the onesdescribed in this section, 
they require much less computation and have readily usable mathematical 
fdrhriulas. ^

3.3, Belief Functions based on Likelihood Principle

The belief functions described in this section depend on two underlying 

assumptions. Before the assumptions are listed, it is necessary to define the 

“consonance” of belief functions.

Definition 3 %  (Shafer (1976a)] A belief function is said to be “consonant” if 
Its focal elements are nested, i.^, if for A j C Q  (i=1, . . .,r) such that W(Aj) > 0 for
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all I and W(Ai) = 1 , Aj <= Aj for any I < j. 
i=1 ‘

A simple support function is consonant while the converse is not 
necessarily true. The following lemma describes the nature of consonant belief 
functions.

Lemrna 3.2. [Shafer (1976a)] Suppose Sp: 2^  -» [0, I ] is a support function 

and SYi 2 ^ [ 0 ,  1] is the conjugate plausibility function. Then the following 

assertions are all equivalent: ;

(1) Sp is consonant,

(2) Sp(AnB) = min { Sp(A), Sp(B)} for all A, B czQ.

(3) Tl(AuB)=  max { SY(A), SY(B)} for all A1B c  f l .

(4) iP^A) = max { ^/({co}): Co e A } for all non-empty A e Q.

Example 3.1. Let Q  = { coTi co2, co3 }. Suppose a body of evidence E provides 
basic probability numbers WiBco1)) = 0.5, WBco1, co2}) -  0.2, w (0) = 0.3, and w(A) 
= 0 for all other subsets A of Q. Then the support function of E is consonant 

andgivenas:

Spii(O1)) = 0.5 Sp({a>2}) = 0 Sp({(o3}) = O ^

5jp({coi, eo2}) = 0.7 ^pftco1, eo3}) = 0.5 Spiico2, eo3}) = 0

Sp(Q) = 1

The plausibility functionjprof E is given as:

SYftco1))=  1 SYftco2)) = 0.5 SYft(O3)) = 0.3

SYftco1, Co2)) = 1 SYftco1, co3}) -  I SYftco2, Co3)) = 0.5

T6& ) = 1

Now, suppose that the observations of a statistical experiment are



governed by one of a finite set of probability models { Pai | co 
an ordinary probability density function on X  given co. The linear plausibility 

function based on this body of evidence is derived from the following 
assumptions:

(1) the degree of plausibility of a singleton {co | co e Q} is proportional to pa ;

(2 ) the plausibility function is consonant.

The first assumption corresponds to our intuition that an observation X e  X  

favors those elements pf Q  which assigns the greater chance to x. Shafer 
claims that x should determine a plausibility function TCx obeying

:Hx({co}) B G pw(X) for all co e D (3-3.1)

where the constant C does not depend on co. He further shows that the first 

assumption, together with the second assumption of consonance, determines a 
unique consonant plausibility function as

fBki A)
m a * i p M
m a x { p j x )  : coeft}

for all non-empty A a Q (3.3.2)

When A is a singleton, say {co1}, the consonant plausibility function gives the 
relative likelihood of co' to the most likely element in Q.  The conjugate support 
function is obtained by

SpxW  = 1 -  m axIP ffW  : ^  for all non-empty A c  £2
*  m a x f ^ x )  : cos Q }

The next theorem derives the consonant basic probability assignment

(3.3.3)

Theorem 3.1. Suppose that Q 0 = { cod), co*2), ..., co(̂ }  is an ordered set of Q  
such that pa{\) > PaiQ) for any 1<i<j<n. If Spx based on the statistical evidence is 

consonant, then it has the focal elements

Ak = { cod>, co<2)......o)(k) } for k = 1, ..., n (3.3.4)
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Proof. Let tnx denote the basic probability function of Spx- For a singleton 

subset A of Q 0,

Tnx(A) = Spx(A)=*
F(od)(x) ~ / W ( X )  

Fco(I)(X)
O ' .  '

if A = {cod)} 

otherwise

(3.3.5)

Thus, A 1 = (cod)} is the smallest focal element of Spx- For any A c  Q 0 (|A| = 2), 

eq. (2.2.13) gives

mx(A) = <
Pio(2)(x) ~ Fco(3)(x)

F(Od)(X)

0

if A = {g)(1),co(2>} 

otherwise

Let A = { cod)......co<M),co(i+1)....... co(k) } for 3 < k < n.

M  A )=  2 H ) |A_B|^Fx(b )
b<=a

= X -  [ (-1 )|a~b~%px(B) + (-1 )\^~B- 2\Spx(Bu{0i(k)})]
Bc (A-{co(k)})

= -  mx(A-{co(k)}) + £  [ ( - 1 )|A“B|̂ x(BoTco{k)})]
Bc (A-{co(k>})

= -  mx(A-{co(k)}) + mx(A-{co(k)})

(3.3.6)

For A k = { cod), co(2), ..... .©(»■} (3 < k < n-1), eq. (2.2.13) gives non-zero basic 

probability numbers

wiX (Ak)
F<p(k)(x) F(o(k+1)(x)

F(od)(x)
(3.3.7)

And,

«*(£}<>) = 1 -  X ^ ( A k)
k=1 F(od)(x)

(3.3.8)



Hencey the basicprobability functiori of Spx is given as

Wx(A) -

^ (k )(x )-p m(k+i)(x)

m n )M

P v i 'M

for As:{co(1)p co^), c#)} |1^K</7-1)

A = Q 0 (=Q,) 

otherwise ;

(3.3.9)

and the focal elements of S pare Ar -  { co(1), (o(2), y.., <o(k) } for k = 1, .... /7.

Although ttre consonant bolief function described above is Vsirnple to 
impiebient,-./itsapplication is limited to the particular cases Where the 
consonance assumption is satisfied. Indeed, Shafer made a remark regarding
his method I . • these assumptions must be regarded as conventions for
establishing degrees of support, conventions that can be justified only by their 
general intuitive appeal and by their success in dealing with particular 

I examples.” [Shafer (1976a)]

A generalized scheme of the consonant support and plausibility functions 
can be formulated by weakening the consonance assumption.

Definition 3.3. A support function Sp: 2^  [0 , 1] is said to be “partially
consonant” if there exists a partition { W1, tWz, Wr } of Q  and Sp is consonant
in every Vtfi for k= 1 , . . . .  r.

In the problem of classifying remotely sensed data, Q  represents a set of 
information classes. The information classes in remote sensing can be 

partitioned into major ground-cover types, e.ĝ y soily vegetation, and water 
[Swain et ah (1978)]. This hierarchical structure of the information classes 

motivates the partitioning of O  for partial consonance.

The following theorem and lemma derive the partially consonant basic 
probability assignment and the corresponding interval-valued probabilities.
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Theorem 3.2. Suppose that Sp is partially consonant on a partition { Wu W2, 

.... Wr } of Q. Let = {(o^, # , . . . ,  co(knk)} denote an ordered set of Wksuch

o ■ . r , . . . ■  ̂ ;
ior m y  1<i<j<nk, where I n k = n. Then the basic probability

k=1

function ot of Sp is given as

OT(A)= Cp fV „ f  for A = 7t£ for 1<k<r (3.3.10)

0 otherwise

where

Cp = I  I  max { Pa  : coe Wk } ] 1 
k=1

(3.3.11)

Proof. Since Sp is partially consonant on { Wu W2, :.., W1 ), it is consonant in 
every for k=1 , .... r. Using eq. (3.3.9), we can derive eq. (3.3.10). To prove 

this theorem, it is sufficient to derive eq. (3.3.11).

1 = I  ot(A) = I  { I  ot(A)}  = Cp-1  max{ pa  -.(HeWk )
AcQ k=1 A C ^k k=1

Cp = [ I  max { Pa  : coe Ww) ] '  
k=1

Thus the theorem is proved.

Lemma 3.3, The partially consonant plausibility function and support function 
corresponding to eq. (3.3.10) are

r
iP/(A) = Cp-1  m ax {Pa  : co e A n ^ kJ 

. k=1 .
(3.3.12)



k=1
max{ {co}) : co € A n ^ k) (3.3.13)

Sp(A) = ^  [max{Pco- &> e ^ k} -  max{Pco :co e A n 1Ĥ J] (3.3.14)

Proof. Use eq. (2.2.13) and eq. (2.2.14). ■

Partial consonance is weaker than consonance in the sense that it 
includes consonance when r = 1, i.e., the partition of Q  is Q  itself. In the other 
extreme case whore r=/7, i.e., the partition consists of n singleton subsets of 0 , 
the partially consonant support function becomes the Bayesian probability 
function (5jp({coij}) = Pf(Ioi)) = m({coj}) for i=1, ...,n). While partial Consonance 

gives a flsxibilil^r to Sha.ferTs linear plausibility method, it raises the problem of 
how to determine the optimal partition of D ; i.e , the partition which will give the 
best classification accuracy. In practice,-the partition must be chosen based on 

relationship among the classes in the application at hand. V

Example 3.2. Let Q  = {cor, Co2l Co3l Co4). Suppose that a single Observation x 
provides ^oj1(X) = O 5> = 0.3, Pc03(X) = 0.15, and Pc04(X) = 0.05. Table 3.1

shows the values of m^r Spx, and ( ° r a,! subsets of Q  inboth cases of 
consonance and partial consonance on the partition ((CO1, cô Jr {cô  004}}.

It is very interesting that both intervals given by the belief functions 
Contain the additive prbbability (Pa(X)) for every A except (Co1, co2} and {co3, co4} in

partial consonances Compared with the consonance Casev the partially 
consonant belief function always provides intervals of less width, 
correspondingly less degrees of uncertainty. It means that the assumption of 
partial Consonance requires niore knowledge about a given body of evidence-

Note that low Sp do not necessarily imply low P/-whereas high Sp always 

imply high TC We can also observe two relations: (1) Sp(A) + Sp(A) < 1, and (2) 

Tl(A) + Tl(A) > 1 for every A. The first relation indicates that it is hardly possible,

f o r  both A and A t o  be the second one is interpreted as



either one of A and A or possibly both must be highly plausible,

The belief functions described in this section are considered to be based 
on the Likelihood Principle because they are expressed in terms of likelihood 
functions, eq. (3.3.2), (3.3.3), (3.3.12), and (3.3.14), They are obtained by 
transforming the assessment of statistical evidence already in the fOrm Of point- 
yalued likelihood functions into interval-valued probability models.

Table 3.1. Consonant and Partially Consonant Belief Functions 
based on a Single Observation- J

{toil

(CQ3) 
(C Q 4 )  

(coi,c^) 
(COi Zcq3) 

( C Q j ,  CO4 )  

(C O 2 . CQ3 )

(C Q g , CO4 )

( C O 3 ,  CO4 )  

( C Q j ,  CO2 , CO3 )  

(C O 1 , C Q >, CQ4 )  

( C 0 j ,  CO5 , CO4 )  

{ Mg, CQ3, 0 )4 )

P fiM  

, 0.50 
0:30 
0.15 
0.05 
0.80 
0.65 
0.55 

0.45 
0.35 
0.20 
0.95 
0.85 
0.70 

0.50 
1.00

Co nsonance 

^Px

Partial Consonance

0.4
0.0

0.0
0.0

.6.3
0.0

0.0

0.0

0.0

0.0

0.0
0.0

0 .0

0.7
0.4

0.0

0.0

0.9
0.7

0.0
1.0

0.6
0.3
0.1
1.0

JLH
1.0

0.6

1.0

1.0
1.0
0.6
1.0

0.31
6.00
0.15
0.00
0,46
0.00
0.00
0.00
0.00
0.08
0.00
0.00
0.00
0.00
0.00

^Px

0.31
0.00
6.15
0.00
0.77
0.46
0.31
0.15
0.00
0.23
0.92
0.77
0.54
0.23
1.00

0.77 
0.46 
0.23 
0.08 
0.77 

1.00 
0.85 

0,69 
0.54 

0.23 
1.00 

0.85 
1. 00 ' 

0.69 

1.00



3.4. Representation of SourceReliability

Since information sources in remote sensing and GIS are in general not 
equally reliable,they usually provide various degrees of support for ah event. 
In order to incorporate a relative quality factor, so-called “degree of reliability,” of 
individual data sources Intp-'the'/-!-Cpmbinatfon...-"bf'.-.itiwlti'p.10 evidence, reliability 
should be represented quantitatively Although the belief functions in the form 
of IV probabilities are useful to represent the uncertainty in describing the 
degrees of support for individual events, they do not take into account the 
relative source reliability representing a body of evidence as a whole.

As a simple example, consider a problem of classifying a pixel using two 
data sources as depicted In Figure 3.1> Let X 1 and X2 be the vectors of the pixel 

obtained from Source I and Source 2 respectively. Based on Source 1 alone, 
the pixel seems to belong to Co1 while according to the other source it Is more 
likely to coma from cd2 If there is a priori information concerning how reliable 

each data source is, it would be reasonable to make a decision on the 
classification of the pixel using the source reliabilities as well as the 
probabilistic information from both sources.

Benediktsson and Swain (1989) have used three statistical measures, 
overall classification accuracy, weighted average separability, and 
equivocation, to quantify reliability of sources in the classification of multisource 

data. Which measure should be applied to a particular problem depends on the 
meaning of the reliabi lity of asource in the context of the problem, that is, the 
sense in which the source is called reliable. For the problem of muItisource 

data classification; it-is quite natural that a source is called reliable when it gives 
higher classification accuracy. Measuringreliability of a Source based bn 

classification acCuraCy is straightforward. It is usually computed from the overall 
classification accuracy over a representative set of training samples.

A statistical separability measure such as Jeffries-Matusita (J-M) 
distance, Bhattacharyya distance, or (Transformed) Divergence is Sn alternative 
to the humehcal representation of source reliability assuming that a data source 

provides higher^classification accuracy when information classes are more 

separable in the source. For example, the J-M distance defined as follows is a 

measure of statistical separability of pairs of classes:



Source 1

Source 2

Figure 3.1 An Example of Conflicting Evidence in 
Multisource Data Classification.
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.•'ij-- { J[ Vp(ximj>- ] 2dX } 5 : (3.4.1)

where P(Xjcoi) is the probability density function of class coj. When each class is 
assumed to have a normal density function ^ M j iEj) (i = 1 , ...,n), the above 

equation is reduced to

JSj = V 2 ( l  -  exp(-Pij))

where Pi] is the Bhattacharyya distance between Coi and coj defined as:

V  [(^ i+ £ i)|
Pi| = f  (M i -  M|)T +  I  Ioge [ -  f , 2--  ■ ! ]

(3.4.2)

(3.4,3)

The average J-M distance over all class pairs is given as:

' i=1 j=1 '
(3.4.4)

where P(coj) is the prior probability of o>j.

For the normal distribution case, Transformed Divergence between Coi 
and coj is defined as:

2% =  2 [ l -  e x p ( -^ ) ] (3.4.5)

where

J k  -  2 -  S jH ^1 -  2T1)] +4  tr[ ( S ' + ?)'KMi -  MjHMi -  Mj)7] (3.4.6)

Then the average Transformed Divergence over all class pairs is given as:
■-..ro-

•4 v = S  iS l P(Wi) P(Oi)- I- tIi 
i-1 H o

(3.4.7)

EquiMpcatipn Is the class separability measure corresponding to 
Shannon's entropy measure [bevijver and Kittler (1982)]. BenediktsSon et al.



(1989) use equivocation to measure the reliability with which classes 

Iclentifiable by means of each data source can be used to identify the 
information classes of interest in a given application.

The three measures briefly reviewed above are related indirectly to the 
classification accuracy of the source. The source reliability can have a little 
different meaning in the mathematical framework of the theory of evidence. In 

the previous example of Figure 3.1 , assume that Source 1 is a main data source 
and Source 2 an ancillary data source, and that the main source gives higher 
classification accuracy over training samples. Then Source 2 can be 
considered as reliable as Source 1 if there is little overall conflict between them 

in providing evidence for classifying observations. And its reliability will 
decrease according to the extent of conflict with Source 1. The following 
definition gives a notion of quantifying source reliability based on a measure of 
the extent of the conflict between the belief functions provided by; two entirely 
distinct bodies pf evidence.

Definition 3.4. [Shafer (1976a)] Assume that and tBeC2 are belief 
functions provided by two bodies of evidence. Let W1 and tn2 denote the basic 
probability assignments of BeĈ  and tBeC2, respectively. The measure of conflict 
between BeĈ  and BeC2 Jsdefined as:

t =  X  "^1 (Aj)-Wi2 (Bj) (3.4.8)
AjnBj= 0

Ce is a fraction between 0 and 1. When BeĈ  and BeC2 have no conflict, C  
=0. If they are completely contradictory, £=1. After £  is computed for every 

pixel, the average measure of conflict between the sources is obtained as:

% = m =  f  (3.4.9)
V j O

where p ($  is the probability density function of £ .

In order to illustrate their uses and compare the performances, the 
average J-M distance (j/av), the average Transformed Divergence (2^v), and the



average measures of conflict between pairs of sources in the Anderson River 
data set were computed, th e  data set has 6 Sources as shown in Table 3.2. 
For more detail about this data set, see Section 6 .2 . For this experiment, six 
information classes are defined: Each class has 100 trainirig Samples uniformly 

scattered over the test fields. The first row iri:;tableV3':& Sh.Qysrs ttteTbyerafl 
classification accuracy (OCA) over the training samples using the Maximum 
LiKeiihpod classification. Although most o fth e c las se s  are not' normally 
distributed in the topographic data Sources (see Figures 6.9 through 6.12), they 
were assumed to be so In the calculations. The maximum values of _7av and

are V2 and 2, respectively. When they are directly used as measures of Source 
reliability, they should be divided by the corresponding maximum value so that 
their maximum is I  . table 3.2 shows that the separability measures agree with 
the overall classification accuracy in ranking the sources for their relative 

feliabiiltiesv Based pn the measures in Table 3.2, the sources can be ranked 
trpm best to Worst as A/B MSS1 EIevation, SAR-ShaiIow1 SAR-Steep, Aspect, 
and Slope.

Table 3.2 Overall Classification Accuracy (OCA), Average J-M Distance 
(^av), and Average Transformed Divergence (2^v) of Sources in 

AndersonRiverDataSet (Training Samples).

A/B MSS
SAR

Shallow
SAR

Steep Aspect Elevation Slope

OCA (%) ! /. 34.7 '■v ■; 33.5;;--̂ 30-3 45.8 29.2!

-?av 1.09 .49 V: .35

CDCD

- d Lav 1.58 .52 .40 .32 .82 .08

The average measures of conflict between pairs of sources in the same 

data set were computed for the training samples arid the combined training and 

test samples, and the result's! are listed In Table 3,3 and 3,4, respectively. The 
type!vo.ftbe belief function used was the consonant belief function. Since the 
probability density function of ^ in  eq. (3.4.8) was not known. the histogram 

approach was used to estimate p( Q .The  results show that Elevation and SAR-



Shallow sources have less conflict with A/B M SS in providing bOdiSs of 
evidence, compared to the remaining sources. Knowing that A/B MSS epurce 
gives the highest overall classification accuracy, relative degrees of reliability of 
the other sources can be assigned according to their measures of conflict with 
A/B MSS such that the less conflicting, the more reliable. Thus the sources can 

be ranked from best to worst as A/B MSS, Elevation, SAR-Shallow, Aspect,

Table 3.3 Average Measures of Conflict between Pairs 
of Sources in Anderson River Data Set.

(Using Consonant Belief Function with Training Samples)

'
SAR

Shallow
SAR

Steep Aspect Elevation Slope

A/B MSS .388 .586 > .543 f  v .327 .565
SAR

Shallow .269 .387 .429 b  -404

SAR v  • -■ . ■■ • •

\  ' ■ . ' . ; ... .

.436 .437 .341Steep ■ : ■ '

; Aspect • ; ■ ’ .■ ■■ .588 463

Elevation ' ■ ■ • -
• ■ ' ■ ,■ . .. /  ' .543

Table 3.4 Average Measures of Conflict between Pairs 
of Sources in Anderson River Data Set.

(Using Consonant Belief Function with All Samples)

SAR
Shallow

SAR
Steep Aspect

' . :.............

Elevation Slope

A/B MSS .407 .585 .538 ,351 .550
SAR

Shallow .284 .385 C
O .385

SAR
Steep . .437 ,462 .344

Aspect ,572 .428

Elevation :-;V- ; .r ; - ; ' . V; : .513



Slope, and SAR-Steepv The average measure of conflict agrees with the 
separability measures and OCA onIy in ranking the first three sources (A/B 
MSS, Elevation, and SAR-Shallow). In the muitisource data classification with 

this data set, the remaining sources (SAR-Steepi Aspect, and Slope) will be 

considered as equally reliable as the 4th.

There are two problems in quantifying source reliability based on the 
average measure of conflict. First, the values of the average measures of 
conflidt will vary depending on what kind of belief function is used in eq. (3.4.8). 
However, as long as the belief function represents the body of evidence 
properly, the tanking of the sources in terms of their relative reliabilities will 
remain the same. Second, even the ranking of the sources depends bn the 
prior information regarding which is the most reliable source. For example, In 

Table 3.4^ if SAR-Shallow were assumed to be the most reliable' then the 
second most reliable source would be SAR-Steep instead of A/B MSS.

One Of the advantages of the measure of conflict is that it provides the 

relative reliabilities between all pairs of sources. When the “most reliable 

Source” changes from one to another due to the meaning of the reliability in the 
context of a problem, the measure of conflict gives the ranking of the sources
according to the new most reliable source.

'

Furthermore, the measure of conflict can be computed for test samples as 
well as training samples. In the above case, there is not much difference 
between the measures of conflict for the training samples and the entire sample 
because the training samples are uniformly distributed over the entire sample. 
On the other hand, when training samples are limited and poor representatives 
of test samples, there may be difference between the measures of conflict 
obtained from the training samples and from the entire sample.

Both the separability measures and the measure of conflict give 

information for ranking multiple sources in the sense of their relative reliabilities, 
but a quantitative method of computing the absolute reliabilities of the sources 

is still unknown.
Once the relative reliabilities of the data sources are given, they are 

included in the multisource data analysis by “discounting” belief functions 
[Shafer (1976a)]. Suppose a  denotes the relative reliability assigned to a given
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source, where 0<oc<l. By discounting, the basic probability number of every 
subset A of Q  is reduced from m(A) to crm(A) and the basic probability number 
of Q  increases from m(Q) to m(Q)+a.

3.S-Sum m ary

This chapter has focused on the constructs n o t interval-valued belief 
functions for statistical evidence and the quantitative representation of source 

reliability. Belief functions can be obtained in the form of IV probabilities from 
the supremum and infimum of a class of probability measures. Two models for 
robust estimation of probability measure, the 8 -contamination model and the 
total variation model, were introduced to formalize the class of probability 
measures. Then the IV belief functions based on the Likelihood Principle were 
constructed. Although they require some underlying assumptions (consonance 
or partial corisbnance), they have mathematically simple and readily usable 
formulas. The required assumptions are not difficult to satisfy in practical 
applications of this approach.

In order to include the relative reliabilities Of sources in a rnuitisburce 
data analysis, the attempts to quantitatively represent the degree of reliability by 

the average Jeffries-Matusita distance, the average Transformed Divergence, 
and the average measure of conflict between pairs of sources were made. 
Their performances were compared by applying them to an actual multisource 
data set.; -

In the experiments described in Chapter 6 , the belief functions based on 
the Likelihood Principle will be implemented, and the multiple sources will be 
ranked based on the average J-M distance and the average measure of conflict.

In this chapter, the contribution of this research is in the representation of 
statistical evidence by IV probabiIities such as consonant and partially 
consonant IV probabilities. Theorems 3.1 and 3.2, Definition 3 .3 , and Lemma 

3.3 are originally formulated and proved in this report.
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CHAPTER 4

COMBINATION OF BELIEF FOR STATISTICAL EVIDENCE

4.1. Introduction

To base inferences and decisions on all available information, it is 
necessary to combine the information from various sources. The role of rules 
for combining evidence is to integrate the conditional knowledge about states of 
nature based on each body of evidence into combined knowledge based on the 
total evidence. Combination rules may be formulated in various ways; they may 
depend on the characteristics of the problem, the experience of the knowledge 
engineer, and the mathematical theories on which the rules are founded.

Various procedures for the formation of a consensus of opinions have 
been suggested in the group decision problems [French (1981), Genest (1986), 
and Winkler (1968)], some bn pragmatic grounds, others justified axiomatically. 
The following formulas are most typical ones among them.

Consider the situation where there are m sources of information, each 
providing its subjective probability Tcj (i=1, ...,m) over eB. Here can be any kind 

of additive probability measure according to the context of problems.

Linear Opinion Pool defines the overall probability measure n as a 

weighted mean of itj's:

Ti(A) = 5 W A )  for all Ae tB 
i=1

(4.1.1)

where Yi (i = 1 , .... m) are positive weights assigned to each source and
' ';v;; ;

satisfying £75 = 1.
‘ 7 1=1 ■ : ■ 7 7 -  7"77:';;



Independent Opinion Pool assumes that the inform are
“independent” and defines the overall probability measure simply as a product 
of the individual measures:

Jt(A) = K-[ij7Ej(A)] forall AefB
■' - i=i.

(4.1.2)

where k  is an appropriate normalizing constant so that Jt(-) become additive.

Logarithmic Opinion Pool is a generalization of the independent opinion 
pool. The overall probability measure is given as:

Tt(A) -  k - [f l { * i (A ) } ai ] for all As tB (4.1.3)

where Cti is any positive real number representing the relative reliability of the ith

source.

A deficiency of the linear opinion pool is that theindividual probabilities
do not reinforce the others. The combined measure given in (4.1.1) is always 
between the maximum and the minimum values of j&,

i=^i.% 7ti(A) -  n(A} -  7li(A) for al! Ae B (4.1.4)

The other two schemes have the “zero probability property”, viz., 

If Jtj(A) = 0 for any i , then Jt(A) = O (4.1.5)

which makes the combined measure too sensitive to a small probability 

measure. More in-depth discussions are found in French (1985) and Berger 
11:985^

In rule-based inferencing systems, several subjective Bayesian updating 

rules have been proposed to modify the probabilities of hypotheses as each 

piece of evidence is provided,These rules are derived by applying one or two 

statistical independence assumptions fb Bayes’ rule and successfully used in



rule-based expert systems such as PROSPECTOR [Duda et a!. (1979)] and 
MYCIN [Shortliffe (1976)]. However, there have been some controversies over 
the inconsistency between the independence assumptions and their updating 
rules. ; .-/■

During the last decade Dempster’s rule has been receiving more 
attention from many researchers in various areas of science and engineering. It 
is a generalisation of Bayesian inference, including the subjective Bayesian 
updating rules as the special cases for which the domain-specific knowledge is 
precise.

The objective of this chapter is to investigate the inferencing mechanisms 
of the subjective Bayesian updating rules and Dempster’s rule in combining 

multiple evidence when they are formulated as set-theoretic functional 
equations. They are given a behavioral interpretation in terms of the desirable 
properties which agree with human intuition. The independence assumptions 
underlying them and the robustness to small variations in probability measures 
are studied. v  v 'T T  •

4.2. Properties of Combination Rules

For computer-based, quantitative techniques of multisource data analysis 

the rules for combining evidence must be formulated as functional equations 
computing the degree of belief based on the total evidence from degrees of 
belief based on each single piece of evidence.

As given earlier, Q  consists of a finite number of exhaustive and mutually
exclusive events and S is a Boolean algebra of all subsets of Q. Let £  be a set 
of multiple bodies of evidence { E1, E2, .... } and B(AjjEi) = bj (l=1> • > m)
denote the degree of conditional belief for Aj e £  given a body of evidence Ei. 

Then a rule for combining evidence expresses the degree of belief based on
the total evidence, B(Aj|E1«&E2& ...& E m), as a function on the set of evidence 

given the knowledge of B(AjIEi) for i = 1 , m. Several properties of combining 

rules are proposed by Cheng and Kashyap (1986) to provide guidelines for 
constructing the rules as numerical formulas. In this section those properties 

are formally stated.



Definition 4.1. Let /d e n o te  a function representing a rule for combining 
evidence. ^Tis said to be “decomposable’' if there exists a function /  such that

/(*> 1 ..... bm) = / ( / ( . . .  f ( f ( b „  Id2), b j , ...), bm)

w here/is  called a “binary dperator” of IF

(4.2.1)

In general, |F and / (if it exists) are assumed to be continuous except at 

the endpoints. Tbis corresponds to the idea that the human reasoning process 
is not abrupt.

If we assume that the final degree ofbelief depends only on the set of 
evidence and not on the order in which the pieces of evidence are combined, 
different orderings of evidence in combination should produce the same result. 
The properties in the following definitions are essential to any combination rule 

for exchangeability of the order of evidence and for decornposability of its 
numerical function into a binary operator.

Definitipn 4.2. |Fis “commutative” if it has a binary operator/such that

/(t>„ bjl = / ( t j ,  Si) (4.2.2)

for any pair of F j (I < I, j /m ) .

Definition 4.3. IFis “associative” if it has a binary operator/ such that

/( / ( fc l .t j) ,  (Jk) = m , f ( b r b j)  (4.2.3)

for all i, j, and k (1 < i, j, k < m).

In "every numerical representation of belief, a stronger belief is 
represented by a larger number. Imagine that two degrees of belief provided by 
different pieces of evidence, say bj and bv are to be combined respectively with 

another degree of belief bk, Suppose Cj >.'bj, i.e,, b\ represents a relatively 
stronger beliefthan bj, then it is natural that the combination of b{ with bk 
produces a larger number than the combination of b| with bk. The next definition



gives the mathematical expression of this property.

Definition 4.4. !Jr is said to be “monotonous” if its binary operator /  satisfies 

the condition

Ii biZ  bi, Xhen f i b i, b j  > /(b j, b j  (4.2.4)

for any /Jk.

Monotonicity is a rather general property compared to commutativity and 
associativity because it should hold even for combining functions which do not 
have binary operators. It is trye that when one piece of evidence is replaced by 
one providing stronger belief, f should produce a larger value.

Definition 4.5. / i s  “positively reinforcing” if

bm) > i."Iaxjn

or its binary operator/ satisfies

f{b\, bj) > max { b{, bj}

Definition 4.6. Jr is “negatively reinforcing” if

(4.2.5)

(4.2.6)

nb-,.... b„)<

or its binary operator/satisfies

/(b j.b j) < min{bi, bj}

(4.2.7)

(4.2.8)

Positive (Negative) reinforcement means that the belief based on the total 
evidence is stronger (weaker) than the belief based on any single piece of 
evidence.

In the following two sections, the definitions of desirable properties of a



combination rule play a role of; interpreting inferencing mechanisms of the 
subjective Bayosiah updatingrules andDempster’sruleofcombination.

4.3. Subjective Bayesian Updating Rules

The three different subjective Bayesian updating rules have been 
obtained by applying one or two statistical independence assumptions to 
BayeS1 rule.

Giobai independence over £  = { E1, E2, ..., Em} is defined as:

PCE1 &E2& ... ScEm) = O P (E j) 
■" i=1 r

(4.3,1)

Conditibnal independence over 1E given a proposition is defined as:

P(Ej&E2& ... &Em! Aj) = O p(EiIAj) for all j=1,...tn
, 1 = 1 •'

(4.3.2)

CondjtionaS independenca over iE  given the negation of a proposition is 

defined as:

P ^ & E ^ . .  & k j  Aj) = O  P(EiIAj) tor ail j=1 ,...,n
i=i

(4-3.3)

Using Bayes’ rule, the posterior probability of Aj given the combined

body of evidence can be written as

^(Aj | EiScE2Sc^ m j :
P(E1&E2&,..&EmjA i)-P(Ai)

P(E1&E2&...&Em)
(4-3.4)

Under tbe assumption of conditional independence in eq. (4.3.2), the 

Bayes1 formula in eq. (4.3.4) can be written as:
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P(Aj) J l
™ P(A: I E:)

P(Aj \ Ê ScE2Sc... & E J-
P(Aj)

k=1 I J=I

(4.3.5)

This rule has been used by Cheng and Fu (1985) in a rule-based reasoning 

system for diagnosing diseases.

The global independence assumption in equation (4.3.1) together with 
the conditional independence in equation (4.3.2) rewrites Bayes' rule as

™ P(Ei I A i) Ĥr P(Ai I Ei)
(4.3.6)

SWdin et al. (1985) have used this formula to construct a global membership 
function. AIsOi the rule for combining measures of belief and disbelief in MYCIN 

has been obtained from the binary form (m=2) of eq. (4.3.6) after translating 

probabilities to its own measures of belief and disbelief. ;

Also, applying both conditional independence assumptions toB ayes’ 
rule, we can derive the following combining function

H  l'(A| Fi)

P(A) IE 1AE2A ... ScEJ= m "V m (4.3.7)
P I  P(A, I Ei) + I ^  P(Al I Ej)
i=1 i=1 ■'.

which is the updating rule used in PROSPECTOR, a rule-based computer 
consultant system intended to aid geologists in evaluating the favorability of an
exploration site for occurrences of ore deposits of particular types. Interestingly,

1 ' .

this rule is a special case of the rule in eq. (4.3.5) when P(Aj) = -  for all j-

Nevertheless, it is mo re appeali ng because this ru Ie expresses the combined 

measure in terms of only the conditional probabilities of individual bodies Of 
evidence. Note that the rules expressed in eq. (4.3.5) and eq. (4.3.6) include 

the effect of prior probabilities in combining bodies of evidence.



All of the subjeGtive Bayesian updating rules described in this section are 
decomposable. The binary operator of each rule can be easily obtained by 
setting m = 2. In the following, we will take a closer look at the characteristics of 
the rule expressed in eq. (4.3.7).

For a subset A of Q , set P(AjE1) = P1 and P(A|E2) = p2. Since P(-) is

additive, P(AJEi) = 1 —Pi for i =1, 2, The binary operator of the rule in equation 

(4.3.7) is given as:

j^ (p 1,p 2) (= P (A jE 1&E2)) P j’Pg
P rP 2 + (T -P 1)-O -P 2)

(4.3.8)

The above binary operator has the following properties:

(1) Positiyely reinforcing when p t , p2 > 2, and negativeIy reinforcing when P1, 

P2 < \ . Not defined in terms of reinforcement when P1 S g and p2 > |  , or P1

'’;;:>>'|'and.p2 < |..

(2 ) When P1 =  ̂ P2) = P2 : 2 is the icl̂ ntity of the binary operator. Since

the rule deals with additive probabilities, I  represents the total ignorance of 

evidence for the rule.

(3) When P1 = 0 (or 1), .Za(P1, P2) = 0 (or 1) except p2 = 1 (or 0);Gand 1 are the 

annihiiators of the binary operator, that is, when E1 provides cohlplete

certainty either for A (P1 = 1) or for A (P1 = 0), the other body of evidence 

cannot affect the combined belief measure.

(4) ^ ( 0 ,  !) and f A0 , 0)aren°tdefined; this rule cannot combine two bodies of 

evidence which are completely contradictory:

Figure 4.1 is a graphical interpretation of the binary operator based on 

set-theoretic operations. In the figure, the upper-left rectangle represents the 
degree of belief for A based on the combined evidence while the lower-right 
reCthnile represents the degree of belief against A based ob thb combined 

eyidahce. ? TTie upper-right arid lower-left rectangles represent the measure 

w fails to be committed to either A or A.

The question now is which independence assumption is empirically



P(AIE2) = P2 P(AIE2) = I - P 2

P(AIE1)==P1
AnA = A 

Pi P 2

AnA = 0  ; : 

P 1C 1- P 2)

. -

AnA = 0 AnA = A
P(AIE1) = I - P 1

( I - P 1)- ( 1 - p 2)( I - P 1) P g

: - ' •; V : :

Figure 4.1 Graphical Interpretation of Binary Operator of Subjective 
Bayesian Updating Rule in Equation (4.3.7)



more reasonable and yields a better updating scheme. /.Controversially,'- it has 

been shown that there is inconsistency between some independence 
assumptions and their updating rules. We will begin the discussion with the 
following Semmas which were stated and proven by Pednault et al. (1981), and 
Johnson (1986), respectively.

Lemma 4.1, if Q  consists of n (n > 2) mutually exclusive and exhaustive
/ V - ' - - V ' : ;«;'■/TL;..- . :■ ■/ / ;  .■'■/■/ ■ /. v'..: './■'/ /" ' / ; .
propositions, Le., i f 2  P(^j) ~ ̂  p(Ai & A.) = 0 for i ,* ) ,  then equations (4,3,2)

and (4.3:3) together imply equation (4.3,1).

When n = 2 ( O  == { A, A }), the above lemma does not hold. ,

Lemma 4.2. if Q  consists of n mutually exclusive and exhaustive propositions, 
where n > 2, and if equations (4.3.2) and (4.3.3) are assumed, then there is at 
most one piece of evidence that prpduces updating for the proposition.

Lemma 4.2 says that under the above conditions regarding L i, at most ohe
piece of evidence Can alter the probability of any given proposition; thus, 
although updating ie possible, multiple updating for any of the propositions is 
impossible. The following lemma iefrOm Cheng e ta l. (1986).

Lemma 4.3. Suppose that Q  = |  A, A }. If equ^ions (4,3/1), (4.3.2), and (4.3.3) 

are assumed, then there is at most one piece of evidence that produces 
updating for each proposition.

As a consequence of the above lemmas; in order for probabilities of two 

or more niutually exclusive and exhaustive propositions to be updated and 

allow multiple pieces of evidence to influence a  decision, one of the conditional 
independence assumptions should;be eliminated, in fact, Charniak (1983) and 
Johnson recommend the updating scheme in eq. (4.3.5) for inference about any 

number of mutually exclusive and exhaustive propositions.



4.4. Dempster’s Rule of Combination

Dempster’s rule is a generalized scheme of Bayesian inference to 
aggregate bodies of evidence provided by multiple information sources. Let Wi1 
and M2 be the basic probability assignments associated respectivelywiththe 

belief functions tBeĈ  and tBeC2 which are inferred from two entirely distinct bodies 
of evidence E 1 a n d E 2. For all A jl Bj, and X k c Q ,  Dempster’s rule (or

Dempster’s orthogonal sum) gives a new belief function denoted by 1

tBcC= tBeC] © tBeIq (4.4.1)

The basic probability assignment associated with the new belief function is 

■defined as.:;.

M(Xk) = (1 t V  X  "h(Ai)-m2(Bj) (Xk5t0) 
> ApBj=Xk ...i;

(4.4.2)

where t  is the measure of conflict between BeC1 and tBeC2, as defined in 

Definition 3.4.

; : Dempster’s rule computes the basic probability of X k, wi(Xk), from the 
product of Wt1(Aj) and Wi2(Bj) by considering all Aj and Bj Whose intersection is 
X kH Once m is computed for every X k c  Q 1 the belief function is obtained by the 

sum of nis committed to X k and its subsets. The denominator (1 normalizes 

the result to Compensate for the measure committed to the empty set so that the 
total probability mass has measure one. Consequently, Dempster’s rule 
discards the conflict between E1 and E2 and cames their consensus to the new

belief function.

There are several points of interest with regard to this rule. First, it 
requires that the basic probability assignments to be combined be based on 
entirely distinct bodies of evidence and refer to the same frame of discernment 
Q, Secondly, it is both com mutative and associative. Therefore, the order or 
grouping of eVidence in combination does not affect the result, and a sequence 

of information sources can be coiiibini3d-'ei1ti% \̂is'equerrtiaHy.^F;pa}hAnr ;̂‘' Finally, 
£  in the above equation is the measure of conflict between E1 and E2, which

represents the amount of the total probability that is committed to disjoint (or
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contradictory) subsets of Q. If £is equal to one, this means that E1 and E2 are 

completely contradictory and the orthogonal sum of their basic probability 
assignments does hot exist.

To exhibit the properties of Dempster’s rule, suppose that there are only

two focal elements A and A in Q and the basic probability assignment wij based 
on Ej is given as: -V..

^ (A )= P j, Mi( A) = q., Itti(Q) = I-P i-Oij for i = 1 ,2  (4.4.3)

where Pj ^  qi < 1 , i.e., they are non-additive.

Then, the respective interval-valued belief function given E-(i==1,2)

Supports A with "Jjpj,' V q j], and A with Jqj, 1-p.]. Dempster’s rule produces the 

new basic probability assignment m, and by equation (2.2.9) the support 

function for A  and A  based on the total evidence is given as:

^ ( A jE 1SE2) P i  -P 2-f P i ^ 1 - P 2- ^ M 1 - P i - q i ) ' p 2  
I -P 1

1 _ ( I -P 1)-(I-P 2)

I ; ?
(4.4.4)

Sp(A IE1SE2) C 1 - P i - 9 i  ) - c 2

" I - P 1-C2-C 1-P2
(4.4.5)

figure 4.2 shows the graphical interpretation of bempster’s rule for the above 
case. The probability mass committed to Q represents the uncertainty

concerning the support for A and A. The conjugate plausibility function fPCls 
obtained by equation (2.2.14). In general; bempster’s rule has the following 
properties:

(1) Commutativity and associativity.

(2) [Sp fPt1®[0,1] = [Sp,(Pl\\ [0,1] plays the role of identity for the rule.



§2

«l(A ) = P1

^ (A )  = Q1

OT1(Q) = I - P 1-^i1

OTg(A) =P 2 Ot2(A )- g 2

AnA = A
Zj

AnA = 0 A n Q = A  ■

P rp 2 PVq2 P rO -P 2-Q 2)

AnA = 0 AnA = A A n Q  = A

qi 'P2 qTq2 QvO - P2-Q 2)

Q nA  = A Q nA  = A Q n Q  = Q

( I - P 1-Q 1)T 2 O - Pi- Qi) % ( I -P 1-Q 1 )-(1 -P 2-Q 2)

Figure 4.2 Graphical Interpretation of Dempster’s Rule when Q  = { A, A }



(3) When Pj+Qj 1 > Te - they are additive, equation (4.4.4) is equal to equation 

(4.3.8), and the resulting belief Iunetion becomes additive.

(4 ) For any interval [Sp, fPfalO, 0], [Sp, tP/]©[1f 1]=[1,1], and for any interval [Sp,
, t], [Sp, n m  G]=[0,0]; [0, 0] and [1 ,1] are annihilators for the rule.

(5) [pi Qj©[I, 1] is undefined; Dempster’s rule cannot eombine completely 

conflicting bodies of evidence.

(6) The combined interval is no wider than any interval to be combined, i.e.,

( i - P t - q i ) <(i--p2-q 2)
1 -Pvqr-qrPa

< I - P rq i for i 1 ,2 (4.4.®)

Since the width of an interval-valued belief measure corresponds to the 
measure of uncertainty, it seems intuitively reasonable that the value Of the 

measure of uncertainty decreases as the amount of evidential information 
increases.

f The only condition that Dempster’s rule requires is that the bodies of 
evidence to be combined must be entirely distinct. In the context of the problem 
of multisource data classification, combining entirely distinct bodies Of evidence 
is considered as a fusion of the individual ObservatiOns provided by 

independent sensors. The meaning of independence here is that an 
Gbseryatioh from one sensor does not have any effect on an observation from 
any other sensor:

4.5. Robustness of Combination Rules

The previous two sections described the functional Characteristics of the 
subjective Bayesian updating rules and Dempster’s rule in terms of the 
desirable properties of combination rules. In this section, the binary operators 

of Dempster’s rule (eq. (4.4.4)) and a subjective Bayesian updating rule (eq. 
(4.3.8)) are compared with respect to their sensitivity to small changes of the 

initial belief measures to be combined.



Suppose we are classifying a pixel denoted by a vector X into one of a 
set of mutually exclusive and exhaustive classes, (O1, cd3, arid (o3,based on two 
independent data sources. Let E 1 and E2 denote the bodies of evidence 
provided by the two data sources, and Q  = {A i, A2, A3)  denote the frame of 
discernment, where A i represents the event of X being classified to coj. 

Suppose that the basicprobability assignment numbers based on each data 

source are given as:

Oti (A1) = 5, Ot 1(A2) = 1-5-p, Ot1(A3) = p (4.5.1)

and

/̂ 2(A1) = I - S - P ,  Ot2(A2) = S, OT2(A3) = P (4.5.2)

lslote that the above measures are additive, i.e., there is no measure of 
uncertainty. Hence, both data sources are believed to be completely reliable, 
and the information provided by the data sources is assumed to be exact and 
precise for representing the belief measures.

When 5 = O and O < p << 1, there is strong conflict between the bodies of 

evidence provided by the data sources. The only agreement between them is 
that A3 is highly improbable. In other words, X is hardly believed to belong to 
o>3. On the contrary, the equation (4.3.8) -  recall that it is a special case of 
Dempster’s rule when the belief measures are additive -- yields the combined 

measures as:

///(A1I E1AE2)=  OT(A2I E1A E 3) = O, ot(A3| E1AE3) -  I

without regard to the value of p. The result expresses that co3 is the only 

possible class for X, which is completely against our intuition.

Now, in order to examine how sensitive the combination rule is to slight 
changes of initial measures, let 5 be a non-zero small number. Then, we find

Ot(A1IB 1AE3)'= ot(A3| E1AE3)
S (l-8-p )

2 S( 1 —8—p) + P^
(4.5.3)

ot(A3| E1AE3)
28(1-S -p ) + p2

(4.5.4)



Table 4.1 shows the results of the equation (4.3.8) for various small values of 5 
when p = 0 .1.

Table 4.1 Result of Combination by Dempster’s Rule for 
Additiye Belief Measures.

'A: >- S==Odbi 5=0.01 S= 0.05
itt(A-j j E*| &E2) 
ttt{A2I Ei&Eg) 

Ag] E1&E2)

OOiTS
0.076
0.848

0.320
0.320
0.360

0.447 
0 447 
0.106

By comparingthe combined measures for 8 = 0.001 and 0.05, we can draw a 

conclusion that the extreme sensitivity may lead to totally differentdecisions 

when the humerical representation of belief is coarse. Recall that the measures 
of belief in the above example are additive. Will Dempster’s rule show such 
Sehsitiyity when the measures of belief are subadditive?

When the data sources are not completely reliable, which is true in most 
cases of real world data sources,, the belief measures based on the partially 
reliable sources include the measure of uncertainty. Suppose both data 
sources are assigned the same amount of measure of uncertainty a, that is,

m-\ (Q) = Wt2(Q) = a

where 0 < a  < 1. a  is assigned to the frame of discernment Q  to represent the
'

partial ignorance of belief based on the incomplete data sources. Then, the 

initial measures in (4.5.1) and (4.5.2) which were additive are reduced as:

Wt1(A1) -  ( l-a )8 , Wt1(A2) = ( l-a ) ( l-5 -p ) , Wt1(A3) = (l-a )p (4.5.5)

and

Wt2(A1) = ( l-a ) ( l-5 -p ) , Wt2(A2) = ( l—ct)5, Wt2(A3) = ( l-a )p  (4.5.6)

Now, the belief measures become non-additive, and they are represented in



Table 4,2 Interval-valued Belief Measures after Combination 
by Dempster’s Rule for Non-additive Belief Measures.

I  ; E2

TC fPC

Al ( I - C X ) S (l-a)5+a (l-a )(l-S -p ) (l-a )(l-5 -p )+ a

A2 (l-a )(l-6 -p ) (l-a )(l-5 -p )+a (l-a)8 (l-a)S+a

A3 (l-a)p (l-a)p+a ( I - C X ) P (l-a)p+a

Dempster’s rule yields the new basic probability assignment as:

(1 -g ){8(1-« )(1 -8-p )+«(1 -p )}
wi(Aj I E jA E2) = ffi(A2| E-j &E2)

mCA3| E-j &E2)

(1 - 4 )

r(1-g){(1-q)p+2a}

0 -  Q

(4-5.7)

(4.5.8)

and

m(Q\ EjifeE2)
(1 - )̂

(4.5.9)

where (.=  ( l - a ) 2{l-p + 28 (p + 5 -1 )}.

Let a = 0.1, which means that the data sources are highly reliable but still 
incomplete. For 8 = O and p = 0.1, th e cbmbined measures are:

m(Aj| EjifeE2) = M A 2I EjifeE2) = 0.409 , m(A3\ E j & E 2 )  = 0.132



Compared to those which are additive, the non-additive measures, after being 
combined by Dempster’s rule, are more in accordance with human intuition. 
Table 4.3 shows the results of OempsteT’s rule combining non-additive 
measures for various small values of S.

Table 4-3 Result of Gombination by Dempster’s Rule for 
Non-additjve Belief Measures.

'A - 'V
■ '

Ci = 0.1 p=0.1

Oo Il •o
'. 8 .. H-
* ■■ 5=0.01 5 = 005

m (Ai|Ei &E2) 0.409 0.414 0.432
Wt(A2IE 1AE2) 0.409 0.414 0.432
wi(A2I Ei&E2) ; O.I31 0.123 0.098
tt$Q\ E1(StE2) 0.051 0.049 p O OO

By assigning a small amount of uncertainty to the data sources, we can avoid 

the extreme sensitivity of Dempster’s rule to slight changes of measures 
provided by conflicting bodies of evidence.

Since the problem of extreme sensitivity of Dempster’s rule was exposed 

by Zadeh (1979), Dubois and Prade (t^83) proposed as an afternative a 
possibilistic rule of combination based On the theory of; ppssibilify which is 
related to the fuzzy set theory. Zadeh and Dubois et al. insist that the extreme 
sensitivity of Dempster’s rule In combining additive probabilities is the effect of 
the normalization in its denominator. They think that the normalization 
suppresses an important aspect of information, Obtained frprn the conflicting 

bodies of evidence, so that Dempster’s rule may yield highly counterintuitive 

results. According to the above example, however, the cause of the extreme 

sensitivity lies in incorrect representation of belief^ not in Dempster’STUIe itaeif 
Recall that the frame of discernment consists ■
exhaustive hypotheses^ If two sources were completely reliable, there might be 
little conflict between the bodies of evidence provided by them. Conversely, if 
there were strong conflict between bodies of evidence, the sources providing



the evidence could not be completely reliable, either or both of them should 
have non-zero measure of uncertainty. In conclusion, interval-valued 

probabilities are more adequate than conventional additive probabilities to 
represent belief.

4.6. $umrnary ■

In this chapter. afterdefining desirable properties forcombination rules to 

be formulated as functional aquation^, the Inferencirtp mechanisms of 
subjective Bayesian updating rules and pempster’s rule were examined in 

terms of their properties. The comparison revealed that Pempster’s rule is a 
more general scheme to combine bodies of evidence providing( the belief 
functions represented by interval-valued probabilities. It has been observed 
that in combining conflicting bodies of evidence, Pempster’s rule produces 

more robust and corisisterit combined belief measures when the belief 
measures are interval-valued.

In this chapter, the contributions of this research are the formal definitions 
of the desirable properties of combination rules, interpretations of the 

inferencing mechanisms of the existing combination rules, and the analysis of 
the robustness of Pempster’s rule in the aspect of its differential behavior 
According to slight changes of initial belief measures.



CHAPTER 5

DECISION MAKING BASED ON INTEfiVAL-V^LUEO
PR O B ABILITIES

5.1. Introduction

 ̂ Makirtg a decision is the iast step before evaluating the performance of a 

classifier in any pattern recognition problem. OVer the past three decades, 
statistical decision theory has played an important role in the decision process 
of statistical pattern recognition techniques.

In conventional statistical methods for pattern recognition where 
statistical information is represented by point-valuedprobabilities/there is only 
one decision rule to use in deciding whether or not a givefi pattern belbrtgs to 
some prespecified class of patterns. The decision rule gives an estimate of the 
unknown, true class of the pattern, and the estimate varies depending on the 
criterion underlying the decision rule. For example, the “iBayes decision rule” is 
devised in such a way that the “average risk” is minirtiized. The Maximum
Posterior classification, which is the rrtost common classification method in 
remote sensing, uses a “Bayes decision rule with 0-1 loss function.”

In the previous chapters, representation and combination of statistical 
evidence in the form of interval-valued probabilities were studied. Although 
interval-valued probabilities provide an innovative means for the representation 
of evidential information, they make the decision process rather complicated 
and entail more intelligent strategies in making decisions. Based on the 
evidential interval bounded by degrees of support and plausibility, one has 
more than one choice for a decision rule. One can make a decision either 
based on any one of support or plausibility, or based on their average.

This chapter presents an account of basic elements in the decision 

theory for pattern recognition based on interval-valued probabilities. It will be 
noticed that under a certain condition those basic elements are a generalization



of the elements of Bayesian decision theory. This chapter the
decision-making process and develops decision rules for the evidential 
intervals.

5.2. Interval-Valued Expectations

Let [l , u] be an interval-valued probability defined in the Boolean 
algebra W Of subsets of O 1 and V  denote a real-valued function defined over Q  
= {to}. Dempster(1968) defines an “upper distributionfunction” an d a  “lower 

distribution function” respectively as:

F*(v) = t/({co I V(O)) < v})

F*(v) = L({(0 | V(co) < v})
for -oo < v < oo (5-2.1)

The pair [F* , F*] defined above has the following properties:

(i) Both are nondecreasingii.e.,

if vr <'V2 then F*(vr) < F*(v2) and .., F*(v.,) . F*(v2>-., • (5.2.2)

(ii) Both are continuous from the right, i.e.,

For e > 0 , lim F*(v+e) = F*(v) and lim F*(v+e) ^ F*(v) (5.2.3)e-»Q . £-»0

(iii) F *(+“ ) = F»(+~) = 1 , F * ( -~ )  = F , ( - ~ )  = O (5.2.4)

(iv) If F*(va) = O (FV(V0) -■ 0)

then F*(v ) = O (F*(v) = 0) for every v < V0 (5.2.5)

(v) F*(v) > F*(v) fo r-oo < v < oo (5.2.6)

The proof of the above properties is trivial (i) -  (iv) are the same as the 

properties of the ordinary distribution function. Refer to Papoulis(1984) for their 
proofs. Ancf (v) is a directconsequence of eq. (2.4.3).



Further, Dempster defines his “upper expectation” and “lower 
expectation” as:

■ '

E*(V)= JvdF*(v) *
(5.2.7)

E*(V) = J v d F ilt(V)

Note that the upper and lower stars are interchanged. It is necessary in order to 
keep the relation E *(V ) > E *(V ). For any real-valued functions V  and W

defined over-Q, E* and E* have the following properties:

(I) E*(Y) > E*(V)

(ii) If V (C O ) > W(co) for all coeQ

E *(V ) > E *(W ) and E *(V ) > E *(W )

(5.2.8)

(5.2.9)

Dempster’s upper and lower expectations generalize the concepts of 
upper and lower probabilities. Speaking in detail, let Z a be the indicator

function of AcQ, Le.,

Za(O))
\ 1 for coe A 

Io otherwise
(5.2.10)

Then, by the above definitions and the conjugate relationship of t/and L

- ' "̂co ' ■ 'I
Es1c(Za) = J z dF*(z) = J z-i:({co|ZA(co)<z}) dz

= L(Q) -  L(A) = 1 -L (A ) = tU(A)

-H>° *'• '1
E-(Za) = J z dF*(z) = J z-'i/({(a|/.A(ci))<z() dz

-OO O

= Zl(Q) -  Zl(A) = 1 -  Zl(A) = £(A)

(5.2.11)



For pattern recognition problems, it seems natural to define upper and 
lower probabilities respectively by upper and lower envelopes, i.e., the 
supremum and the ihfimum of a certain class of probability measures as 
expressed in Pefinitioh 2.2. As mentioned earlier in section 2.4, the envelopes 

are a subclass of the axiomatieally defined interval-valued Prpbabilities- Also1 if 
L is 2-mohotone and w is 2-alternating, then they are envelopes.

Suppose that a  arid ware given as

: 'inf
for A e #  (5.2.12)

W(A) = SUp { It(A) Mt € (P) ;';S

where 5* iS the class of the probability measures dominated by w. Then, the 

following lemma is proved by Wolfensoh and Fine (1982).
- 0

Lemma 5.1. For an interval-valued probability [l , w], the upper and lower
expectations can be given as:

H*(V) = sup Eitfvi

(5.2.13)

iff Ais 2-mohotbhe and W is 2-alternating, where V  is a real-valued function 
Over O and En(V) is the expected value o f-V with respect to the probability 
measure 7t.

The upper and lower expectations in (S-S.TS) have the foliovvihg 

properties as rwell as the properties in (5.2.8) and (5.2.9):

p )  E*(V) < Erc(V) < E*(V) for anyrc e ^  J 

(iv) For any^hphhegative function W  Oyer Q,

|;bv i  O

[a + fe E  * (W )  if b < 0

(5.2.14)

E*(a+bW) (5.2.15)



E*(a+bW)
a + bE * (W  ) if b > O 

la + b E * (W  ) if b < O

where a and b are constants.

(5.2.16)

This section introduces two different definitions of the interval-valued 
expectations; one which applies to any system of interval-valued probabilities, 
and the other which applies only to a system of 2 -monotone and 2 -alternating 
interval-valued probabilities- In general, the two definitions do not coincide in a 
class of all sets of probability measures over tB. Dempster (1968) already 
argued that for a general convex set tP, it can happen that

j  v d r ,(v )  < ^ E „ ( V ) (5.2.17)

The second definition is not Ohly unapt to a general system of interval-valued 
probabilities but also computationally intractable. For the expectations in. eq. 
(5.2.13) to be useful, an explicit expression of 7t in fP must be available.

5.3. Decision Rules based on Interval-Valued Prababijity

Consider a basic classification problem where an arbitrary pattern Xe X  
from an unknown class is assigned to one of n classes in £2. Let X(oc>j|coj) be a 
measure of the “loss” incurred when the decision coj is made and the true 
pattern class is in fact coj, where i, j = 1 , ..., n. Also, let <$>(x) denote a decision 

rule that tells which class to choose for every pattern x. Using the upper and 
lower expectations in eq. (5.2.7), the “upper expected loss” and the “lower 
expected loss” of making a  decision <jb(x)=o)j are obtained as:

^ j ( X )  = X M  COi I COj )  -JZx (CQj)

J=1

-Iv'' ■ n ■:.
4 j ( x )  =  2 ^  M  COj I  OJj )  Z x (CQj)
■ .''1=1'

(5.3.1)



where zix and Lx are respectively the upper and the lower probabilities for x 
being actually from coj.

Based on the interval-valued expected losses, the most desirable 
decision rule is the one which has the upper expected loss less than the lower 
expected losses of the others, Le.,

A(X) = COi if /[(x) < &j(x) for j=1 n (5.3.2)

This rule is called an “absolute rule.”

The “Bayes-like rule” is the one which minimizes both the upper and the 

lower expedted losses, Ld,,

A(X) = COi if /[(x )$ /[(x ) and forj=1,...,n  (5.3.3)

In particular, when I  is the “0-1  loss function”, Le.,

?t(A(x)|co,)
0 if co(x) = coj

1 i f a (x ) *  o)j

the interval-valued expected loss in eq. (5.3.1) is simplified as:

(5.3.4)

fj(x) = £  ^x(O)j) -  « x(®i)

W  = X  ^ ( C O j )  -  ^ ( C O j )

(5.3.5)

Since the first terms in the right-hand sides are constant for i=1 , ..., n; 
minimizing both T[(x) and 4j(x) corresponds to maximizing Wx(Coi) and Lx(Oi).

Hence, the decision rule in eq. (5.3.2) becomes

A ( X )  =  COi if Tfx(COi) > ^ ( c o j )  and Z x (COi)  >  X x (COj) for j = 1 n (5.3.6)

A problem with the above decision rules is that there does not always 
exist co which satisfies the condition in eq. (5.3.2) or (5.3.3), which can lead to 

ambiguity. Ip comparing a pair of the ̂intervaiTvolued expected losses, there are



three different kinds of relationships distinguished by their relative locations: 

;(1)'_disjQ int::intervalS';.. ■

/*(x) > Zt1(X) > /J(X) > Ztj(X) (5.3.7)

(2) overlapped interyaSs;

/*(x) > /J(X) S 4j(x) > 4j(x) (5.3.8)

(3) rtbsted intervals;

/J(X) > /J(x) > 4j(x) > 4j(x) (5.3.9)

The following exarnple illustrates these intervals. ^

Example 5 .1 . Let Q  = (Co1, co2, co3, co4}. [Zoci ^x] denotes the interval-valued 

probability function of subsets of Q  given a pattern x. Suppose that the basic 
probability assignment Wx bf [Zx, Wx] is given as

mx({co1}) = 0.2 Wx((G)2)) = 0.3 Wx(Ig)1, co3}) = 0.34 mx({o)2, W4)) = 0.16

and Wx(A) = 0 for any other subsets A of Q . Then, the interval-valued

probabilities of the singletons are obtained as

M W

■ ^x 0.2 0.3 0 ' 1 0

0.54 0.46 0.34

For the 0-1 loss function, the expected loss interval of co2  is nested in Co1 's, Co1 is 
overlapped with g)3 , and CO4  is disjoint with respect to Co1 and co2 . The Bayes-like 

rule does not produce a decision.

The above example shows a simple case where the Bayes-like decision 

rule leads to ambiguity. In such an ambiguous situation  ̂ one may withhold the 

decision and wait for a new piece of information. Otherwise, the ambiguity may



be resolved by resorting to the following rule, so-called “minimum average 
expected loss rule”:

6 (x) = cbj if
T J ( X ) + ^ j(X) ^(x)  +  4 j (x )

for j = 1 , (5.3.10)

For the 0-1 loss function, this rule is called “maximum average probability rule”, 
and the decision is made according to

&<X) = a>, if ^ A i(Wi) for ^ 1|^  n <5 3  t1)

As an alternative to the absolute rule and the BayesTike rule, there are 
two other rules by which a decision is made according to individua! measures of 
the interval/ for instance, either the upper expected Idss or the lower expected 
loss: ■

(1) minimum upper expected loss rule:

■-A(x) = to; if f ix ) < fix )  for n (5.3.12)

For the 0-1 loss function, this rule may be renamed “maximum upper 

probability rule” or. “maximum plausibility rule-, and the decision is made 
OccOrdingto v

&(x) = COj if Wx(COj) > Wx(COj) for j=1,..., n 

(2 ) minimum low er expected loss rule:

A(X) = COj if 4j(x)<4|(x) for j=1,..,, n

(5.3.13)

(5.3.14)

For the Q -I Toss function, this rule is called “ maximum lower probability 

rule”dr “maximum support rule”, and the decision is made according to

A(x) = COj if 4(coj) > Xx(COj) for j=1,..., n (5.3.15)

Althoughvthe above-two rules always produce decisions and there is no 
ambiguous situation in making a decision according to the rules, they do not 
utilize all of the information represented by the IV probabilities. The
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performance Of these rules will be comparedwith the minimum average 
expected loss rule in the next chapter by applying them to problems of ground- 
cover classification based on remotely sensed and geographic data.

5.4. Summjary

The purpose of this chapter was to formalize the decision-making 
process for any system of interval-valued probabilities. In particular, the 
process was considered from the viewpoint of statistical decision theory.

different definitions of interval-valued expectations were 
studied. and their statistical properties werecomparedwith those of the ordinary 

expected value. Then the absolute rule and the Bayes-like rule for evidential 
intervals were developed based on the general interval-valued expectation: 
Since these rules are not always satisfied, they may require an extra step to 
resolve ambiguous situations. In order to resolve the ambiguous situations, this 
chapter proposed the minimum average expected loss rule. As alternatives to 
the absolute rule and the Bayes-like rule, the minimum upper expeeted loss rule 

and the minimum lower expected IosS rule were proposed.

While the absolute rule and the Bayes-like rule make decisions based on 

both the upper and the lower expected losses, the minimum upper expected 

loss rule and the minimum lower expected loss rule mdke decisions based on 

either the upper Or the lower expected loss. In the evidential reasoning, the 
lower probability and the upper probability represent respectively the minimal 
and the maximal degree of belief. Hence, the minimum lower expected loss 
rule may be chosen when the decision process needs to be conservative; and 
the minimum upper expected loss rule, may be chosen when the decision maker 
is confident about the information represented by IV probabilities.

In this chapter, the contribution of the research is in the formal 
development of the decision-making process and the decision rules for interval 

^valued probabilities.
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EXPERIMENTAL RESULTS

6.1. Ihtfoductioli

In this chapter, the methods presented in this report are applied to 
problems of ground-cover classification for multispectral data combined with 
Other geographic data. The multisource data (MSD) classification based on the 
evidential reasoning (ER) method is implemented as the following procedure:

In the trainihg stage,

1. Compute the global correlation coefficient matrix of multisource data and 
reform the data set if necessary. Throughout the experiments, the global 
correlation information will be used to confirm the “distinctness” of bodies of 
evidence as required by Dempster’s rule,

2. For each class, select training pixels and compute statistics for each source.

3. Compute the separability measures of each source and the average 
measures of conflict between pairs of the sources as defined in Sedtion 3.4. 
Rank the data sources and assign a degree of reliability to each source.

The steps in the test stage classifying "unknown” pixels will be described by 
considering an actual problem of classifying a test pixel to one of the classes in 
i i  = (O)1, Co2, CO3, co4} based on two data sources denoted by S1 and S2.

x ; : Test vector representing the test pixel obtained from Sj (i=1, 2 ). 

ocj: Source reliability of Sj, O < Oci < 1.

/ 7COj(Xi) : Conditional probability density of Xi given coj.

m j: Basic probability assignment basedon ;Sj. 

m : Basic probability assignment based on S1 and S2.



-.v;% : Support function based on S1 .and'S2. V'

TC: Plausibility function based on Sv and %

Suppose that ^w.(Xj) for i=1, 2 and j=1, .... 4 are obtained such that 

Pw1(x I) -  P(02^^ ^  ^ )

Pco2M  -Pco3M  ^ Pcoi (x2) ^ Pco4(x S)

(A) Usingj the consonant belief functions:

The focal elements based on S1 are (Co1), (Co1, Co2) , (Co1, Co2, Co3), and Q.

The focal elements based on S2 are (Co2 ) 1 (co2, Co3 ) ,  (Co2 , Co3 , Co1), and Q.

I ; Gomppte Wi1(A) and Iw2(B) Py using eq. (3.3.9), Where A and B denote the 

focal elements of S1 and S2, respectively.

2 . Multiply m, by cq for the subsets of Q, and add bq to Tni(Q),

3. Compute in - W1Sm2 by using eq. (4.4.2).

4 For each singleton cojs compute

^((COi)) = m ({coj}) and JHftcoi))=  ^ m ( A )
An{o)j}^0 ...

5 Classify the test pixel to a class according to one of the decision rules for 
IV probabilities in Chapter 5.

(B ) UsingthepartiallyeonsonantbeIieffunctions:

Based on the relation in the hierarchical structure of the classes, suppose 
that O  has a partition ((CO1 , CO2 ) ,  (co3, co4}).

The focal elements based on S1 are (Co1), (CO1 , co2), (co3), and (co3, co4).

The focal elements based on S2 are (Co2), (co2, Co1), (Co3), and (Co3, co4).

1. Compute Wi1(A) and Wi2(B) by using eq. (3.3.10) and (3.3.11), where A 

and B denote the focal elements of S1 and S2, respectively.

2 . Multiply nij by cq for the subsets of Q, and addbqto Wi(Q).

3. Compute m= W1Sm2 by using eq. (4.4.2).



4  For each singleton Wjl compute

5p({o)j}) = m ({coj}) and 2^{c0j}) = J  m(A)
An{a)j}^0

Classify the test pixel to a class accordingto one of the decisionrules for 
IV probabilities in Chapter 5,

Figure 6.1 is the block diagram of for classifying a pixel in the MSD classifi
cation based on the ER method.

The experiments have been performed over three different imago data 

sets. Table 6.1 shows the names and types of data sources of the multisource 
data sets. More detailed descriptions will be given in the following sections- 
Each data set also has a geometrically registered, digitized ground truth map as 
a reference based on which the accuracies of all subsequent classifications will 
be evaluated.

The next Section presents the experimental results of the proposed 
method applied to the Anderson River data set. The intention of the experiment 
is to assess the ability of the method in capturing and utilizing the information 

obtained from topographic data sources as well as multispeetra! data sources. 
In Section 6.3, the method is applied to the Indiana agricultural area data set 
which contains only a single multispectra! data source, The purpose is to show 
the possibility that the MSD classification based on the evidential reasoning 
method can overcome the effects of the Hughes phenomenon [Hughes (1968)] 
which results in lowered classification accuracy for high-dimensional data with 
limited number of training samples. The goal is to show that improved 
classification can be obtained by decomposing a high-dimensional data source 
into smaller and more manageable pieces and treating them as multiple data 
sources. The possibility becomes more concrete in Section 6.4 where the 
method is applied to a simulated High Resolution Imaging Spectrometer 
(HIRIS) data set which is composed of 201 bands.

In every application, the classification accuracies of the MSD classifica
tion are compared with those of Maximum Likelihood (ML) classifications based 
on the stacked vector approach. Since the stacked vector approach treats
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compound vectors as data from a single source,the comparison of- the MSD 
and the ML classifications will assess the advantages and the disadvantages of 
the multisource data analysis approach compared to a  standard single source 
analysis approach used in remote sensing;

Table 6.1 Multisource Data Sets.

Name Types of Data Sources

Anderson Biver Data Airborne MSS, SAR, Elevation, Sloper Aspect

Indiana Agricultural Area 
• Data

AirborneMSS

Finney County Data HiRIS

6.2. Classification of Multispectral Data combined with topographic 
Data

The Anderson River data set* used in the first experiment consists of 3 
multispectral data sources (optical and radar) and 3 topographic data sources. 
Table 6.2  describes the types of data sources for the first experiment. The 
image of this data set consists of 256 lines by 256 columns and covers a 
forestry site around the Anderson River area in British Columbia, Canada. 
Source I is 11 -band Airborne Multispectral Scanner data (A/B MSS). Sources 
2 and 3 are Synthetic Aperture Radar (SAR) imagery in Shallow mode and 
Steep mode, respectively. The column “spectral band” for sources 2 and 3 
describes the band and the transmit and receive type of SAR images. For 
example, XHV means that the image is obtained in X-band (X=3cm) of the 

microwave region by horizontal polarization transmit and vertical polarization 
receive. Sources 4 -  6 provide digitai terrain data obtained as follows:

The SAR/MSS Anderson River data set was acquired, processed and loaned 
to Purdue University by the Canadian Center for Remote Sensing, Department 
of Energy, Mines and Resources, of the Government of Canada.



Table 6.2 Description of Anderson River Data Set.

Source Data Spectral Input  ̂ Spectrbi-
Index Type Region Channel Band(pm)

V.;,;'-;:. ■" v -  ■■■■■ ' T : 1 38-142
i- 2 .42 - .45

V-,', v , , \  - V v -
Visible

i - T T 3 :V;T:'
4

4$ 50 
>50 - ,55

■ ' ■■ ■ ■ 1V' ■ ■ ■' ■ ■' ' * V TT^T'' •' 5 ? .55 - .60
1 A/B MSS 6 .60 - .65

. . \ ./ \ : 7 .65 - .69

v ' . . • I 'V- V - V  : v 8 . O I Vl CO

■ T . ■■■., Near IR ' 9 .80 - .89
:;-;V ; ■" ■ . 10 .92 -1 .10
■ - TV Thermal : I 11 8> 14

■ ■: - . XHV

2 SAR Shallow . V XHH
' ' T . '' • ■■ • ; LHV
.. ' T V LHH

I; \ T- . - >■ XHV
3 SAR Steep XHH

LHV
. .. - LHH

■■■■'■■ 4 Topo- Elevation . v ; " ■ ' -- . - .

5 graphic Aspect
V * . ■' : ■ ; T'-.;...-T': . ■

6 Slope . . T -V -  T-



a) digital elevation model (DEM)

gray level = {elevation (in meters) -  61.996} -J- 7.2266

b) digital aspect model (DAM)

gray level =  aspect (in degrees) -5- 2

c) dlgitail̂  sldpe m o d e r ^

gray level = slope (in degrees)

Table 6.3 lists the information classes In the area, and Figure 6.2 shows 

thegroundtruth map. More than three quarters of the area is covered by 

forestry; The information classes wê r̂  based on a forestry map, and it

has been observed that some of ,the classes are very difficult to classify 
accurately. In this experiment, 6 of the mqre separable classes were Selected, 
and these are listed in Table 6.4. Figure 6.3 displays the test areas of the 6 

classes over the enhanced A/B MSS image. Some of the field labels are not 
readable. However, they can be confirmed by the ground truth map in Figure
6.2. Figures 6.4 and 6.5 are Synthetic Aperture Radar imagery respectively in 

Shallow and Steep mode, and Figures 6,6 through 6.8 are the digital terrain 
imagery of the data set.

Table 6.5 is the global statisticalcorrelation coefficient matrix among the 
data sources. Correlation coefficients between pairs of vanables from differeht 
sources are generally quite low compared to those from the same source. 
When the data can be assumed to be normally distributed, their uncorrelated- 
ness implies statistical independence In the experiments, We treat the data 
sources (including the topographic data sources) which have relatively low 

ebffSlatibri as ‘’globally independent”'in order to assume that they reasonably 

closely satisfy the “distinctness^ of bodies of evidence required by Dempster’s

In the experiment with the Aridersoh River data set, 10O pixels per ClasS 
were used for training data, which is between 4% and 8% of the total pixels of 
the Classes ih the test fields. The training samples ere uniformly distributed over 
the test fields so that they may be considered as good fepresehtatives of the
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Table 6.3 Information Classes in Anderson River Data Set.

; Class 
Index

Cover
Types

Tree
Sizes

No. of 
Pixels

; % ot
s Total

1 D ougIasFir(D F)I >40m 1946 2.97
■ 2 DF 2 31 - 40m 13158 20.08

3 DF 3 21 - 30m : 6576 10.03
4 D F4 1 0 - 20 m 10-45 1:59

: 5 Bare Soil, Slides :: ■ ; ■ ■ 110 0.17
' 6 DF+Other Species 1 ■ '> 40 m 1973 3.01

DF+Other Species 2 31 - 40m 5761 8.79
8 DF+Other Species 3 21 - 30m 1309 2 0 0
9 DF+LodgepOle Pine 1 31 -40m 510 0.78

10 DF+Lodgepole Pine 2 21 30m 5636 8.60
11 DF+Cedar 1 > 40 m 2483 3.79
12 DF+Cedar 2 31 - 40m 2895 4.42

13 LodgepoIePine 1 0 -20m 113 0.17

14 Hemlock+Cedar 31 - 40 m 3173 4.84
15 DF+Hemlock 31 - 40m 2961 4.52
16 Hemlock+DF 1 31 - 40m 825 1.26

;;;v; 17, Hernlock+DF 2 21 - 30m 456 0.70
18 flock, Talus 1982 3.02
19 Forest Clearings 12624 19.26

Total : \  • • '■ ’ - •> 65536 100.0
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Figure 6.2 Ground Truth Map of Anderson River Data Set.



Table 6.4 Information Classes for Test of Anderson River Data Set.

Class
Index

Cover

Types
Tree
Sizes

No. of 
Pixels * 5

% of 
Total

2 Douglas Fir 2 (df2) 31 - 40m 2 2 4 6 . ' 21.72
3 Douglas Fir 3 (df3) 21-30/77 1501 14.52
7 DF+Other Species 2 (df+os2) 3 1 - 40 m 1352 13.08
10 DF+Lodgepole Pine 2 (df+!p2) 21 - 30 m 1589 15.37
14 Herrilbck+Cedaf (he) ; 31 - 40m 1587 15.35
19 Forest Clearings (fb) 2064 19.96

Total ' ■ . ' : ' ' '5- - f ' 10339 100.0

Figure 6.3 Test Areas over Histogram Equalized A/B MSS 
(Channel 10) Image of Anderson River Data Set.



Figures SAHistograrn Equalized'SAR-Shaliow mode (LHH)
■■f'v '̂v l̂mage of AndersonB'iye'r.Data'-SetA-A.-.. A.

Figures '6.5'Histogram Equalized' SAR-Steep'mode (LHH) 
.A ' - - JmageiOf Anderson River Data Set vA:



Figure 6.7 Digital Aspect image of Anderson River Data Set.



Figure 6.8 Digital Slope Image of Anderson River Data Set



Table 6.5 Statistical Correlation Coefficierit Matrix of Anderson River Data Set.

- V ■ A/B MSS
. . . . . . . . . . . . .  ... vv.' rVZyv' '■■■

1 2 3 4 5 6 7 8 9 10 11

V 1 1.000 0.815 0.753 0.709 0.670 0.633 0.626 0.573 0.459 0.520 0.593 ■V

. \ x2 . V :. ' :u \ 1.000 0.956 0.933 0.905 0.882 0.875 0.686 0.505 0.563 0.747 : -V :
! • v V / 1.000 0.975 0.961 0.955 0.951 0.677 0.465 0.516 0.792

“j 4 ■ -.V-V-: 1.000 0.996 0.984 0.981 0.744 0.530 0.570 0.765
A/B -V ,V  ■ ; v  V ' 4 V: -VV ' 1.000 0.992 0.990 0.742 0.526 0.562 0.761

M S S '•1V 6 v  . ' V-: 1.000 0.998 0.672 0.442 0.477 0.760 /-''Vv---;!
' 7  ■ ■ ,■ -,- V- - ' -V • ‘ v. ' ' 1.000 0.684 0.454 0.490 0.773

8 \V  4-:’" 1.000 0.926 0.956 0.617
. 9 ■■ ’■ . ■ : ■:V-'; ■: Vy 7 1.000 0.959 0.464

10 \ v - ' ■-V '  ̂V", - V- V-'- 1.000 0.532
■■f 11 ’ ■ V V 5 - ■ . . ■ . 1.000 , . . .

8



Teible 6.5, Continued.

. SAR SHALLOW SAR STEEP T O P O G R A P H ie

LHH LHV XHH XHV LHH LHV XHH XHV Aspect Eieva Slope
; ; ^ v. LHH 1.000 0.323 0.447 0.316 0,086 0,097 0 147 0.143; 0.114 .027 -.006

SA R LHV 1.000 0.312 0.426 0.161 0 164 O t  87 0.208 ... 0.106 -.033 0.027
S H A L XHH 1.000 0.326 0.007 0.085 0.105 0.104 0.038 :--.177 . 0.022

XHVk: 1.000 0.161 0.166 0.201 0.216 0.082 -.062 0.046

"LHH :; >■■■■■■ 7 0  Vv-V- 1.000 0.348 0.472■ 'L" r’"-f ' 0.378 0.094 0.101 O-ISt
S A R LHV . . • ■■ . • ... ■.; 1.000 0.338 0.558 0.150 -.054 0.064

S T E E P XHH : ' ■ ... ' ;
■ ‘
:* -' - '■ tOoo 0.391 0.108 0.131 0.124

i f - : : XHy 1.000 0.175 0.027 0.072

Aspect ; :p : V . 1.000 O t 27 -.117
TO PO Eleva /VV;7 .;v . ■' ' ■; . 1.000 -.023

S lope • . • ... 1.000



Table 6.5, Continued.

SAB SHALLOW
. ■ ‘

SAR STEEP •v; -Vv Vv . TO P O G R A P H IC

LHH LHV XHH XHV LHH LHV XHH XHV Aspect Eleva Slope

0.074 0.094 0.102 0.088 -.123 0.008 -.193 -.035 -.076 -.589 -.039
v - i ' : . 2 v , 0.082 0.105 0.107 0.097 -.117 0.041 -.190 -.005 -.063 -.546 -.055
v ■ .■  ■■v . 3 0.075 0.103 0.088 0.087 -.099 0.061 -.169 0.017 -.041 -.424 -.061

'-V ' ■. VV ■ 4 0.074 0.102 0.082 0.087 -.081 0.076 -.140 0.038 -.031 -.333 -.071
A/B 5 0.069 0.099 0.070 0.082 -.072 0.081 r.128 0.045 - 0 2 4 -.271 -.074

M S S ■v;/ev v ■; 0.060 0.089 0.052 0.070 -.065 0.078 -.122 0.044 -.013 -.217 -.066
. ; ■ 7 ;v;::; 0.062 0.093 0.051 0.073 -.065 0.079 -.121 0.047 -.009 - 2 0 5 -.067

8 0.103 0.147 0.127 0.139 -.074 0.096 -.101 0.074 -.034 -.327 -.107
-  ,v ; 9 0.099 0.145 0.135 0.141 -.066 0.086 -.079 0,069 -.036 -.320 -.100

10 0.108 0.158 0.136 0.154 -.076 0.083 -.100 0.068 -.042 -.365 -.106
■. V V , , 11 0.092 0.131 0.089 0.110 -.084 0.047 -.152 0.014 -.072 -.341 -.066

OO
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Figure 6.9 Histogram of Anderson River Topographic Data (Total Area)
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Figure 6.10 Ciasswise Histogram o fTraming Samples of a Subset 
of the Classes in theAhderson River ^
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Figure 6.11 Classwise Histogram of Training Samples of a Subset 
of the Classes in the Andbrsgn River Aspect Dgta.
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Figure 6.12 Classwise Histogram of Training Samples of a Subset 
of the Glasses in the Anderson River Slope Data.



total samples; As we can observe in Figures 6.9 through 6.12, some of the 
classes defined im rTabIe 6.4 cannot be assumed to be normally distributed in 
the topographic data. Thus, itwas decided to adopt a nonparametric approach 
such as the “Nearest Neighbor” (NN) method [Fukunaga (1972)] in computing 

probability measures while the optical and radar data sourpes were assumed to 
have Gaussian probability density functions. Table 6.6 pbmpSres the overall 
classification accuracies obtained by the ML method with the Gaussian 

assumption ahd k-NN method for the individual topographic data sources- The 
results show that the topographic data are information-bearing in the sense of 
classification and Suggest that the topographic data sources; especially 
Elevation, should be included in the classification. Although the k-NN method 
results in various classification accuracies for different k’s, it always gives higher 
accuracies than the ML method ̂ especially for the training data, in the MSD 

classification, interval-valued belief functions for the bodies of statistical 
evidence provided by these topographic data sources were constructed from 
the likelihood functions obtained by the 2-NN method.

Table 6.6 Overall Classification Accuracy (%) obtained by ML 
Method and k-NN Method for Topographic Data Sources.

Samples Method Elevation Aspect SIOpe

Training

ML 45.83

I-N N 67.00 48.67

2-NN 66.67 47.63 46.50

5-NN 65.50 44.50 45.83

Testing

ML 42.64 32.06 30.72

1-NN 45.33 35.63 34.51

2-NN 46.79 37.38

5-NN 45.03 35.29



Table 6,7 Average Measures of Conflict between Pairs of Sources using 
Partially Consonant Belief Function for training Sarnples.

SAR
Shallow

SAR
Steep Aspect Elevation Slope

A/B MSS .362 .402 ,390 -343 .417
SAR

Shallow
.328 .384 .391 .424

SAR
Steep ,402 .387

Aspect; f :  Vi?' * .. -■ : - v ■ .397 .395

Elevation - -  / V - V ; .410

Table 6.8 Average Measures of Conflict between Pairs of Sources using 
Partially Consonant Belief Function for All Samples.

. — V . SAR
Shallow

SAR
Steep Aspect Elevation Slope

A/B MSS .375 .411 .402 .352 .421
SAR

Shallow V - :  X V - .336 .407 .384 .429

SAR
Steep .413 .401 .446

Aspect ' V '' ' ■' ■■ ■■ ■ . ... . .399 .382

Elevation . -'V; :V/V. .413



In order to r a n h ^  reliability, the average J-M distance
and the average transformed Divergence of each source were calculated and 
compared with the overall classification accuracy obtained by the ML method 
over the training samples (Table 3.2). We also computed the average 

measures pf conflict between pairs of the sources using the cdnspnant belief 
function (Tahies 3.3, 3.4) and the partially consonant belief function (Tables 6.7, 
6.8). Assuming thai A/B MSS is the most reliable in the sense of classification, 
all the measures agree that Elevation and SAR-ShalIow are the 2nd and the 
3rd, respectively. They do not agree at all for the remaining sources. Tn the 

multisource d ^  data set, the remaining sources have
been considered as equally reliable.

For the purpose pt comparison, the ML classification based on the 
stacked vector approach was carried out for various sets of the data sources, 
adding one source at a  time to the A/B MSS data in the order Elevation, SAR- 
Shallow, SAR-Steep, Aspect, and Slope. Then the MSD classification was 
performed using different combinations of interval-valued belief functions and 
decision rules. Tables 6.9 and 6.10 compare the results for the training 
samples and the test samples, respectively. Even though the compounded data 

in the ML classification were treated as having Gaussian diStributionSY the ML 
and the MSD methbds produced similar results for the training samples. This is 
not surprising because the ML method uses conventional additive probabilities 

Sfesumihg that the knowledge concerning the actual unknown probabilities is 
complete, which is reasonable as far as the training samples are concerned.

In  the MSD classification using the partially consonant belief function 
(PGBF), the information clasSeS were partitioned as {df2, df3, df+!p2} and 

{df+0s2, he, fc}. This partition was made On the basis Of the elasswise 
separability measures of the individual sources sO that the average separability
between the partitions is maximized.

Comparing the performance of the two belief functions, the consonant 
belief function (CBF) was better for the training samples while PCBF was better 
for the test samples. It is not known at this point whether CBF or PCBF is better. 
As far as the decision ruleS are concerned, the maximum plausibility (MP) rule 
was superior to the other rules, the maximum support (MS) rule and the 

maximum average probability (MA) rule. It is also not known in general which



Table 6.9 Results of ML Glassificatidh abd MSD Classification 
over TrainingsSamples of AriderSoh River Cate.

: .

Decision
Rule

V; :■■■ : :

Sources

*

f

T

;■  1 1 4 1 ,2 ,4 ! - , 4 - ;': :;v V ~ 5 ;; 1 -  6

ML 82.50 88.67 91.67 92.00 92.83 93.50

CBF

MP 89.83 92.00 92.50
: :• -  ' ■ . - -

93.17
v. - V- ■ :

94.33

MS 88.67 91.17 91 33 9 2 33 93.67

: MA - 88.50 91.00 91.67 91.67 93.50
• . ' ■ ■- .

■ i  - V v - F  V

■ -rV'.- :

PCBF

MP ■ -  F" 88.67 91.50 92.17 92.67
I  .■■■■■■'“ . V -' ■■■"■ ■

93.83

MS
• ;■  ■■ ....

86.83 89.67 91.33 91.00 92.17

MA • 87.50 90.17 91.83 91;67
• 7  v---

92.83
.

7

F

.■ .■Table 6.10 Results of ML Classification and MSD Classification 
over Test Samples of Anderson River Data.

/ •  • ' . . .. ,  .

Decision
Rule

Sources

1 L A 1 ,2 ,4 1 - 4 1 - 5 1 - 6

ML FV ;;.:; 74.16 77.77 79.13 78.93 79.80 81.01

CBF
..;v • ... ' •

- • v ■ . ; ; ’ . ..

MP -  • ’ 80.60 82.39 82.69 83.02 84.54

MS -  . ' 78.45 81.42 81.67 82.24 83.65

MA 78.21 80.95 82.05 81.88 83.16
V V -  " ' ;

PCBF

F  MP ■ -  V 80.86 82.76 83.15 84.27 85.95

MS F . - 78.94 81.31 81.64 83.05 84.16

MA ; —  . 78.49 81.67 82.25 83.78 84.44



rule is the best. Further research is needed to determine whether guidelines 
can be devised for selection of the belief function and decision rule.

The MSD classification for all the sources was iteratively performed with 
various degrees of source reliability. In this case, the MP rule was used as a 

decision rule because it produced the best results in theclassification Of
multiple data sources with equal reliabilities. Tabled 6,11 and 6.12 show the 

overall classification results over the training samples and the test samples, 
respectively. The results show not only that the classification accuracymay 

increase as the reliabilities of the additional data sources are varied but also 

that it can be degraded if the additional data sources are discounted too much. 
It is also observed that the variations in the accuracy by PiCBF are relatively 
smaller than those by CBF. th e  reason is because the width of a partially 
Cdnsdnant intervaFValued probability is usually less than the width of a

Table 6.11 Results of MSD Classification over Training Samples of Anderson 
River Data with Various Degrees of Source Reliability.

SoUrde Reliability

Overall (%)

94.331.0

95.17

95.83

95.00

0.6 0.4

93.83

95.00

PCBF 95.17

93.67

91.67



92

consonant interval-valued probability, which makes PCBF less sensitive to the 

changes in source reliability.

Overall, the MSD classification using evidential reasoning was able to 
produce higher accuracy than the ML classification. The increase in the 

classification accuracy obtained by the MSD classification should be primarily 
attributed to the ER method’s Capability of adequately representing bodies O f 

statistical evidence by interval-valued probabilities. Furthermore, the MSp 
classification was capable of incorporating various degrees of source reliability 

into the process by treating the multiple sources separately. It was also 
possible in this particular experiment to utilize non-parametric information using 

the k-NN method together with parametric information. This is another 
advantage of the MSD classification by treating the multiple sources separately.

A

Table 6.12 Results of MSD Classification over Test Samples of Anderson 
River Data with Various Degrees of Source Reliability. ;

Source Reliability

Overall (%)■■■:. +'V::V 2 V 3 4 5 6

CBF :.;

1.0 1.0 1.0 1.0 1.0 1.0 84.54

1.0 0.8 0.8 0.8 0.8 0.8 85.40

1.0 0.8 0.6 0.8 0.6 0.6 85.69

1.0 0.7 0.5 0.7 0.5 0.5 84.25

1.0 0.6 0.4 0.8 0.4 0.4 83.04

PCBF

1.0 1.0 1.0 1.0 1.0 1.0 85.95

1.0 0.8 0.8 0.8 0.8 0.8 86.09

1.0 0.8

COO COO

0.6 0 .6 86.74

1.0 0.7 0.5 0.7 0.5 0,5 85.27

1.0 0.6 0.4 0.8 0.4 0.4 83.21



6.3. Classification of Single-Source Muitispectral Data

In the previous section, the proposed method was applied to the 

classification of multisource data obtained by various Sensprsi The data set 
used in this section is 12-band Airborne MSS data whose flightline ID is “CRN 
BLT LO FL21” taken on August 21, 1971 . Table 6.13 describes the spectral 
regions and bands of the 12 input channels comprising theJVISS data. The size 

of the iitiage is 220 Iinee by 140 columns, arid theimage covers an agricultural 
area in Indiana. Figure 6.13 is the ground truth map of this area, which is 

digitized and geometrically registered with the MSS data imagery.

: ;/;A4ih'pugh'^0~hdgi.istJ î.onV1ias..  ̂ made very carefully, the ground truth 
map contains geometric registration errors. The error is more noticeable along 

the boundaries between different ground types. If the whole area were used for 
test, incorrect Classifications evaluatedon the basis of the ground truth map
would result not only from bad performance of a classifier but also from the 
geometric registration error. In order to avoid this confusion, test areas were 

chosen. Figure 6.14 shows the test areas on the MSS image (Channels 1 ,4 , 
9). There were 9 information classes for the test, and Table 6.14 lists them with 
their actual number of pixels counted from the ground truth map.

This experiment was designed to observe how the proposed method 
overcomes the Hughes phenomenon when the number of training samples is 

so small. The strategy underlying the method is to decompose the relatively 
large body of evidence into smaller, more rhanageable pieces; to assess 
plausibilities based bn each piece, and to combine the assessments by a 
combination rule.

The set of multiple data sources was formed as shown in Table 6.15 by 
dividing the 12-band MSS data based on the global statistical correlation 

(Table 6.16) which coincides with the spectral regions. As expected, the 

correlation between pairs of bands from different spectral regions (except the
thermal region) are relatively low compared to those within each spectral 
region. Even though the thermal band was relatively highly correlated with the 

visible bands, we chose to treat it as though it were a distinct source. The 

consequence of having done so is apparent in the experimental results.



Table 6.13 Description of Airborne MSS Data of Indiana 
Agricultural Area Data Set.

Spectral Input Spectral

Region Channel Band (/zm)

7^ I 0.46 -0 .49

. ■ ■ • ; 2 0.48 - 0.51

' V • :■■■;•'i: ’ 7 7 7 ,  3 7 0.50 - 0.54
Visible 4 0 .5 2 -0 .57

0.54 - 0.60
i ; 7 :7 '7 6 7 0 .5 8 -0 .6 5

- j  . . . vV / 0.61 - 0.70

Near ,7 7 - , ,  8 0.72 -0 .92
Infrared 9' ■ 1.00 -1 .40

Middle 10 1 .50-1 .80
Infrared 11 2.00 - 2.60

Thermal 12 9.30 -11.70

Table 6.14 Information Classes in Indiana Agricultural Area Data Set.

Class
Index

Cover
Types

No. Of Test 
Samples

% of 
Total

. 7  1 Corn 7 3489 26.11
z  7 7 ' Soybean 6454 48.31

■.■’■'.3,:" Non-Farm 593 4.44
4 Oat 398 2.98
5 Wheat 602 4.51

77,;76-77' Sudex 936 7.01 7

::;'v7T:; ' 7 7 .; .-7 ■ Hay V7:i t2 7 v 7 ::7 3.08
Wood 7';7.' 361 ro O

7 7 Pasture 115 . ' ..V,;' 0.86

Total > 7  ■ ; 7 V ' , 7

ICOT-' 100.0



Soybean

Non-Farm

Wheat

Figure 6.13 Ground Truth Map of Indiana Agricultural Area Data Set.



Figure 6.14 Test Areas over A/B MSS (Channel 8) Image 
of Indiana Agricultural Area Data,



For each class, from 15 to 30 samples uniformly distributed over the test 
fields were selected for training. First, the ML classification was performed with 

various sets of the input bands. Tables 6.17 and 6,18 are the results over the 
training" safhples and the test samples, respectively. The overall classification 
accuracy is the percentage ratio of the number of the correctly classified pixels 
to the total number of pixels while the average classification accuracy is the 
arithmetic mean of the classwise accuracies.

Then the proposed method was applied to subsets of the input Channels, 
treating them as multiple sources. Tables 6.19 and 6.20 show the results of this 
MSD classification over the training samples and the test samples, respectively. 
In this case, the consonant belief function and the maximum plausibility rule 

were adopted, and the “multiple sources” were assumed equally reliable.

In the ML classification, both the overall and the average accuracies 
increased as the number of features was increased forthe training samples; but 
this was not true for the test samples. In the MSD classification utilizing all input 
channels, although both accuracies were below 100% forthe training samples, 
they vvere comparable to or higher than the accuracies produced by the ML 
method. The resuits exhibit two interesting features. First, the classification 

Accuracy for the MSD classifications decreases as the set of bands is more 
finely Subdivided. This is because more information in inter-channel statistical 
correlation is lost as the data set is more finely subdivided. Second, there is a

Table 6.15 DividedSourcesof Indiana Agricultural Area Data Set.

Source
Index

Spectral
Region

Input;
Channels

- Visible TtO 7
Near Infrared 8 9

, 2b; Middle Infrared 10 11
2c: -AT- Near & Middle Infrared 8 to 11

/  ;;;;2d Thermal
/ ■- 2 Infrared ato 12



Table 6.16 Statistical Correlation Coefficient Matrix of Ineliana Agricultural Area Data Set*

Band

1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000



' / I  ,  '7 '■ V  V''' VrV7.V'.| ■ v v- P-V: V-: V'VVV

:. 7 ■ ; Table 6.17 Results of ML Classification over Training Samples for Various Sets of Input Bands.

7 7 ,7 7 ,' . ;77,V V̂ ' " Percent Agreement with Ground Truth Map ' • . ■.■■■ 'v-V - . ' I--/,,'Iv-;-

• ■ v Class Index (No; of-Pixels per Glass)
: ■ - ■ - - V  . ■

Accuracy

Input

Bands

V-v.; T-
(30)

2 3
(30) (15)

"V 4 V  ' SVy
(15) (15)

; V: 6 ' : V V? V  
(18) (15)

8
(15)

7
(15)

Overall Average

-'IvteiPV;' 1 0 0 0 0 100.00 100.00 100.00■■-v.fbo'.qip..;' 100.00 I 100.007 100,00 100:00 1 0 0 0 0 100.00
v-lVoTiV'- 96.67 96.67 100.00 80.00 93.33 6 8 0 3  93.33 86.67 93.33 92.26 91.48

-  i ■ - ■■■■ ” V; 8 to W a 100.00 96.67 100.00 66.67 100.00 94.44 93.33 60.00 ipo,do 91.67 90.12
8 to I  t 96.67 76.67 100.00 46.67 100.00 72.22 93.33 66.67 93.33 83.33 82.84

8 ,9 96 67 83.33 0 6 6 7 0.00 6.67 77.78 7 3 0 3 20.00 06.67 64.88 59.01
I; "■ ; -v|; v 10, 11 100.00 83.33 100:00 20.00 20.00 0.00 53.33 40.00 9 3 03 0 1 .9 0 56.67

V V ' . : ,  ^VVVVv'vV 77772l;77 83.33 86.67 93,33 V vO-QO 40.00 11.11 v 0 ,00 0.00 0.00 43.45 34.94

■ v

■.777 ;■
' . ’ - ■ ;. V- ' ■; V - - ' ;

V;  : v  ' ' v ''- V ; , :

: ; | vv ' ' ’

; :V |V V.v: --

.■ : V V - " . . ; ' .77 V.; . : V '■ V - V - ;/vv.v:';.' ;V: V;. •V 7 : -■■■ V- -■ . V :■ •
COCO



Table 6.18 Results of ML Glassification over Test Samples for Various Sets of Input Bands.

. 7 . • ■■ Percent Agreement with Ground Truth Map

. : ■ ■, ; •' Class Index (No. of Pixels per Class) Accuracy

Input 1 2 3 5 6 7 s ' 9 Overall Average

Bands (3489) (6454) (593) (398) (602) (936) (412) (361) (115)

1 to 12 99.08 97.92 87.02 42.71 68.94 90.81 19.90 66.20 91.30 90.97 73.77

1 to 7 89.45 72.89 91.57 41.21 80.56 67.09 38.59 43.49 71.30 75.17 66.23
8 to 12 96.70 91.56 99.16 40.70 95.51 71.47 74.21 54.85 97.39 89.02 80.18

8 to 11 96.10 73.27 97.64 33.92 91.86 63.25 72.33 54.29 94.78 78.92 75.27

8 ,9 90.51 82.00 86.68 0.00 10.80 66.35 54.13 15.24 95.65 75.13 55.70

10, 11 93.24 60.75 93.76 10.80 20.26 4.70 56.55 26.87 95.65 62.72 51.40'* ''' ‘
12 81.11 84.13 90.21 0.00 34.72 37.07 0.00 0.00 0.00 69.99 36.36

100



Table 6.19 Results ofMSDGIassification over Training Samples.

■■V-./V ' . . " . , ;V " ‘ " J .  ... ■ ,

Percent Agreement with Ground Truth Map

Class Index (No. of Pixels per Class) ■ ; ; ;v ;:: Accuracy

input
Sources

1
(30)

/■■&vv

(30) (15)
4 5 6 7

(15) (15) (18) (15)
8

(15) (15)

. '-- I. '-  ^
Overall Average

100.00 100.00 100.00 86.67 100^00 I 94.44 100.00 100.00 100.00 98.21 97.90
160,00 100.00 100.00 100.00 100.00 97.62 97.16

1,2 a,2b, 2d 100.00 96.67 100.00 73.33 100.00 88.89 100.00 100.00 93.33 95:24 94.69

Table 6.20 ResuIts of MSD Classification over Test Samples.

■■ Percent Agreement with Ground Truth Map ■ -■ ’ v' -::;v;vv.

Class Ipdex (No. of Pixels per Class) '
Accuracy

Input 1 2 5 6 7 "̂vv;.a 9 Overall Average
Sources (3489) (6454) (593) (398) (602) (936) (412) (361) (115) : 7 ; ; v v v :. ;-v v

1,2 97.70 95.51 96 12: 55.78 96.68 ^ 6 4 i 5 T ; 70.87 82,27 97.39 93,0 | 86.31
1, 2c, 2d 96.85 91.78 95.62 47.74 96.51 76.39 63:11 82.27 93.91 89.97 82.69

1,2a, 2b,2d 96.96 91.74 95.28 38.44 93.36 75.64 57.28 85.04 95,05 89,41 61.01

V. J /Y.V:-.V'-'; ■■■ r ■ •••■ - :V v . ; V/. ■, - - •• - V; ; . ':V.:' ; - .... v I '

v v | v  ' V . /
:v : : ; : : v '

101



considerable increase in the average classification accuracy Cf the MSD 
classification for the test samples as compared to the ML classification 

accuracy. It is expected because the MSD classification classifies pixels based 
on the assessment of multiple sources instead of a single source. This is a 
major advantage of the MSD classification over any single source data 

classification. While the ML classification based on the stacked vector 
approach combines the features in the raw data level and buries their relative 
reliabilities in the statistical correlation information, the MSD classification 

'c6im:biries-';the-'mul.tiple. groups of the features after assessing the individual 
groups withexplicit consideration of their relative reliabilities.

In order to demonstrate the Hughes phenomenon, the ML classification 
over the test samples was performed with various numbers of the best features 
as determined by feature selection using both the J-M distance and the 
Transformed Divergence. The result of the feature selection was, from best to 
worst: 8, 12, 11, 10, 9, 7, 6, 4, 5, 3, 2, and 1. As shown in Figure 6.15, the ML 

method gave the highest accuracies at 8 features (8 ,12 ,11 ,1 0 , 9, 7, 6, 4).

However, the MSD classification based on the proposed method was 

able to utilize all features when applied to a “multisource” data set consisting of 
two “sources”: one having the 8 best features and the other having the 

remaining 4 features. The first 4 lines in table 6.21 are the results of 
classification with various degrees of reliability applied to the second source.

Another set of multisource data was formed by dividing the features into 
two groups each of which has roughly equally good features. The classification 
result from applying the proposed method to this data set is shown in the last 
line of Table 6.21. In this particular case, although the dependencies between 
sources were ignored, the accuracies were the highest. This is due to the 
reinforcing characteristic of Dempster’s rule, which means that the combined 
body of evidence provides stronger support than any individual body of 
evidence.
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6.4. Classification of HIRIS Data

The High Resolution Imaging Spectrometer(HIRJS) is an Earth Observing 

System (EOS) sensor developed for high spatial and high spectral resolution. It 
can provide more information in the 0.4 to 2.5//m spectral region than any other 

earth-observing sensor. Table 6.22 compares some of the attributes of HIRlS 
and early Earth satellite observing sensors. [Goetz and Herring (1989)]

The high dimensionality of HIRIS data causes several difficulties in 
classifying the data. In addition to the high computational cost of classifying 
such data, a huge amount of training samples is necessary in order to have 
accurate estimation of the statistical parameters using all 192 channels. 
Furthermorei unless these parameters can be accurately estimated, it is even 
impossible to use statistical feature selection techniques to reduce the 
dimensionality.

In this section, the proposed method is applied to the classification of 
HlRIS data by decomposing the data into smaller pieces, i.e., subsets of

Table 6.22 Comparisons of MSS, Thematic Mapper (TM) and HIRIS.

‘ vy M S S ■ / TM H iR IS

No, of Spectral Bands 4 : : 7 192

IFpy(ground) 79m 30/120/77 30m

Dynamic Range 6/7 bits 8 bits 12 bits

Swath Width 185 km 185 km 30km

Data Rate 7.63Mbits/sec 67.4Mbits/sec 300Mbits/sec

Spectral Region 0.5 - 1.1/1/77

0.45-0.90/1/77 

1.55-1.75///77 

2.08-2.35/i/77 

10.4-12.5/7/77

0.4-2.5/7/77

Spectral Resolution 0.1-0.3///77 0.6-2.27/7/77 0.01/7/77



spectral bands. The data set used in this experiment is simulated HIRIS data 
obtained by RSSIM [Kerekes and Landgrebe (1989)]. RSSIM is a simulation 

tool for the study of multispectral remotely sensed images and associated 
system parameters. It creates realistic multispectral images based on detailed 

models of the ground surface,-The atmKisphere, and the sensor. Table 6.23 
provides a description of the simulated HIRIS data set.

Figure 6.16 is a visual representation of the global statistical correlation 
coefficient matrix of the data. The image is produced by converting the absolute 
values of coefficients to gray values between 0 and 255. Based on the 
correlation image, the 201 bands were divided into 3 groups in such a way that 
intra-correlation is maximized and inter-correlation is minimized. Table 6.24 
describes the multisource data set after division. Note that the spectral regions 
of the input channels in Source 3 coincide with the water absorption bands.

With 225 training samples (a third of the total samples) for each class, the 
ML classification and the multisource data classification using the consonant 
belief function and the maximum plausibility decision rule were performed over 
the total samples for various sets of the sources, and the results are listed in 
Tables 6.25 and 6.26. In the muItisource data classification for Source 1 and 
Source 2, first the sources were given the equal reliability and then Source 2 
was discounted with degree of reliability 0.9 to show the effect of varying 
degrees of reliability on the classification accuracy.

Table 6.23 Description of Simulated HIRIS Data Set.

Name Finney County Data Set

Data Type 201-band HIRIS data simulated by RSSIM

Spectral Region 0.4 - 2A^im

Spectral Resolution 0.01 fim

Image Size 45 lines x 45 columns (2025 samples)

Information Classes Winter Wheat, Summer Fallow, Unknown



Figure 6,16 Global Statistical Correlation Coefficient Image 
of Finney County Data Set.
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The results of the ML method apparently show effects of the Hughes 
phenomenon; the accuracy goes down as the dimensionality of the source 
increases while the number of training samples is fixed. In particular, the 

accuracy decreases by a considerable amount when all features are used. 
Presence of the Hughes phenomenon causes the ML method to be particularly 
sensitive to a bad source, Source 3 in this case. Meanwhile, the proposed 
MSD classification method always shows robust perform and gives 

consistent results

To explore how to handle a situation in which the training samples were 
too limited to permit use of all available features,: both methods were run again 
with 68 training samples (10% of the total samples), and the results are shown 

in Table 6.27. In this case, the features wer© selected with a uniform spectral 
interval from Source 1 and Source 2, excluding the features in Source 3. The 
table shows the number of features actually used for the subdivided sources. 
Four cases were run, each with a different spectral interval,resulting In C total of 
51, 40, 31, and 20 features, respectively. The proposed method performed 
better in all four cases than did the ML method.

Table 6.24 Divided Sources of HlFIIS Data Set.

Source Index Input Ghannelsv No. of Features

 ̂ Source 1 1-35, 107- 141, 157-201 ^ 1 5  ■

Source 2 3 6 -9 5 60

Source 3
9 6 - 106(1 .35- 1.45pm) 

142- 156 (1.81 - 1.95pm)
26
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Table 6:25 Results of ML Classification with 225 Training Samples.

Source S I S 2 S3 S I, S2 All

Classification 

Accuracy (%)
75.75 75.60 45.83 74.56 65.14

Table 6.26 Results of Multisource Data Classification 
with 225 Training Samples.

Reliability of Classification 

Accuracy (%)S I S2 S3

1.0 1.0 1.0 77.63

1.0 1.0 not used 77.83

1.0 0.9 not used 78.32

Table 6.27 Results of Classifications with 68 Training Samples.

Classification Accuracy (%)

Sources S I S2 S I S2 S I S2 S I S2

# Features 33 18 27 13 21 10 14 6

ML 77.43 82.40 82.86 81.82

MSDC 82.22 84.10 85.04 81.90
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6,5. Discussion

Irr this chapter, the Evidential Reasoning (ER) muitisqurce data 
classification method presented in Chapters 3, 4, and 5 has been applied to the 
ground-cover classification of various multisource data sets. Once it is 

determined which belief fuhctign and decision rule will be used, the 
implementation of the method is as easy as implementing a typical ML method,

Thefirstexperimeht.withthemultisdurcedatasetconsistingofSmulti-- 
channel data sources and 3 topographic data sources; was intended to assess 
the ability of the ER method in capturing and utilizing the information obtained 

from the topographic data sources as well as the muItispectraf data sources; In 
this particular experiment, some of the classes could not be assumed to be 
pormally ;di$tributed in the topographic data, thus, in the MSE) classification 
based on the ER method, the npnparametric Nearest Neighbor method was 

adopted to compute the likelihood functions of test samples, which were then 

used tp construct the IV belief functions for thebodies Of evidence provided by 

the topographic data Sourcesf By treating the multiple data sources separately, 
the proposed method was able hot only to utilize hOnparametric information 

together with paraitietfie information but also toincorporate various degrees of 
source reliability, into the process. The method provides; more than one choice 

for representation of statistical evidence and a decision rule; these choices give 

a lot of flexibility to the multisource data analysis. At this point in the research it 
is not known exactly which choices should be made in general; the choices 
must depend On our knowledge concerning the context of the specific problem, 
such aS the hierarchical structure of information classes;and the amount and 
reliability of available information.

The ER method was also applied to the classification of two single- 
source data sets: 12-bahd Ai/B MSS data, and 2Q1-band simulated KIRIS data. 
Both experiments were designed to observe how effectively the proposed 

method utilizes the available features and overcomes the Hughes phenomenon 

when the number of training samples is small. From single-source data a 

muitisource data set was formed by decomposing the high-dimensional data 

into smaller and more manageable pieces based on the global: statistical 
correlation



In the experimental results for the 12-band A/B MSS data, two 
observations were made: (1) the classification accuracy of the MSD 
classifications decreased as the set of bands was more finely subdivided, and 
(2) the average classification accuracy of the MSD classification increased 

significantly compared to the ML classification accuracy. According to the first 
observation, inter-channel statistical correlation must be kept within the 

subdivided sources (consistent with the independence assumption of 
Dempster’s combination rule). Similar results were observed when the MSD 
classification was performed for the set of features subdivided based on feature 

selection. Although dependencies between sources were ignored, the 

classification accuracy was increased due to the reinforcing characteristic of 
Dempster’s rule.

The experimental results for the 201-band simulated HIRIS data showed 
that the MSD classification provided robust and consistent performance despite 
the existence of an inconsistent source when training samples were very 

limited. The information obtained from an inadequate number of training 

samples is considered to be inexact and incomplete. The results have 
demonstrated the ability of the ER method to capture uncertain information 
based on inexact and incomplete bodies of evidence, and consequently to 

utilize features as effectively as possible.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

7.1 Conclusions

The problem of drawing inferences using subjective probability 
measures is not a trivial one, especially when it involves multiple information 
sources associated with various degrees of relative reliability. In this report we 
have investigated how interval-valued probabilities can be used to represent 
and integrate evidential information obtained from various data sources.

IV probability is a generalization of the ,conventional point-valued 

probability. It has been known as a more adequate scheme than the 

conventional additive probabilities for representing partial information provided 
by inexact and incomplete sources. Chapter 2 reviewed various systems of IV 
probabilities and introduced an axiomatic approach to IV probabilities. In the 
axiomatic approach the upper and the lower probabilities are given by a pair of 
set-theoretic functions.

One of the basic problems in applying IV probabilities to a real-world 
problem is how to infer the upper and the lower probability functions given a  

body of evidence. Chapter 3 investigated formal methods of constructing IV 
probability functions when the given body of evidence is based on the 
outcomes of statistical experiments governed by a probability model. This 
report has mainly focused on the two IV belief functions, the consonant and the 

partially consonant belief functions, which are based on the Likelihood 
Principle. Even though they require certain assumptions which are not difficult 
to satisfy in practice, they have mathematically simple and readily usable 

formulas. In order to include the relative reliabilities of sources in a multisource 

data analysis, the attempts to represent quantitatively the degree of reliability by 
the average Jeffries-Matusita distance, the average Transformed Divergence,



■“ arid/:th'=©;':.siy®r̂ g;&'_rriesisures • o.fconflictbetween pairs of sources were made. 
These measures were used to rank the multiple sources according to the 
relative reliabilities of the sources.

In the analysis Of multiple d a ta s o u rc e s .a  combination rule is an 
essential tool in order to base inferencesand decisions on all available 

information. Chaptef 4 formally stated desirable properties of combination rules 
and investigated the inferencing mechanisms of the subjective Bayesian 

updating rules and Dempster’s rule for combining muitiple bodies of evidence. 
It was also noted that Dempster’s rule is a generalized form of Bayesian 

inference, which is characteristically reinforcing and robust to small variations in 
probability measures to be combined. The robustness of Dempster’s rule Was 
analyzed in the aspect of its differential behavior according to slight changes of 
initial belief measures.

Chapter 5 presented an account of basic elements in the decision theory 
for pattern recognition based on IV probabilities and developed the absolute 
rule arid the Bayes-like decision rule for evidential intervals on the basis Of the 

general interVal-valued expectation. A problem With these rules is that there 
may happen ambiguous situations where decisions cannot be made. The 

minimumhyer&pe Expected lossrules Wasproposed to resolve SuOh ambiguous 

situations. Further, the minimum upper expected loss rule and the minimum 

SpWer expected loss rule were proposed as alternatives to the previous two 
rules.

Overall concepts of interval-valued probabilities have been implemented 
and evaluated as a neW method for classification of multisource data in remote 
sensing. As described in Chapter 6, the proposed method was applied to three 
separate sets of multisource data, one consisting of three multi-channel data 

sources and three topographic data sources, and two consisting of single
source multispectral data. The purpose Of applying the method to the single
source data sets was to utilize as rhahy features as effectively as possible 

(when training samples are limited) by decomposing a large number of 
channels iInto smaIIer and more manageable subsets based on the global 
statistical correlation.

In the method each data Source is considered as a body of evidence



providing partial information. When the body of evidence is represented by IV 
probabilities, the width of the interval represents the uncertainty associatedwith 

the corresponding source. The method combines the individual bodies of 
evidence into the total body of evidence. By treating the data sources 

separately, the method is not only able _‘t'Q J.utiliai.e-.- bp.tjnr... p'siF3 .̂c»trip and 
nonparametric. information, but also able to incorpprate various degrees of 
source reliability in the multisource data analysis,

The experimental results showed that compared to the conventional ML 
classification, the proposed method gave higher and more robust classification 
accuracies for test samples even when a far less reliable source was included 
in the data set. The increase in average classification accuracy was 
noteworthy. The results also showed that the classification accuracies could be 

increased by varying the degree of reliability assigned to each source as well 
as by choosing an appropriate decision rule.

The most important feature of the method is the capability of plausible 
reasoning under uncertainty in pattern recognition, especially where multiple 
data sources are not 100% reliable or provide conflicting information. The 
method of classification for multisource data based on IV probabilities can also 

be Used to good advantage when there are only small numbers of training 
samples and reliable estimation of statistical information requires dividing the 

high-dimensional data into lower-dimensional subsets.

7.2 Suggestions for Further Research

■ :
The Evidential Reasoning method developed in this work could be

further improved in the following respects:

(1) Gomputational complexity: It is apparent that the processing time will 
increase as the number of sources increases. Furthermore, since Dempster's 
rule computes the IV probability of a subset A c  O  as the sum of the basic 

probability assignments of A and all the subsets of A, the computational 

complexity grows exponentially with the number of elements in O . A possible 

way to reduce the computation is to restrict the number of focal elements to be 
considered. In a remote sensing context, this is possible by designing the



classes hierarchically,

(2) Generalization of the minimum average lossrule:Although ^  
upper expected loss rulP (maximurti plausibility rule) produced the best resuIts 

in the experiments, it is considered to be due to the belief functions used. In 
general, the minimum average loss rule is considered to be more reliable than 
any other rule because it includes both the upper and the lower probabilities. 
This rule may be generalized by COhSidering the IV expected loss as a convex 
set of measures.
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