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ABSTRACT

The lmportance of utlllzmg multlsource data in ground cover classufuca—
1 'tlon lies in the fact that |mprovements in classrflcatlon accuracy can be achieved
at. the expense of addltlonal mdependent features provrded by separate
" sensors., However it should be recogmzed that' mformatnon and knowledge
from most avallable data sources |n the real world are nelther certam nor‘
_complete ‘We refer to such a body of uncertaln mcomplete and sometlmes:
: mconsnstent mformatron as “evudentlal mformatlon S i

, The objectlve of thlS research is to develop a mathematlcal framework
within which various appllcatlons can be made with ‘multisource data in remote

ensmg and geographlc mformatron systems The methodology descrlbed |n_' -

: '[hlS report has evolved from “evidential reasonmg, where ‘each data source is
consrdered as provrdlng a body of evrdence wrth a cértain degree of bellef The
degrees of belief based on the body of evrdence are represented by “interval-

valued (lV) probabllmes“ rather than by conventlonal pomt valued probabllmesf o

so that uncertarnty can be embedded in the measures o

_ There are three fundamental problems in the multlsource data analysrs
based on IV probabllltles (1) how to represent bodies of evidence by IV
: _'probabllltles (2) how to combine IV probabilities to give an overall assessment
- A._of the combined body of evidence, and (3) how to make a decrsron when the R
- statlstlcal evidence is given by IV probabilities. - S

Thrs report first mtroduces an axromatlc approach to IV probabllmes )

where the IV probablllty is defined by a pair of set- theoretic functrons which '
~ satisfy some pre specmed axioms. On the basns of this approach the report |

,'focuses on representatlon of statistical evrdence by V. probabllmes and'
“combination of multiple bodies of evidence. o '
1 ~ Although v probabllltles provrde an. innovative means for the
o 'representatlon and combination of evidential lnformatlon they. make the
> _decnsron process rather compllcated It entails- more mtelllgent strategies for ’



X

maklng decnsrons ThlS report also focuses on the development of decnsnon n
i rules over IV probabllltles from the wewpomt of statlstlcal pattern recognltlon

o The proposed method s0 called “evudentlal reasomng” method |
applled to the ground-cover classnflcatlon of a multlsource data set consnstmg of -
o ;Multnspectral Scanner (MSS) data Synthetlc Aperture Radar (SAR) data, and

- digital terrain data such as elevation, slope, and aspect. By treating the data o

B A"‘}‘;‘;7._;,»}5.,jsources separately, the method is able’ to capture both parametnc and'-*
L i :,'nonparametrlc lnformatlon and to combme them R e

Then the method is applled fo. two separate cases of classlfymg multl- |

E band data: obtamed by a smgle sensor. In each case, a set of multlple sources‘z )
st obtalned by dlwdlng the dlmenswnally huge data |nto smaller and more .

manageable pleces based on the global statlstlcal correlatlon mformatlon By a'_?
RS “Dlwde and Comblne process the method is able to utlllze more features than
fthe conventlonal MaX|mum leellhood method ' S




CHAPTER 1
INTRODUCTION

1.1. Background -

. Since the developments of the digital computerv-,a,nd sensor systems
made- it possible to apply the quantttati've approach to remotesenstng in 1960s,
information: concerning the surface of the Earth and its environment has been
largely extracted from the multispectral data obtained by a srngle sensor.

~Within the last decade, as remote sensrng and other data acqu:sntlon
-te'chnologles have advanced, there has been a trend towards e.xp_I0|t|ng
remotely 'sensed multispectral data in conjunction with related data from other
sources for the purpose of extractlng higher level rnformatron from multi- attnbute
data bases. For instance, the topographic information obtalned from dlgltaIV
terrain data has been successfully used together with remotely sensed data in
land cover analysis [Fleming et al. (1979), Frankiin et al. (1986), Jones et al.
(1988), Strahler et al. (1978)]. More recently, many researchers in _the'_
geographic information processing community have started reconsidering the
. possibility of utilizing remotely sensed data within geographic information e
systems (GIS) [Healey et al. (1988), Quarmby et al. (1988)]. Flgure 1.1 deplcts a .
~typical multi- attribute database in remote sensing and GIS. In general the
“information obtained from multiple sources is robust and more rehable than that
from a single source. Furthermore, it may resolve ambiguities which might anse
from single source analysns ' '

Toa Iarge extent, the methods which have been used for the analysns of_ e

‘multisource data have been ad hoc or often based on qualitative mte.rpretatlon
techniq'ues drawing heavily on the expertise and intuition of application
scnentrsts Whereas techniques for collectlng and storing data from multrple
sources (e g., multlspectrat scanner, srde looking radar, dlgrtal terrarn ‘model,
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etc.) have evolved rapidly, techniques for extracting and analyzing information |
from-such.complex data bases are still in.the beginning stage. = With the
advancement in designing sensor systems -and the: i.ncrea—sing availability of
- ancillary data, interest in‘extraCting the great wealth of higher level information
contained in geographic and remote sensing contexts has led to extensive
" de.mand for computer-based, automated (or semi-automated) methods for the
analysis. of multlSource data.  Their development will be hastened more: and;.
more by prollferatlon of various and sophisticated remote sensmg platforms and :
sensors in the next decades

- Unlike the sntuatlon in WhICh we are deallng wrth purely spectral data;
from a single sensor, ‘there are some conceivable problems in devising means
for multisensor and multisource data analysis. Firstly, there is a difficulty. in
‘ descrlbln‘g- the disparate range of data types which have different units of
“measurement.  The types of data to be combi,nedcan’not be assumed to be:
- commensurable. - For example, _multi-speCtralAdata._represent the energy
- emanating from the scene of interest in different wavelengths While elevation
~data represent the altitude of the scene.. Moreover, map -based- ancrllary data- .
such as a soil map may even be nominal in nature. The snuatlon becomes_
more compllcated when- the multi- attrlbute data bases include geometric
charactenstlcs such as lines, shapes or sizes. :

Secondly, since spatial vanatlon of the attribute in a geographic context, |
such as vegetation cover, soil type, or slope aspect has an-effect on the N
spectral responses obtained from remote sensors, there are possibly sngmflcant
but unknown interactions among multlple data sources. For example, in the
-_]v:suble/mfrared spectral range the reflected energy measured by -a sensor 3
: depends on properties such as the plgmentatlon, moisture content and ceIIuIar
structure of vegetation, the mineral and moisture contents of soils, and the level
of sedimentation of water. However, when there is insufficient knowledge
,jconcernmg the interactions among data sources, the observations obtained
~ from the data sources have been treated as mdependent variables. Such an
mdependence ‘assumption should be adopted with caution in the case of a
- statistical multisource data analysis because the data sources whrch seem to be -
apparently uninteracting are unllkely to be statlstlcally mdependent

Thlrdly, while |t is -often reasonable to adopt the multlvanate Gaussnan‘



cL dlstrlbutron to model the probabrlrty functron of multlspectral data alone thls” ',
parametrlc model rs not generally applrcable to accommodate geographrc or.

e :;topographrc data combrned wrth multlspectral data when the representatron of -
“ v:f_therrjornt probabrllty functlon is unknown. T

Frnally, there is_an rmportant factor whrch must be consndered in

'combrnrng multrple sources. Srnce 'various data’ sources are in-general not
RO "jequally reliable, the data sources usually provrde a wide range of degrees of
‘, support for an observatron sometlmes evenin-an mconsrstent manner Such

‘rnformatron regardlng the relative relrabllltles of the sources should be mcluded -
"ln the multrsource data analysrs i V '

These problems have been the motlvatlon for the development of the" -

}technlques by whrch mferences can be drawn systematrcally from complex data
T 'bases composed of drsparate unequally rellable sources regardless of therr_._-_-
i "/ ldata types and mteractrons wrth the other sources s

e 1.2.’:‘Rel;at.ed ?worﬁksv

Durrng the Iast decade there have been a number of drfferent -

approaches to the analysrs of multrsource data in " remote sensrng and

e geographic. rnformatlon systems, The approaches lrsted in '[hlS section. are. noti .
‘exhaustrve of the related works but are representatrve )

Flrst of all, the “stacked vector” approach is the most stralghtforward
_method in which all data sources are considered srmultaneously by organrzrng

- the respectrve measurements lnto a srngle vector The resultrng compound

' {vectors are treated as. data from a 'single-source. Although thls approach has

,fbeen successfully applled to combrned multlspectral data and terrain data

- [Hoffer et al. (1975)] its use is Irmrted to the S|tuat|on where the sources are
_'srmllar and thelr mteractrons are easrly modeled DR

 The "layered approach employed by Flemmg et al (1979) s more

"’I»:’ffi[,»i”»general in the sense that it can deal wnth multlple sources of dlverse data types"
by treatrng them separately This approach has been used for mapplng forest

_ ._’___f-cover types based on multlspectral data and topographlc data. lts idea is to ,
-"f,cIaSSIfy major cover types based on the multlspectral data and then further I



- 'subdrvrde the cover types to the specres Ievel based on the remarnmg data

,Hutchmson (1982) ‘has developed a.similar approach, so called “ambiguity:
) ireduction method whose basnc strategy is to stratify the data based onone (or
- ,more) of- data 'sources, ‘assess.the. results and resor to the' other sources to
resolve the remalnrng ambrgurtles A major drsadvantage of these two

o ‘approaches is.that different groupings or orderlngs of the sources may produce '

vdn‘ferent results Furthermore their mathematrcal schemes cannot rncorporate_ B
’ the rellabrlltles and lnteractrons of the sources lnto the classrfrcatlon process '

Swarn et al. (1985) proposed an approach Wthh can handle. an arbltrary ;
number of rndependent data sources. In therr mathematrcal framework, the
. global membershlp function is denved from.: Bayes formula by applymg two

- 'dlfferent statrstlcal mdependence assumptrons Due to the commutatlvev‘

: property of the global membershrp function, drfferent orderrngs of the sources in

e combrnatron do not have an -effect on flnal results Th|s method has been

- extended by Lee et al. (1987) and Benediktsson et al. (1989a) so that the,
7- relatrve quallty of the sources can be accounted for |n the global member—shlp '
\ .functlon o R ’ : RN

, Although thelr procedures in combrnmg rnformatron from multrple data‘
sources are drfferent the numerical representatlons of mformatron in the above

~ approaches are commonly based on the Bayesian mference where: posterlor

sources

probabllrtles are defined by the multlpllcatlon of prlor probabrlrtres and
observatronal probabrlltles It is very important to recognlze that in dealrng with

- - multispectral data combined with other forms of geograp_hrc data, the methods', i

, zf'r'employed must be able to cope with uncertainties which arise both from intrinsic
e or randomness of data and from ambrgurtles in modelrng and comblnrng dlsparatej

| '-;vapplled to the classification of remotely sensed multrsource data [Benedrktsson :

o s v% et al. (1989b)] Srnoe it is nonparametnc in nature, the neural network approach :
.7 is most useful when the drstrrbutron functions of data are not known However S
L }'“thls approach usuaIIy involves a large amount of computatronal complexrty |n L

: 'vtrarnrng due to an rteratlve procedure.

Meanwhrle in the artmcral mtellrgence and knowledge englneerrng. -

Recently, learnlng procedures based on- neural networks have been o



B i’f'j;r;communlty, there have been a number of attempts to. bunld pIausrble models for

: j{'automated reasonlng W|th multlple mformatron sources [Cohen (1985)»

-~ ‘McDermott and. Doyle (1979) Shafer (1976a), Zadeh (1965)] Such attempts_- .

S f’:-have been embodled as- lnference technlques under uncertamty” [Duda etal - :
x':'f?j(1976) Dubois and l'rade (1980) Glnsberg (1984) Lowrance and Garvey‘ |

S (1982)] and used in various areas of science and’ englneerlng [Blonda etal.

;"',',(1989) Duda et al. (1979) Garvey (1987) Garvey et al. (1981) Kim- et al o

" ”V‘:'vv'}-?(1986) Moon (1989) Shortllffe (1976)] Appllcatlons to- multlsource geographlc,'{

f"!""f,i-and remote sensmg data have been rudlmentary at best

L1 statementof Promem et

B EL he lmportance of utlllzmg multlsource data |n groun_,_cover'
_V:_,:f'*;.:"class1f|cat|on lres |n the fact that |t is: generally correct to assume ‘that
o 1’_;_,:m'_:;_'lmp'rovements in terms of classmcatlon ~accuracy can be achleved at the,v
- "v-,expense of addltronal rndependent features provuded by separate sensors or
7 other forms of data sources. However |t should be recogmzed that mformatron',»
e '."}»-'jand knowledge from most avarlable sources of data in the real world are' nelther

- }certam nor complete We refer to such a body of uncertain, mcomplete andv IR

‘"‘:ffsometlmes mconsustent mformatlon as “evndentral |nformat|on e

, , ln order for any methodology for multlsource data classmcatlon to be o
| ;|mplemented as. a quantrtatlve computer—based techmque the methodologyf‘
L must be able to (1) represent the’ partlal |nformat|on provrded by the mdrvrdual
- sensors as ‘numerical .measures, and (2') combine the measures by a

"_‘-f.;}comblnatlon rule to produce the overall assessment of the total evndence |

:Consrder the problem of classrfymg a plxel X (x1,‘.v-.,.>' ) to one of n‘ -

“':i;;{classesldenoted by @ forj=1, .., n, where x; (i=1, ..., m) is the feathe Obtamedﬁ o
;i from the ith source denoted by S and the superscnpt T denotes the"* ector o
: “transposmon Suppose each data source S supports A denotlng the event fX '

b Throughout

_',,fbelongmg 10 a certain class o with a c:legfee of beliet B(Alxi’)

7 the report, the: ternt “degree of bellef" or “belief. measure“ wrll be used forany = -

Lkmd of numerical - measure representlng ones belref states regardlng the
‘events Then the frrst problem above is equrvalent to the construc’uon of belref-, -




: measures based on evrdentral rnformatlon provrded by each data source s

o As we mentloned earller evrdentlal lnformatlon IS characterrstrcally}'f' :
'_'uncertam and lncomplete Therefore the classrcal Boolean logrc is not
;adequate for representmg evrdence because rt cannot have mtermedrate states,’

:,"between “True and “False.” In other words the Boolean expressrons neveri -
':_'capture any notlon of the relative strength of partral bellefs Bayesran_'

: ‘v,probabrlmes have been: frequently used to represent partral belrefs Yet this is
‘ possible only when there is a sufficient amount of- data to estlmate the statlstrcal-
parameters of an. assumed probablllty model Further, there is no approprlate

way for. representmg “total ignorance” in-a Bayesran framework because the

| Bayesran probabllmes should be addltlve that rs

P(A>+P(A)-1 o o (131)

5 where A rs the complementary event of A . To |llustrate the consequence of this:

. requurement suppose there is no evidence available elther for or agalnst the .

‘ '-ioccurrence of two exclusrve and exhaustlve events ln the Bayesran framework '
both events are equally assrgned a probabrllty of —, WhICh seems. quite drfferent’

}from specrfylng that nothmg is known regardlng the occurrence of the events

Once the belief measures based on mdrvrdual sources are grven the’
’next problem is: whether we can find a. comblned degree of belref B(A | x4,
,,,) or equrvalently, whether we can build a numencal formula fF such that

: B(A|x1,, ,,,)_ (b1, b | (132)

If the data sources are not. ‘believed to- be equally relrable the relatrve.
,;_ff-_relrabrlltles of the sources must be consldered in computlng the comblned

o degree of belief, i.e.,

B(A|x1, - X) = F by, bmalam) _"'1(1.-3-"3)

“ ".where a,s denote the relatlve relrabllltles of the sources

When the numencal representatron of belref and the formulatlon of -

V' »'»_vvcomblnlng functron depend on the expertlse and lnturtlon of human analysts
. 'the solutlons to the above problems are sald to be ad hoc ' . ‘



K measures

ght ,‘1,’.4'.? obje'ct‘tﬁve ;yot,;_the.; ’Researc‘h_

: The obJectlve of. the research |s to develop a mathematlcal framework for"_ o
f;ifdealmg effectively with- multlsource data in remote sensing and GIS and to.
| ﬁiprovrde a preltmtnary demonstratton of its- value The methodology descnbed |n;':. N
_ this report has evolved from “evidential reasomng,” where: each data source is
.fq’consrdered as provrdrng a body of evrdence concernrng proposrtlons wrth‘ri"-':_._""- S
i " certain degrees of belief. The degrees of belief based on. the body of evrdence i s
'»"‘are represented by “interval-valued (IV) probabllltres” rather than by;;

. conventlonal addltrve probabllltles so that uncertamty can be embedded in the”

| of the comblned body of evrdence and (3) how, to. make decrsrons bas_e:d onlv. =
"”Probabrlltres : e R R T

, There are three fundamental problems in the multlsource data analysls'
"f‘*;'based on IV probabilities: (1) how to represent bodies of evidence by v
_ probabilities, (2) how to combine IV probabilies to give an overall assessment'_’,; L

There have been varlous approaches to lV probabrlltres |n the areas of':'. o

o r‘phrlosophy of scrence and statlstrcs The pnmary focus of thls report lS on_t e

'unrflcatlon of vanous concepts of 1\ probabllltres so that \Y probabrlltles can bef .

'*.':readrly accesslble 1o representatlon and combmatron of multrple bodles ofr‘

& | vevrdence wrthout any conceptual ambrgumes ThIS report pursues an. axromatrc o
- :approach to IV probabilities, where IV probabllrtres are defined axromatlcallyi j

:based on the least of the common propertles which are conststently requrred rn_ -
“the varlous approaches Secondarlly, this: report focuses on formal methods of

jrepresentmg statistical evrdence by IV probabrlmes first based on acceptable,'

| “'models in robust. estlmatlon of probabrlttres and then usmg the I|keI|hood

. i functlon of observed data

We do not propose any brand -new Tule for comblnmg multlple evudence |
lnstead ‘some exrstmg rules are- mvesttgated in terms of their mferencrng .
mechamsms when they are expressed as set- theoretlc functlons Although v

_probabilities provrde an innovative means for the representatlon of evrdentlal N

~'|ntormat|on they make the decrsron process rather complrcated We need more'—_

;‘rntellrgent strategres for. makrng decisions. ~ This' report addresses thenrr-"_ -
'development ot decrsron rules: over v probabllrtres ‘as: the counterparts of_» o




conventlonal decnsnon rules in statrstrcs

In thrs report the problem of multrsource data analysus in remote sensrng
and GIS is viewed as an applrcatron area for the use of artrfrcral mtellrgence and
‘ 'knowledge engmeenng techmques

"1‘;_5.*frhesis‘ Qrgan'ization o

This report is made up of seven chapters In thrs mtroductory chapter the
problems in the analysis of multrsource data have been addressed and'the
"objectlve of the research has been stated. " In the foIIowrng chapter after
reviewing various approaches to 1V probabilrtres, an axiomatic approach to IV
probabilities is introduced. Chapter 3 describes how belief functions for
statistical evidence can be constructed in the form of IV probabilities. Chapter 4
examinés subjective Bayesian rules and Dempster's rule for combining
eVidence in the sense of satisfying some desirable properties which agree with
‘ human mtumon Partlcularly, attention is paid to the inference mechanlsms of
Dempsters rule.. In Chapter 5, decision rules over IV probabrlltles are defined
~on the basis of well-known decision principles in statistics, such as the
Likelihood Principle and the Minimax Principle. . For the purpose of general
: }assessments of iits ability in capturrng and utrhzrng rnformatron in multlsource,
- data, the approach is applied to the problems of ground cover classification

. based on,multrspectral data i in conjunction with other sources of data in remote

g sensing. ‘The experimental results are presented in Chapter 6 and compared to
the performance of a traditional maximum posterior probability classification
~'method. —Fin'al'ly,u Chapter 7 concludes the report by summarizing and

' suggesting dlr'eCtions' for further research. . E



o

e _CHAPTER2 R
APPROACHES TO INTERVAL VALUED PROBABILITIES o
2.1, ‘»lintroduc_thn ‘
Interval valued probabnlltres are in general a more adequate scheme |

'than pomt-valued probabllltles to express one’s state of knowledge in the sense’i_
of handllng uncertain, mcomplete evndentlal mformatlon \Y probabllrtles can be

e thought of as a generalization of conventlonal addltsve probabllmes wrth the' ;

lower and upper - -extremes -of the interval correspondmg 1o an event bemg;

,bounds for the unknown actual probablllty of the event The endpomts of lV!‘

| K probabllmes are called the “upper probablllty“ and the “lower probablllty

: There have- been vanous works - introducing the concepts of lV.
probabrlmes in the areas of phllosophy of science and statlstlcs For example,.
: Koopman (1940) derives the upper. and lower probabllmes based on the"
‘ _;mturtrvely evndent laws of consrstency governlng all.comparisons in partlal; '
-.ordering.of non numencal probabilities. Smith (1961) proposes a system of lV,,"

-}-;fprobabllltles by consndenng the strength of one's belief in betting odds as anv

Jinterval. - Good (1962) consnders the upper and lower probabilities of an event.

by analogy with the outer and. inner measures of a non-measurable set o

7 ‘ Dempster (1967) formulates ‘a system of upper and- lower probabllmes |nduced7' R

by a set- theoretlc multlvalued mapping. Suppes and Zanottu (1977) show how -
o a random relation generates: upper and lower probabllltres in the set-theoretlc .

’ frmage space. And Walley and Fine (1982) present a frequentrst account: of vV
’ probabllmes based on a finite event algebra

Among the above approaches only Dempsters and Walley and Flnes\v -

- ‘models are useful for parametric statistical inference. Dempsters work and
. 'jShafers mathematical theory of evidence [Shafer (1976a)] together called ’

e ,“Dempster-Shafer theory,” have shown thelr usefulness in varlous evrdentlal_ ST



o ﬂ-f.;‘_freasonlng systems [Garvey (1987) Garvey et al (1981) Zhang and Chen’_"

. _‘7;“(1987)] Walley ‘and- Flne s approach provudes the fundamental concepts ofa
-iiffrequentlst theory of statlstlcs for IV probabllltles Thelr results lndlcate that an. -

e _"’:ObjeCtIVlSt or: frequency orlented wew of probabrllty does not necessrtate an

'\”"Jf-/,,addltlve probability concept, and that W, probablllty models can represent atype

Coof indeterminacy not captured by additive- probabuhtles ln the }fol_lowmg two

e 'ff}.sectlons both approaches ‘will be bnefly revuewed

o Although the mathematlcal ratlonales behlnd the approaches llstedv_‘.
. above are dlfferent there are some common propertles of IV probabllltles Wthh,

B, ,:are consrstently reqmred This. chapter mtroduces an axnomatlc approach to lVf:;f |
o probabrlltles where v probablhtles are deflned by a palr of ‘set-theoretic.

S functlons satlsfylng the common propertles S0 that conceptual ambrguntles can;it.é"i '

i be avolded

| 22 Dempster-Shafer Theory

ln h|s 1960s works Dempster (1967 1968) proposed a generallzedj, :

,;’:"j'{:‘i*scheme of statlstlcal mference about a parameter space by mtroducmg upper,-;_ :
i-:[j.._'and lower probabllmes lnduced by a multlvalued mapplng HIS scheme has_ -

s been further developed and recast asa “mathematlcal theory of ewdence” by‘ X
o 8 .-Shafer ln thls_isectlon after bnefly recalllng the concepts of Dempsters upper' o
’ and Iower probabllltles we dzscuss the formal framework of Shafers theory m o

. ,the aspect of ewdentlal reasonmg

‘Suppose we have a palr of spaces X and Q denotmg respectlvely a"

vsample space and a finite parameter space.. Let I‘ be a multlvalued mapplng ,_:
" which ass19ns a subset Fxc Q to every X € X and let fbe a probablllty o

x & ‘measure asslgnlng probabllltles to the members of the class ‘P of subsets of X. -

R VThen (x ‘P p) is a probablllty space and thls model corresponds toa random -

g-experlment where the outcome cannot be precusely observed but can onIy be
o 'ﬁv‘located |n a subset of all- possnble outcomes AT T T

For any A c Q defme B

{ x = x| r nA ;e@ }




~and. -

A,={xe XIT,cAT,z@}  (222)
'A* consists. of those'Xex which can possibly correspond under T to an we Q;
vvwhrle ‘A, consists of those xe X which must lead to an we Q. Then, the upper '
: probabrlrty and the lower probabrllty of A are defined respectlvely as

¥ L 7
P* A)="—"7"= e (2.2.3
':()u(ﬂ*), -(»)
WA, e

P(A) =" 2.2.4
®=a) (2.:2.4)

: where Q* Q is the domaln of I‘ Note that P*(A) and P (A) are defrned onIy if

u(Q*) # 0. Slnce A* consists of those xc—:x which can possibly correspond
~under F'to an o € A, u(Aa*) may be regarded as the largest possible amount: of
| : probablllty which can be transferred to the outcomes w € A from the measure p.
,Srmrlarly, A, consrsts of those xe X which must Iead to anwe A. So, u(A,)

'represents the ‘minimal amount of probability which can be transferred to the
. outcomes w € A. The denomlnator w2 = u(Q ) in eq. (2 2.3) and eq. (2.2.4)

" isa normalrzmg factor. The normalization is necessary in the case where there
is'any x e X which does not map into any subset of 2. In this case, the subset
{xe X|Tx=@ } must be removed from X, and the measure of the remarnrng

~set Q* should be renormalized to unity. .

o Dempster has assumed that the actual probablllty measure of A, P(A) |
o lles mthe mterval [P (A), P*(A)] ‘such that : S o

P (A) < PA) < P*(A) (225

L }:\The degree of uncertalnty concernlng the true vaIue of P(A) is represented by
| the wrdth P*(A) P,(A), of the interval. ST R

In Shafers theory, Q |s called the “frame of drscernment” contalnlng a

:frmte number of exhaustlve and mutually exclusive proposrtrons 2Q denotes

-'__.-the set of all possrble subsets of Q His theory of evrdence ‘may begin by

o deflnlng “baSIc probablllty assngnment”



}:"wher m} satrsfres the followmg condrtrons “

i [° n o eee

Grven a basrc probabrhty assrgnment m over 2Q Shafer s' “behef\‘f'"" ‘

- -vfunctron” Bel: 2Q - [0 1] is obtalned as:.

s -E (B)

BCA

g "‘.It.satrsfres the foIIowrng condrtrons

') eer(e)_.; SRS (‘22 1)
e ) eef(Q)_t ORI (22”)" |
o (3) For everylntegernand every coIIectron Al, ‘v A, Of subsets OfQ

S @eKAIU uAn)>quet(A E‘Bel(AoA) +. +( )""1 ’Bel(Alﬁ mAn)

l<j S

,‘ :The basrc probablllty assrgnment whrch produces a. grven belref functron is S
R “iv‘unrquely recovered from the belref functron by the mverse formula of eq (2 2 9) -
'-;___;'l.,[see Shafer (1976a)] ey TR L T ST
. | m(A)-- 2( )IA—BI Qse[(B) for aIIA cQ (2213) |
RS BCA , A | | o ST TR IR

e }.f.’.{‘ﬁwhere |C| denotes the cardrnahty of a set C

The basrc probabrhty number of a set A c Q m(A) may be understood." -

as the exact measure of. belref that the knowledge source has commrtted to A "
-~ Als called a “focal element” of the belref functron Be[ over Qif m(A) >0. The g
B measure ascrlbed to the frame of drscernment m(Q) represents the degree of -




s i

. |gnorance i e the portlon of- bellef that could not be assrgned to any smallerf-v

o subset of Q based on the evrdence at hand: It may be commltted to some‘f'

' -subsets wrth the help of addltlonal mformatlon ﬁe[(A) represents the measurer :
- of the total belief commltted to A. In fact eq. (2. 2 9) reflects the basrc mturtlon

| ‘, :-vthat a portron of belief commrtted to a proposltlon IS also commutted to any other .
.v',_proposmon it lmplles RN R T N
' Whrle fBe[(A) descrlbes one S bellef about A it does not reveal to what

R extent one doubts A |e to what extent one belleves the negatlon of A A ',

E Once ':Bel(A) is known the upper probablllty of A is defrned as:

‘f; ‘__vln the evrdentlal reasonlng based on the Shafers theory, ﬁe[(A) is called' -
o “degree of support representlng the extent to WhICh a given body of ewdence

| _'supports A wh|le ?KA) is called “degree of plausrblllty” representmg the extent o
; ito Wthh the body of evidence fails to refute A ‘ Tt S it e
23 A Frequentlst Theory of Upper and Lower Probabllltles {'

Walley and Flne (1982) glve a Irmmng frequentlst mterpretatlon of P, and

P as “l|m inf’ and “llm sup” of relatrve frequencres ln hypothetrcal unlrnked;-.
:“:_.repetltlons of an experlment Wthh is a generallzatlon of the usual l|m|t|ng »
frequentlst lnterpretatlon of addltrve probabllltles ‘Their results provude the

R statlstlcal basis whereby \2 probablllty models of random experlments canbe

,_‘(mferred from observations made on unlinked repetltlon In this section brlefly

""descrlbed is the lmk between relative frequencies and IV probablll'ﬂeS

Let B be a Boolean algebra of subsets of Q Suppose that propensutles |

S of events Ae B in independent, rdentlcally distributed (iid) repetltlons €1, - En
" are represented through the lower: probability P... To: provrde a connection -

"vf_’fbetween frequency and propensrty, P. IS mferred or estrmated from relatrve |
-frequency data Let r; denote the relatlve frequencres of all events |n el, L€

More rellable mformatlon regardlng the underlymg margmal probablllty P. can:

o " y-vbe obtarned on the basus of the outcomes of the repeated expenments than the’_'

:relatlve frequencres observed at any partlcular smgle experi lment 8. Walley and.



_Frne propose an estlmator S

r,-,..mm{rl(A) k( )<j<n} forallAe 2Q (231)-‘

»,-:jv"where k |s some functron such that k( ) — 00 and —(—l - O as n—o0 (e g -K(n )", |

—l\F n)). | , | | "
” Although rt is not “optrmal" in any sense the above mrnrmum estlmator' "
,makes use of the additional nnformatlon concernmg the past evolutlon of the :

: sequence of relatlve frequencres The estimator has asymptotlc propertles ina

sequence of mflnrte trrals and parallels the Bernoullrs law of large numbers :

‘ There |s no explrcrt descrlptlon of r,, m terms of relative. frequencres However\l
| fﬁthe Upper probablllty lS grven in terms of upper and lower "envelopes" Wthh wrll ,
:be descnbed in the next sectron ' '

A system of IV probabrllty denved from the defrnltrons and specrfrcatlons -

f V'*ot a partlcular mathematrcal or statlstlcal concept may cause complncatlons
o _{ resulting from the need to satrsfy underlyrng assumptlons of the system In the

| ‘,_ -]axromatrc approach v probabllltles are formulated by defmlng the upper and g
s lower probabrlrtres of the mterval as set theoretrc functlons Wthh satlsfy some .
s pre specrfled axroms & ' L |

, Detmrtron 2 1 [Suppes (1974)] Let 'B be a Boolean algebra of subsets of Q ‘

~The mterval valued probabllrty [L ‘u] over Bis detrned by the set- theoretrc o
'}funcnons ;j_f_ . ' | L
Iower probablllty functron L fB——) [0 1] e i (241 )

.’/:"'Pper probabulrty functlon u ‘B—->[01] ‘ (242) .

”’e followmg condltlons |




LI

“u(A) L(A) 2 foralAe B

fu(Q) = Q) =1
rFor anyA Be B and AnB -, » e

| D(A UB) 2 L(A) + L(B)  (Super-additivity of L) -
: | uA v B) ‘U(A) + UB) (Sub- addmwty of )

(243
(eas)

a5

(2.4.6)

L(A ) B) < L(A) + UB) < fu(A u’-B) (Mlxed additivity. of Land U) (247) .

| Thése conditions are the least requirements on £ and u for further develop_Mén_f.
of the theory of IV probability. The following lemma sets forth ‘some-sign_ificant
pro.perties of IV. .pro,babilities 'as»s_imple Qonsequences of_the' above defini_tio_n,._,

Lemma 2.1.

| Pvrdo,f.' (i) follows immedia’tely from eq. (2.4.4) and eq. (2.4.7).
eq. (2.4.4) and eq. (2.4.8). For (iii), if AcB thenby eq. (2.4.7)

UA)+ UB) 2T+ UANB)

UB) = UA U (B-A)) 2 UA)+ LB-A)

- and by eq. (2.4.5)

L(B) = L(A U (B—A)) L(A) + L(B—A)

: ’Smce L(B—A) > 0 from eq (2 4. 3)

‘U(A) < ‘U(B) and L(A) < L(B)

For anyA Be B the mterval valued probablllty [L ‘u] has the

following propertles , S

) Ay rud) =1  (248)
i) o) =u@ =0 e (249)
(i) f AcB then 4m)<o(B) and fu(A)<‘u(B) _' 1‘(2410)._ |

,(i\)) " L(A)+L(B) 1+L(AnB) (2.4.11)

) e 12)‘

(i) is obtained by



e ;J;l.‘..ik_ewlse', (v) can be proved. B

o7

: f(.»”For(lv) s _ L S ,
LAY+ 4(B) 5 1_ ?( )+L(an) Sy i}(Byeq (248 &eq (2410))

| s 2,,fa(xo1§)_ RS "(Byeq (246)

)
e 1»—‘11(A)+1—‘U(AnE) (Byeq. (248))
= 1+LAcB) '(By eq (248»

e  The following definition given by Huber (1973) connects the upp‘er‘and |
- ‘,'lower probabllltres to the supremum and mfrmum of a class of probabllrty s

= ‘measures. ThlS oonnectron becomes essentlal ater in Sectlon 3.2 where IV

. probabllrtles are constructed by some models in robust estlmatlon of probablllty .
- ,'measures e S e L B | |

o -Detlmtlon 2 2. Let M be the set of all probablllty measures on a Boolean -
'v ' algebra B of all subsets of Q and Tan arbltrary non- empty subset of M. [z, ‘u] is -
: . sald to be "representable“ by if. Land U can be def:ned as ~ '

;[I,-(A);f-.;lnf‘{n(A),:n;,e,f}‘ s 1 (2.413)
' ‘ ﬂ(A) sup{n(A) ne e} ' ' (2414)
forallAeB | ln thls }partlcular case L and u are called a .l‘lovver envelope" andv
: upper envelope respeotlvely R T

' ,It has been proven by Huber and Strassen (1973) that if L, u] is. an envelope

| 'i;;f,then it is an IV probabrllty “The converse is not always true. The following
} ‘:"":example from Huber (1981) illustrates such acase. Infact, [£, U] beingan IV
e fprobablllty does not |mply even the exrstence of the class P Of probablllty -

» measures

S ..Example‘- 21 Let Q have cardinality Y|‘§Z| =4, iand "asslume thatr'L‘(Av)"and |



o

 a(A) depend only on the cardinality of ACK, according to the following table: -

Ao

O |=
r\:Hr\‘:l—A YO

R O =}

' 'Then [L 1] satrsfres the v probabrlrtys conditions in Defrnrtlon 2 1, but there is
Al

, -only a srngle addltrve set functlon between L and u namely P( ) T ,hence

- [L u] rs not representable

B The followrng defrmtron and. Iemma result in rnterestmg subclasses of IV -
'} 'probabrlrtres by. requrrmg relatrvely stronger constrarnts on L and 'u

.‘Definitron 2 3 [Choquet (1953)] The lower probablhty functron L in Defrnrtron;
- 2.1is said to be “monotone of order.n or briefly “n- monotone”, where n (> 2) is

o ‘, a posutrve mteger if for every coIIectlon Al, A2, .. A, Of subsets of Q

R ) ‘ L(AIU UA,-,) S qu ZL AmA) + + (—1)n+1L(A1m nAn) o i (2415)

i<j -

: ;__The conjugate upper: probabrllty function uis. sard to be “alternatrng of order n

- _‘: 'or“n aIternatlng” and satrsfres

‘u(Alu..;.uAf,,)eS”Eﬂ( Zru ,mA) +.. “+ ( 1.)7?-41 ?'u‘(A‘lh.i,u.mAn)f (‘2.4_.‘1':6_)‘ ‘,

0o ; '<l

It is- known that |f L( ) is monotone (alternatrng) of order n, then |t is also. .

»monotone (alternatrng) of order k for any rnteger 2< k< n. ln partrcular whent .
L ._k_2 Land u have the followrng propertres

| (AluA2)>L( )+ L(A,) - (AlnAz) - ‘.'v,('z;moaatoner _',‘(2f4-’1‘7v)” |
‘i.,.”(Alqu)su(A)+-u(A2)—-ﬂ(A1mA2)~' 3 '»<é¥aiternéting»)» ivf‘('2'-4-18) o

The followmg Iemma shows that [L u] satrsfyrng the above equatrons |s an IV '

o »Vprobablllty



:Lemma 2 2 lf s and U are respectlvely 2 monotone and 2 alternatmg and

C f-["“_‘j"'satl sfy the followmg condltlons for. all Ae @

8 (i)
-j."":";”’(ln) L(A) * 'ZI(K)

T ?,[“fif;fﬁthen [L u] |s an lV probablllty The converse is not necessanly true

i (.) u(A) ayzo (241 e
@ =@ =1 __ 22-.420)’_

| """‘.f"fi,Proof To Prove thls Iemma we only need to show that L and ‘ll are supef-, E

:f'j ‘additive, ‘sub- addmve and mixed- addltlve asin Deflnmon 2 1. For any A,Be B,

= |f AnB 10 from eq. (2 4. 17) “2- monotone” |mpl|es “super-addltlve” and from' -

- '.""eq (2 4. 18) “2 alternatmg” Implles “sub addmve . When AnB -0, B =' .
(TEUB Usnng eq (245) and eq (2420) L A R

";L(;:A‘U )UB) 5 L(r_) + L(B) - 1,_ ‘U(AUB) +: L(B)

ﬂ(AuB) > u( ) * A(B)

leew1se o

o u(B) Au(’—‘Au +‘u(AuB) ’( )+1 —L(AuB)

L(AUB) < ‘ZI(A) + D(B)

. 'Yf,»“';Hence L and u have mlxed addmwty, and the above lemma is proved i

o ‘_ By companng eq (2 4 15) wnth eq (2 2. 11) Shafers bellef functlon fBe[ is n-'
' _monotone.- Consequently, :P[ is n-alternatlng Accordlng to the above Iemma :

, ‘Y'f: ‘Be[ aiong w1th fP[ formulates a subclass of IV’ probabllltles We can summarlze .
',,_'v‘_;'."jthe |mpl|cat|ve relatlonshlp among lV probabllltles and |ts subclasses as

L is n-monotone and u is n- alternatlng for n >2 => L lS 2 monotone and SR
u |s 2 alternatlng => [L ‘ZI] isan’ envelope => [L ‘u] |s an lV probabllmes

(2421)' S



In practlcal appllcatlons 2. monotone and 2- alternatlng IV probabllltles seem to.
be sufficiently general and mathematically amenable to develop an. alternative
statistical mferencmg scheme to Bayesuan mferencnng

2.5. Summary

-|~n' this chapter, we have discussed the axiomatic approach to IV
probabilities whose mathematical framework is the theoretical basis of the
contents treated in the rest of thls report. The aX|omat|c 1\ probablllty was: |
represented first by the pair of set functions and then by the supremum andv
} |nf|mum ofa class of probablllty measures. Subclasses of IV probab|l|t|es were _
, mtroduced ' ' '

e IV probabilities as a generalization otadditivé probabilities give rise to
some advantages such as representing a certain type of indeterminacy or
uncertainty not captured by additive probabilities. The» choice_between
deterministic, additive probability and IV probability models will depend on our
background knowledge concerning the context of particular applications and

‘especially the amount and reI|ab|I|ty of the information ava|Iable to help in
specufylng the model.

In this chapter, the contrlbutlon of this research is in a umflcatlon of

o ,V various concepts of \Y probabilities so that IV probabilities can be readily

accessible to representation and comblnatlon of multiple bodies of ewdence
Lemmas 2.1 and 2.2 are onglnally formulated and proved in this report |



R | CHAPTER 3 EET
: REPRESENTATION OF BELIEF FOR STATISTICAL EVIDENCE

3.1, I‘ntroducti_on

| ‘then‘,a body of evidence is based on the outcomes of stat_istical _
experiments known to be governed by any (objective) probability models, it is.
called “statistical evidence.” One of the fundamental pro,bllems in applying vV
probabilities to real-world problems is how to represent a‘,body of statistical
evidence by [V belief functions. In fact, the utility of any existing system of IV -

' _'probabllmes is limited by the lack of effective approaches to quantitative

-representatton of bodies of evidence.’ Throughout this chapter a lower
,probablhty and an upper probabthty are respectively called a “support function
(Sp)” and a “p|aUSIbI|Ity function (f_Pl)" implying that they prowde behef measures

for the class of subsets of a finite space Q based on a body of eVIdence

The most extreme type of interval-valued behef functlon is the “vacuous
: bellef functlon defmed as ' : .

| 0 if A2zQ |
‘SP(A)={1 i AL - @1y
a,n’d@ | |
0 if A2 BT
TKA)T{‘I A<D | , ERR (312)

~ The vacuous be'lief function‘assighs [0,1] to every non-empty SUbset A of Q, and
[1.1]to Q |tself its only focal element is . 1t is a natural model for representmg. o

- complete ignorance — no evudence about  at all:

The next simple type is a “st_mple support functiOn","a-belief function |
~ based on “homogeneous” evidence — a body Of‘evidence which precisely and |



o unambiguously sup'ports a single non-empty subset of Q. Quppose Sp isa'f o

: g;vsumple support functlon focused on' a subset A, and let Sp( )= (o <s < 1)
R 'Then the. support functlon for any B CQ is glven by ” ey T

LA ‘ 10 if B:QA _ . S
 Sp(B)=9s if B2A but B;tQ S By
| ‘1 if B=Q L R SR

It can be easrly shown that a simple support functlon is 2- monotone The‘- B

oonjugate plausnblllty functuon of the above support functlon |s glven by R |

. [ 1es if AmB=® o :

:Th"e effect: of the evidence represented‘ by 'the'simple" support"’tun'fction"::'i'n;éd
X f(3 1 3) |s I|m|ted to prov:dlng a degree of support s for A and any subset B of Q i
-‘.‘lmphedbyA i - S

_ ~The next sectlon mtroduces a possnbie way of constructlng mterval-
- ,valued bellef functlons based on some models in robust StatlS'[ICS Shafer -
-(1976b) presents two dlfferent methods for constructmg behef functlons based_

"on a body of statlstlcal eVIdence the “linear plausrblhty method" and the

snmphmal plausnblllty method Sectlon 3.3 exammes the charactenstlcs of the. '
belief function in the Ilnear plausublllty method and prowdes its. generallzed'
* scheme by weakemng an assumption underlying it. The result of the second
“method, which is the same as that of Dempster’'s structure of the second kind
[Dempster (1968)] is outside the scope of this report because it applies to an

~ infinite- space Q which parametrizes all’ multinomial dlstrlbutlons and__' :
: consequently presents tormldable computatnonal d|ff1culties Sectlon 3.4
Idlscusses the quantltatlve representatton of source rellablhty in the context of

plxel classmcatton of multlple data sources

. ]32 Belief Functlons based on Robust Estlmatlon of Probablhty
o Measures o | | |

3 In robust' statistics, the true underlying prObability‘vdisvt’}ri_b’uti’on'is assumed ;




to lie in a certain neighborhood of an idealized model distribution. The
_nerghborhood describes inaccuracies in the specrtrcatron of the true distribution.

This section illustrates how belief functions in the form of \ probabrlrtres can be'
; constructed by the supremum and infimum of a class of probabllrty measures -
'vdescrlblng the nerghborhood as defined in eq. (2.4. 13) and eq.(2.4.14).

Definition 3.1. [Huber (1973)] Consider any set functlons Aandvon B. v is
sard to “domlnate” A, denoted by v » A, when u(A) > x(A) for aII A e B S

R Let? ={me M|v»n}be the 's‘et' of all probability ingasures
~ dominated by v. The followrng lemma from Huber and Strassen (1973) shows
the exrstence of a 2- alternatrng upper probablhty in fP o

Lemma 3.1. Let v be 2- alternating Then for every A € B there exists a € P,
~such that 'n(A) V(A). Thrs |mpl|es that v coincides wrth the upper probability -
: determrned by P,.

Most of the proposals listed in Huber (1981), such as €-contamination, total
- variation, Prohorov distance, Kolmogorov distance, and Lévy distance, for
- formalizing the notion of an inexactly specified probability measure lead to a set
- fPD defined by a certain 2-alternating set function. The fbllowing models are-the

~ ones which make sense in arbitrary probability spaoe's

_ Let € and 8 be fractions between 0 and 1, and Py denote an |deaI|zedv'
model dlS'[I’IbU'[IOﬂ as an ‘estimation of the actual drstrrbutlon '

-~ A. ge-contamination ’o'rv»gros's error model : |
By={ne M|n=(1-ePy+eA Ac M} L @B21)
o For any no}n-_ern’pty'set }A € B o |

NA)=SP B =(-oPM e . (322)



. B Total varlatlon model | |
By= { ne M l |1t(A) PO(A)|<e for a aIIA e ‘.B} (23
For any non empty set A e ﬂ |

o(A) sup ? = m|n {PO(A)+:-: 1} | | (3 2 4)

.VfFor both cases v |s the 2 alternatlng upper probabllrty functron and the |

S -:’conjugate Iower probabllrty functron JS obtamed as (1—o°) where the superscnpt o

= c denotes the complement

The e-contammatron model assumes that the actual probablllty has a

fg'-'gross error with an arbltrary (unknown) distribution, instead of a ‘strict parametric.
’ ;;model The total varlatlon model formallzes the ‘possibility . of unknown small.

fdevratrons from the |deaI|zed model PO by assrgnmg a tolerance to |t

In bemg apphed to reaI problems both models demand addmonal Iabor o

“to find an optlmal value. of e. ‘Different &'s will result in various IV probabllrtles
B i iMost of the algonthms tor robust parameter estlmatlon based on. the above ,
models adopt |terat|ve procedures [Eom (1986) Huber (1981)] ‘The. lteratrve .
o ".-’"».-"procedures not only. cost tremendous computatlonal complexrty but also ralse

‘-?another problem of provmg convergence of estlmators

o min the followrng sectlon 1V belief functlons are denved from the Irkehhood
'_'_}’functlons of observed data. Compared to the ones descnbed |n this sectlon »
' f’_they requ1re much Iess computatlon and have readlly usable mathematlcal

L 'formulas

33. .Bélief Functions based ,on, Likelihootd:, ,Piiih»éilp,le.@ e

assumptlons Before the assumptlons are Ilsted it is necessary to define the
_consonance of bellef functlons T, '

- " .',"'Defm:t!on 3. 2 [Shafer (1976a)] A bellef functlon is sald to be “consonant” |f o
o ’,lts focal elements are nested i.e, |f forA c Q (I ) such that m(A ) > 0 fori |

The belnef tunctlons descnbed in thls sectton depend on two underlylng Ry
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| alllandZm(A)_1 A,cAlforany|<j
|_1 . ‘

A simple support function is consonant while the converse is not
necessanly true. The following lemma descnbes the nature of consonant bellef
functlons ‘ o ' U

Lemma 3 2 [Shafer (1976a)] Suppose Sp: 2Q - [0 1] is a support functlon .
and Pr: 2Q N [0, 1] is the conjugate plau3|b|||ty function. Then the followmg
' assertlons are all equuvalent ' : '

~(1) Spis consonant.

. (2) Sp(AmB)» mm{Sp(A) .S'p(B) } for aIIA B CQ

. (3 ) fPl(AuB) max{ﬂ?l(A) f.Pl(B)}for all A, BCQ

| - (4) fl(A = max»{ fl’l({(p}) we A } for aII non- empty A € Q

~ Example 3.1. Let Q ={ w4, 0y, 03 }. Suppose a body of evidence E provndes
basic probability numbers m({w,}) = 0.5, m{{wy, w,}) = 0. 2, m(€2) = 0.3, and m(A)
~ = 0 for all other subsets A of Q. Then the support function 5p of E is consonant
~and given as: | | |

SAeN=05  Splled)=0  Splod)=
Splfoy, @) = 0.7 Spl{oy, wg)) = 0.5 5p({co2, 0)3}
CSpQ) =1 |

" The plausibility function ®fof E is given as:

"Pl(v-{(m})=1 Pl{o,)) =05 Pll{og}) = 0.3
Py, o) =1 Ph{og, o) =1 P, @) = 05
ECR

- Now, suppose that the obsérvations of a statistical experiment }are‘



el v'-_'ugoverned by one of a flmte set of probablllty models { pm | 0) € Q } where pm |s-:

-f,:an ordrnary probablllty densrty functlon on X grven w. The llnear plausrbllrty S

L "':’.‘functron based on thlS body of evrdence |s denved from the followrng

- '-',—;’--:__,(2) the plausrblllty tunctlon |s consonant

g ?'_?assumptlons

1.*7_(1) the degree of plausrblllty of a srngleton {o) | we Q} |s proportlonal to pm, R

. ",_!The flrst assumptron corresponds to our mturtlon that an observatlon x € x'.: B ‘
. favors: those elements of Q Wthh assugns the greater chance to x Shafer[ o
L ",:_v.‘j}clalms that X should determlne a plausrblllty functron fP& obeymg IR

&({0)}) c pm( ) forallw e Q (3 3. 1) o

'."-'fwhere the constant C does not depend onw, He further shows that the flrst 2

| ‘assumptron together wrth the second assumptlon of consonance determmes a
f_:unlque consonant plausrbrlrty functlon as oo e

P we A}
(oe Q}

for all non empty A c Q ‘3";'5'1:‘(‘3.'3.'2) S |

l‘..fWhen A-‘ |s a srngleton say {co} the consonant plausrbrllty functlon glves the B
L f_f_';"relatlve : ke‘lrhood of o to the most hkely element in Q “The: conjugate support’

'""FV\'Y":}"{fUI'ICtlo ,”S obtalned by

i .‘:,“,‘_g{The next theoremjdenves the consonant basrc probabrllty assrgnment

RET max{Pw(x) (oe A}
fo( )= 1 max{pm( ) O)EQ}

i Theorem 31 SuppOSe that Q° {om, (0(2’ ' 0)(")} is an ordered set °f Q

. "‘SUCh that Pm(')> Pm(l) for any 1< J<n If pr based on the statrstrcal evrdence rs o
"'consonant then |t hasthe focal elements L RO :

Ak""{“)m mrzt | m(")} for k 1 s

for all non empty A c Q (3 3 3) ""j'



- Proof. Let mx denote the basic probability func’uon of pr For a singleton
‘subset A of QO, : .

RN Pt (X) = pu@(X)
mx(A) = Spe(A) = __Pmm(X)

o "oth'er\)vise

if A = {o(} e

, Thus Aq = {0} is the smallest focal element of SPx- For any AcC Q° (|A| 2),
| eq. (2.2. 13) gives

Pe2(X) = pu3)(X)
Cmx(A) =y Pei(X)
| 0 | otherwise

it A = {o,0@) @ 3:"‘6‘)‘ o

LetA {(o(‘) (o(i-1)m(i+1’) L) }f6r3s'ksh_ Lo

fmx(A) = 2( )IA B|5P (B)
' B<A .

g CAYA-B-T15p, B) + (1)A-B-2L 5, BULW]]
BS(A-{a'}) '

= — my(A—{w®}) + '2\ [ (-1)lA B|5p Bu{ak})]
_ ' BC(A_{Q)(k)}) ) “

= — my(A-{o®}) + m(A-{ol})

=0 |

For Ay =»{ oM, 0®, .., oM} (3 Svk'}s n-1), 'eq.'v (2,2.1,3)_ g}i\)e"sv' n"o'n-zve'ro basic
~ probability numbers T e |

Pok(X) — Pm(k+1)(X)

Po(X) 337

me(Ak) =

1S »’Pg,m)(’)»’ | o
»(QO’ 1'» szAk - Pon(X) (3',3'8)
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| Hence, the basic probability ‘fu‘nc‘tio_n"mx‘ of Spy is givenas -

p@<k( i Pg)(k+1)( ) for Acfa, 0@, ... o) (1<ksn1)
oomx(A)=Y X - o (339
v X( ) o (n)( ) o A‘.—;QO,(:Q) e (” ‘ )
B Pw(”(x) SRR S S |
'fi * 0 otherwise

~ and the focal elements of Spare Ag = { o, &, ..., ¥ } for k=1, .., n. B

;Although the consonant belief function described 'above’lS'Simple' to

} ..implement ‘its application is llmrted to -the partlcular cases where the -
P . consonance assumptron is satlsﬂed indeed, Shafer made a remark regardrng,
' Chls method; “....  these assumptlons must be regarded as conventions for
establishing’ degrees of support conventlons that can be jUS'[lfled only by their
a'_ ,-general mtumve appeal and by their success in. dealmg wrth partlcular‘._
examples " [Shafer (1976a)] RERRNEE -

A generallzed scheme of the consonant support and plausrbrlrty functlons

‘can be formulated by weakenlng the consonance assumptron

; 'Deflmt:on 3. 3 A support functron Sp 2Q ~ [O 1] is sald to be “partrally -
- consonant” if there exists a partmon { W, 'wz, .. w } of Q and Sp is consonant »
. ln everym(for k.. S ~ ‘

“,ln the problem of clas3|fy|ng remotely sensed data Q represents a set of
mformatron classes - The. rnformatlon classes |n remote sensmg can be
| i’pamtloned lnto major ground cover types e.g., son vegetatlon and water

[Swain et al (1978)] This hrerarchlcal structure of the mformatlon classes
‘ _'motlvates the partstronrng of Q for partral consonance :

The followmg theorem and lemma derive the partrally consonant baS|c

L probablllty assrgnment and the correspondrng mterval valued probabllmes



Theorem 3.2. Suppose that Sp is pamally consonant on a partmon { 'w1, ‘Wz,f _
, W 1 of Q. Let fnP {(of:) m,((z), } denote an ordered set of ‘Wk suchi o
: that Poy > P(ok’ for any 1<I<j<nk, where an ='n. "Then the basic probability"
k=1 S

. ‘functlon_ mof.Sp is giVen as

rC {Pm"’ ol for A= i, ..., o} (1<izn—1)

mAR) cpra™  fora=wf  forisksr (3310)
\ 0 ‘ . otherwise
~ where -
o Cp=[ Y max{ Py :wew} ]! , C(38.3.11)
. : k=1 . n . .

. Proof Smce 5p is partially consonant on { w;, Wg, " w }, it ,ie"oonson'ant" in
every m fork=1, .., . Usmg eq. (3.3.9), we can denve eq (3.3.10). To prove
~ this theorem it |s SUffICIGﬂt to denve eq. (3 3. 11) -

=

,1_2 2 z (A)} = CpZmax{pm coe‘wk}

w Cp= [zmaX{Pco (DE‘Wk}] 1.
k=1

o Thué the theorem is proved. M

” v‘,Lemma 3.3 The partlally consonant plausnblllty functlon and support functlon o
~ corresponding to eq. (3.3. 10) are ‘ L

) szmax“"” weAnmy  @am)
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z max{fP[{a)} woeAnw} . (3313
p(A) =Z [max{Po :® e W} - max{Pp :0 e AW}  (3.3.14)

" Proof. Use eq. (2.2.13) and eq. (2.2.14). M

~ Partial consonance is weaker than consonance in the sense that it
~ includes consonance when r = 1, i.e., the partition of Q is C itself. In the other
_extreme case whete r=n, i.e., ‘the partition consists of n singleton subsets of Q, |
the partially . consonant support function becomes the Bayesian probability
,tunctron (5p({(o,}) Pll{wy}) = ({co,}) for i=1; ...,n). While partial consonance'
gives a erxrbrllty to Shafers Irnear plausrblllty method it raises the problem of

how to determme the optimal partltron of Q;i.e., the partition Wthh wnll give the

-~ best classification’ accuracy In practlce the partltlon must be chosen based on -
grelatronshrp among the classes in the applrcatlon at hand '

’;Example 3. 2 Let Q= {co1, wp, W3, 0)4} Suppose that a smgle observatlon X

- provides P, (x) = 0.5, sz( ) = 0.3, Pyy(x) = 0.15, and P, (X) = 0.05. Table 3.1

- shows the values of my, SPy; and PL, for all subsets of- Q in both. cases of
| :consonance ,and‘. pa}rtl_al c,onsonanvce on the partltlon {{;a),, coz}, {ws, (o4}}.. 5 |

lt is- very mterestmg that both intervals glven by ‘the - bellef functlons
»contaln the addltuve probablllty {Pa(x )) for every A except {04, 05} and {co3, g} in

| _,partral consonance Compared wrth the consonance case, ‘the partially

. consonant - bellef function always provrdes mtervals of less: wudth

'vcorrespondmgly Iess degrees of uncertainty.” It means that the assumptlon of
: 'partlal consonance requires more knowledge about a glven body of evrdence

~Note that low Sp do not necessanly lmply Iow Pl whereas hlgh .Sp always
. rmply hlgh Q’L We can also observe two relatlons (1 ) Sp(A) + Sp( ) < 1 and (2)
“vf_Pl(A )+ f_Pl(A) =3 1 for every A The first relatlon mdrcates that |t is hardly possublef

for- both A and A to be well supported and the second one: is mterpreted as



- elther one of Aand A or possnbly both must be hlghly plau3|ble

~The belief functions descnbed in this section are considered to be basedft
.On the Likelihood Principle because they are expressed in terms of likelihood"
functions, eq. (3.3.2), (3.3.3), (3.3. 12), and (3.3.14). They are obtained by
transforming the assessment of statistical evidence already in the form of pomt-
.valued llkellhOOd functlons unto mterval valued probabnhty models

“Table 3.1. Consonant and Pamally Consonant Behef Functlons C
~ based ona Smgle Observatlon o ,

. Partlal Consonance
my | Spx Pl | mx Sex_ | Pl

Consonance

~ f{o)  Yos0of 04 | 04 | 10 o031 | 031 | 077 |
fo}  los0 | o0 0.0 | 06 | 000 | 000 | 046 |
{o)  Ro15] 00 | 00 03 | 015 | 015 | 023 |
{og ] 005 E 00 | 00 | o1 | 000 | 000 | 008 |

{or0) loso ] 03 | 07 | 10 | 046 | 077 | 077 |
{opos) Joes | 00 | 04 | 10 | 000 | 046 | 1.00 |
| f{opod Jos5) 0o | 04 | 10 | o000 | 031 | 085

j " {op ) 10450 00 | 00 | 06 | 000 | 015 | 069

{opeu) 1035 ) 00 | 00 | 06 | 000 | 000 | 054
_fozen) Jo020) 00 |00 | 03 | 008 | 023 | 023
| fonop ) § 095 § 0.2 0.9 1.0 1 000 | 092 | 100 |
" {op,0p04) §085 0 00 | 07 | 10 | 000 | 077 | 085 |

{o, 03,04} § 070 § 00 | 04 1.0 | 000 | 054 | 1.00
{epop0) | 050 | 00 | 00 | 06 | 000 | 023 | 069

‘ Q 1 100 | 0.1 1.0 | 1.0 | 0.00 1oo 1.00 |




34 'B'ep'réséhtati-dh' of 'sou'rc'e"R{eliablli:ty;

Srnce |nformat|on sources in remote sensrng and GIS are in general not

equally rellable they: usually provrde various degrees of support for an event -

: Inorder. to mcorporate a relative quallty factor, so-called “degree of rehabrlrty "of

- gmdrvrdual data sources lnto the combrnatlon of multrple evrdence rellablllty |
- should be: represented quantltatrvely Although the belief functlons in the form
Cof IV probabrlltres are useful to represent the uncertamty in. descrlbmg the
" vdegrees of support for individual events, they. do not take into account the

: reIatrve source relrablllty representrng a body of evrdence as a whole

Lt As a srmple example consrder a problem of cIassrfyrng a p|xel usmg two
Y,:;Vdata sources as deprcted in Flgure 3.1. Let X, and X2 be the vectors of the plxel. g

,V obtamed from' Source 1-and Source 2 respectrvely Based on Source 1 alone
rthe prxel seems to belong to w;. while according to the other source it is more

" _,llkely to come from w,. If there is a priori rnformatlon concernmg how reliable - -
each data source is, it would be reasonable to make a decrsron on the
'j;classrflcatlon of the prxel usrng the source rellabllltles as well as: the*
probabllrstlc mformatron from both sources. ' : I T

L Benedrktsson and Swam (1989) have used three statlstlcal measures "
: overaII cIassrflcatlon accuracy, werghted average separablllty, and
equrvocatlon to quantrfy rellabrlrty of sources in the cIassrflcatlon of multlsource_
' .‘data Whrch measure should be applled to a partlcular problem depends on the

; meanmg of the relrabrlrty of a source in the context of the problem, that is, the
_ vlsense in which the source is called rellable For the problem of multlsource_
- data cIassrflcatron itis quite’ natural that a source is called: rellable when it grves '

| "-,"hrgher classrfrcatron ‘accuracy. Measurmg relrabrllty of ‘a source based on

classification accuracy is"’stra'lg‘htfo‘rward It is usually computed from the overall

o ;classrflcatlon accuracy over a representatlve set of tralnmg samples

A statrstlcal separabllrty measure such as Jeffnes Matusrta (J M)

- -_?iffdlstance Bhattacharyya dlstance or (Transformed) Dlvergence is an alternatlve‘

: f__to the. numerrcal representatlon of source rellabsllty assumlng that. a data source

'y --_}provrdes hlgher classrflcatlon accuracy when mformatron classes are more x .
* jj_f"}separable in the source For example the J M dlstance deflned as follows |s a\‘ R

& j_measure of statlstlcal separabrllty of palrs of classes




. Sourcel .

Source 2.

" Figure 3.1 An Example of Conflicting Evidence in
~ Muitisource Data Classification. -
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U[«/p(xxw.) \/p<x1w,>]2dx }2 '»»'341);

' ,where p(XIm.) is the probablhty denslty functron of class ;. When each class is
- assumed to have a normal densrty functron .‘.7\[(M,,):i) (i=1,. .,N), the: abovei '
| eQuatlon IS reduced to ' B PR R

el e

e -jwhere [3,] is the Bhattacharyya dlstance between co, and (u] defmed as: -

C Z+Z o
['_"L']

S 1 | Ei+2' . - ,
’ Bij =g (M- Mj)T ‘(——‘ 2 ) (M- - (3.4.3)
| o \/IZI = X
The average J- M drstance over all class palrs |s glven as:
E Pv(wl) P((o,) —711 ;. - e (344) ”

i=1 j=1
where P(co,) is the praor probabrllty ofw. B

_ For the normal drstrrbutron case, Transformed Drvergence between cn, |
 and (oj is deflned as: o |

‘Dtu ='21[1' —exp(——g%)]' (345)
'-where ‘ B

RS Dlj tr[(z Zj)(zj 7 L ] —tr[(z, )(Mi‘»_ M])(MI_M)T] : (346)
Then the average Transformed Drvergence over all class parrs is grven as ;
t P{w S _" ‘(‘3.4.7)

: Equrvocatlon is the class separablhty measure correspondmg to
‘Shannon’s. .entropy measure [Devijver and Kittler (1982)]. Bevnedlktss‘on et al.



(1989) use- equivocation 10 -measure the reliability ‘with which classes
[identifiable by means. of each data source can be: used to rdentlfy the_
. rnformatlon classes of interest.in a grven apphcatlon '

"~ The three measures brrefly revrewed above are related mdrrectly to the
»’c'lassrfrcatron accuracy of the source. The source reliability can have a Iattle'
~ different meaning in the mathematical framework of the theory of 'e'videnoe.-"flh
the previous example of Figure 3.1, assume that Source 1 is a main-data source
and Source 2 an ancillary-data source, and that the main sOurc_e' gives hig,her
classification accuracy over training samples ‘Then Source 2 ‘can' be
considered as reliable as Source 1 if there is little overall conflict between them _
in providing evidence for classifying observations. And. its reliability will
decrease according to the extent of conflict with Source 1. The following
definition gives a notion of quantrfyrng source reliability based on a measure. of
the extent of the conflict between the belief functlons provrded by two entlrely,
distinct. bodres of evndence ' '

Definition 3.4. [Shafer (1 976a)] Assume that Bel, and Bel, are belief
functions provided by two bodies of evidence. Let m, and m, dencte the basic
‘probability assignments of Bel; and Bely, respectively. The measure of confllct'
‘between QSeA and Bel; is defined as: I
K= 2 my(A)my(B) S B4y

.AimBj=® ' I :

_ £ is a fraction between 0and 1. When ﬂel} and Beb have no cornf'liot Kk

=0. If they are completely contradictory, k=1. After &rs computed for every . '

| -pixel, the average measure of conflrct between the sources is obtamed as o
K= E[] = j Kp ok (3 49)
where p(k) is the probabrhty densrty functron of K.

n order to illustrate their uses and compare the performances the- '
average J-M distance (7,y), the average Transformed Divergence (Z);V) and the



" ,’ average measures of confllct between palrs of sources in the Anderson River

':."’*"fdata set were computed The data set has 6 sources as shown in Table 3. 2.
o vft‘For more detail about this data set, see Section 6.2. For this experiment, six
mformatron classes are defmed Each class has 100 tramlng samples unlformly o
L 'ij’;-‘l‘scattered over the test flelds The flrst row in Table 3. 2 shows the: overall

i 'leellhood classmcatlon

fffclassmcatlon accwacy (OCA) over. the tralnlng samples usung ‘the MaX|mum' j
Although most of the classes are - not normally‘_

- distributed in the topographlc data sources (see F|gures 6.9 through 6.12), they ‘

S ‘were assumed to be so in the calculatlons The maxnmum values of ]av and.

~are-

v‘,

_”,thelr maxnmum is 1. Table 3 2 shows that the. separablllty measures agree wrth”ﬁ

"'_f..:ffthe overall classntlcatlon accuracy in: rankmg the sources for . thelr relatlve, o

" ’"’"v:frellabllltles ‘Based on the measures in Table 3.2, the sources can be: ranked

~,j_from best to worst as A/B MSS Elevatlon SAR Shallow SAR Steep, Aspect :
and Slope [t ERTR T e R TR

Table 3. 2 Overall Classlfncatlon Accuracy (OCA) Average J M Dlstance S
( ]av) and Average Transformed Dlvergence (@t ) of Sources |n e
: Anderson Ftlver Data Set (Tra|n|ng Samples)iv;-.;» SR

SAR f SAR

L 2 and 2 respectlvely When they are dlrectly used as measures of source’ S
SR rellablllty, they should be lelded by the. correspondmg maximum value sothat =

Shallow )

: Steep

| Aspect

Elevation

slope |

| 303 |

458

_.:'» 57 |

21

1 188 | s2 | 40 | 32| .82 | 08

The average measures of confllct between palrs of sources in the same

,’,’data set were computed for the trarmng samples and the comblned trammg and :

B ’v"':'test samples and the results are’ llsted in Table 3.3 and 3. 4 respectlvely The -

l‘-\:type of the belief functlon used was. the consonant bellef functlon ‘Since the
probablllty dens:ty function of Kin eq. (3. 4.8) was not known the hlstogram""_
o ;7'_ japproach was used to estlmate p k) The results show that Elevatlon and SAR- ,
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‘fShallow sources have less conflrct wrth A/B MSS in- provrdlng bodles of'j
,' ?fevndence compared to the remaining sources. Knowmg that A/B MSS source )
E }grves the hlghest overaII classrfrcatron accuracy, relatlve degrees of rellablllty of-
‘j_?the other: 'sources can be aSS|gned accordlng to thelr measures of confhct W|th‘ '

| A/B MSS such that the less: confllctmg, the more rellable Thus the sources canf‘ .

: -fifbe ranked from best to worst as A/B MSS Elevatlon SAR Shallow Aspect

| Table 3.3 Average Measures of Conflict between Palrs |
- . of Sources in Anderson River Data Set. Pl
(Usrng Consonant Bellef Functnon W|th Trammg Samples) e

T 5AR — SAR
: S,hallowv_ : VSteep

| aBmss | 388 | 586 | 43| s27 | os65 |
. Steep } B S —_— —
t Aspect | | || 588 | 463 |

'."JvAspeth;: _'_}':,,Elev‘_atjion} " ‘ ‘SI'o’pe

Table 3.4 Average Measures of Confllct between Palrs
: “of Sources in Anderson River Data Set. :
(Uslng Consonant Bellef Functlon wrth All Samples)

SAR | oAR ,:‘_ N
o1 Shallow | Steep, - Aspect - | Elevation | _Svlop«'e :
| ABMSS | 407 | 5585 | 538 | .351 | - .550

_Shallow
1 sAar”
f_Steep .} o | | R S |
ol Aspect | o ) | | 572 | 428
- | Elevaton } - { | o o FoB13




R ‘.’Slope and SAR Steep . The average measure of COl'lﬂlC'[ agrees wnth the
g separablllty measures and OCA ‘only in rankrng the first three sources (A/B |
; MSS, Elevatlon ‘and SAR Shallow) In the multlsource data classification with

" this data set, the remaining sources (SAR Steep, Aspect and Slope) will be‘ :
fconsrdered as equally relrable as the 4th. ' ~ : S

There are two problems in quantlfymg source rellabllrty based on the |

average measure of conflrct First, the values of the: average measures of

confllct will.vary dependlng on what kind of bellef function is used in eq. (3 4. 8) |
‘However, as Iong as the bellef function represents the - body of evrdence

properly, the ranklng of the sources interms of their relative - rellabrlltles will -~

‘ remarn the same. Second, even the. rankrng of the sources depends.on the

e 'prlor information regardrng which is the most reliable source For example, in

E ~Table 3. 4 if SAR- Shallow were assumed to be the most- rellable then the
‘ second most reliable source would be SAR -Steep mstead of A/B MSS

- One of the advantages of the measure of confllct is that |t provrdes the ,

k'relatlve relrabrlrtres between all pairs of sources.’ When the “most reliable
‘ 'source changes from one to another due to the meaning of the rellabrlrty inthe
context of a problem, the measure of conflict gives the ranklng of the sources
;accordrng to the new most relrable source T TR T ‘

: Furthermore the measure of conflict can be computed for test samples as
’Vwell as tralnrng samples In the above case, there is not much drfference |
’between the measures of confllct for the trarnlng samples and the entrre sample’

' fbecause the tralnrng samples are unlformly drstrlbuted over the: entrre sample
}On the other hand when ‘training samples are l|m|ted and poor representatlves /
of test samples there may be dlfference between the measures of confllct ,

s 'obtalned from the tralnlng samples and from the entrre sample

) Both the separabllrty measures and the measure of conflrct g|ve
' lnformatron for ranklng multlple sources in the sense of therr relatlve rellabrlltres
but a quantrtatrve method of computlng the absolute rellabllltles of the sources
is still unknown. - | -
B Once the relatrve relrabllmes of the data sources are. glven they are
lncluded in: “the multrsource data analysns by “drscountmg” belref functlons,
,[Shafer (1976a)] Suppose o denotes the relatrve relrabrlrty ass:gned to a glven
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source where O<oc<1 By drscountmg, the basrc probabulrty number of every

subset A of € is reduced from m(A) to a- m(A) and the basic probabrllty number-
of Q mcreases from m(Q) to m(Q)+a :

3.5 Summary

_ This chapter has ,foc_used on the‘construction,of interval-value,d«belief,
“functions for statistical evidence and the quantitative"rep.res‘e’ntation of-source

" reliability. Belief functions can be obtained in the form of IV probabilities from

the supremum and infimum of a class of probability measures. Two models for
Vrobust estimation of probability measure, the g-contamination model and the
total varratron model, were introduced to formalize the class of probabllrty
‘ 'measures ‘Then the IV belref functions based on the erellhood Principle were

constructed AIthough they requrre some underlymg assumptlons (consonance‘
“or partual consonance) they have mathematlcally simple and readrly usable
'_formulas The requrred assumptions are not drfflcult to satlsfy rn practlcal*
\applrcatrons of this approach. ' '

= n order to mclude the relatlve reliabilities of sources |n a multrsource'

data analysrs the attempts to quantrtatrvely represent the degree of reliability by

" the average Jeffries-Matusita distance, the average Transformed Divergence,

and the average measure of conflict between pairs of sources were made.

~ Their performances were compared by applying them to an actual muItlsource
data set.

S n the experuments descrlbed in Chapter 6, the bellef functions based on
~ the erelrhood Principle will be- rmplemented and the. multrple sources will be
' ranked based on the average J-M distance and the average measure of conflrct

In this chapter the contribution of thls research is in the representatron of
, statrstlcal evidence by IV probabilities such as consonant and par’uallyg

" ' yconsonant IV probabilities. Theorems 3.1 and 3.2, Deflnltlon 3. 3 and Lemma |
' 3.3 are orrgrnally formulated and proved in thls report '



o CHAPTER s
COMBINATION or= BELIEF FOR STATISTICAL EVIDENCE

441, lntroducti’onv-, .

To base mferences and decrsrons on all avarlable mformatlon |t is :
: necessary to comblne the mformatron from varrous sources. The role of rules '

'} - for. combrnlng evidence is to mtegrate the condltlonal knowledge about states of
o "nature based on each body of evidence into combrned knowledge based onthe
s total evndence Comblnatron rules may be formulated in various ways; they may"i
' ',-depend on the characteristics of the problem, the. experlence of the knowledgev

o _" ,englneer and the mathematlcal theorles on WhICh the rules are founded

Varlous procedures for the formatlon of a consensus of- oprnlons have,

, been suggested in‘the group decrsron problems [French (1981) Genest (1986)'
_Jand Wrnkler (1968)], some on pragmatic grounds others. Justrfled axuomatlcally

The foIIowung formulas are most typlcal ones among them

Consrder the situation where there are m sources of rnformatron each'
provrdlng its subjectlve probability =; (i=1, ...,m) over B. Here m; can be any- kind"

o of addrtlve probablhty measure accordlng to the context of problems :

R ‘.vLivnea.r' Opinion _Pool._:' defines the 0verally_ prObabiIityﬁmeaSure-frt Zrasav_‘ »‘ '
- weighted mean of r;'s: | | o o S

Aw=Yam@) foralac® @)
. =1 : ‘ L e » S SO U

o Where y, (r = 1 m) are posmve werghts assrgned 0 each source and R

o satlsfyrng Zy_l
: S | =1



. Independent Oplnlon Pool assumes that the mformatlon sources are_

R '-]_"‘lndependent” and defines the overall probabllrty measure. snmply as a product-' ‘
e *}'of the individual measures: . X o s

i=1

,' where_ K,is:an,appmpriate normalizing constant so that () betcome‘add__itfive;. PR

| ‘Logarlthmrc Opmaon Pool -is a generallzatnon of the. rndependent oplmonl o

. ,pool The overall probabahty measure is given as:
‘ T ‘.m ; : PR SRR
SN n(A) :=,rc-'[, H{ni(A)}ai] , »fOraII AeB - (413)

where o8 any posrtrve real number representlng the retatlve relrabrhty of the |"1_'_ -

L vsource

a0 A defrcrency of the Ilnear opmlon p00! is that the rndlwdual probabmtles_ -
do not reinforce the others. The combmed measure glven m (4 1 1) rs always

' between the maximum and the minimum values of T, S
| "“.i.'rpin',,,rie); < n(A) £, 'rpjax r'( A foralAes  (414)
The other two schemes have the “zero probablllty property viz,-‘,’ o

i Tq(A) 0 foranyi, then n(A):O | (’4.&.5)

5wh|ch makes the comblned measure too sensmve to a small probablllty
' '»measure More in- depth discussions are found in French (1985) and Berger

In rule based mferencrng systems several subjectlve BayeS|an updatlng

'".ruies have been proposed to modify the probabilities of hypotheses as each.

' »plece of ewdence is provuded These ru!es are denved by applymg one or two
, statrstrcal rndependence assumptlons to Bayes rule and successfu!ty used in
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rule based expert systems such as PROSPECTOR [Duda et aI (1979)] and
MYCIN [Shorthffe (1976)]. However there have been some controversnes over
the |nconS|stency between the mdependence assumptions and the|r updatmg‘ '
. ruIes ’ :

~ During the last decade Dempster’s rule has been refoeivir'tg more
attention from many researchers in various areas of science and engineering. It
‘ is a generalization of Bayesian inference, including the subjective Bayesian
updatmg rules.as the speC|al cases for WhICh the domain- specmc knowledge |sv
preCIse ' SR '

The objectlve of th|s chapter is to mvestlgate the mferencmg mechanlsms

of the subjectrve Bayesian updatmg rules and Dempsters rule in' combining

multuple ‘evidence when they are formulated as set-theoretic functional

3 equations :They are given a behavioral interpretation in terms of the desirable

propertles which agree with human intuition.” The mdependence assumptlons

‘ underlylng them and the robustness to small varlatlons in probablltty measures
are studied. B o ' : :

4.2. Properties of ‘Co'mb.i‘n',at_ion Rules

For computer-based, quantitative techniques of multisource data analysis

. the rules for combining evidence must be formulated as functional equations

- computing the degree of belief based on the total evidence from degrees of
. belief based on each single piece of evidence. '

As given earlier, ) consrsts of a f|n|te number of exhaustive and mutually
. exclusive events and Bis a Boolean algebra of all subsets of Q. Let £ be a set
of multlple bodies of evidence { E;, E,, ..., E, } and B(A||E) = b; (i=1, ..., m)
* denote the degree of conditional belief for A; e B given a body of evidence E;.

.. Then a rule for combining evidence expresses the degree of belief based on
 the total evidence, B(A |E1 &E,&...&E ) as a function on the set of evidence

o - given the knowledge of B(A||E;) for i= 1, ..., m. Several propertles of comblnmg'
o '-'.',rules are proposed by Cheng and Kashyap (1986) to provude guudehnes for

: constructmg the rules as numencal formulas ln thtS sectlon those propertles o
L r'-are formally stated S | . o
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‘Defrmtron 4 1 Let f denote a functron representmg a ruIe for combrnrng_‘ :

L : ewdence T is. sald to be “decomposable rf there exusts a functlon f such that

e ‘where f is called a “bmar’y operator” of T | :'.}» -

ln general 7 and f (|f |t exrsts) are assumed to be contrnuous except at} :

L }fthe endpornts Thrs corresponds to the |dea that the human reasonmg process . |
ls not abrupt AR RS S A

. ait we assume that the frnal degree of.- bellef depends only on the set ofg_
"""evrdence and not on the order in whrch the pleces of evrdence are combrned o

,_ :drfferent orderrngs of evrdence in combmatlon should produce the same result

L :,_The propertles in the followrng defmltrons are essentlal to any. combrnatron rule’f,

L ‘tor exchangeabllrty of the order of evrdence and for decomposabllrty of rts J o
numerlcal functlon mto abrnary operator I R

,Defrnrtlon 4 2 T is “commutatnve" |f |t has a blnary operator f such that

(422)

» for any panr of| j(1 <l j< m) B

o ’:Dettmtton 4 3 T |s' “assocratrve" rf rt has a brnary operator f such that N

| rforallr J,andk(l <i, J,vl<<m) -

ln every numerrcal representatron of belref a stronger bellef is
- 'ﬁrepresented by a larger number ‘Imagine that two degrees of beliet provrded by

S :, " different pieces of evudence say b and by; are to be- combmed respectlvely with
' »?'f;_f-v"-another degree of bellef bk Suppose b > b,, i.e., b represents a relatrvely

| V‘:stronger belief. than b;, then it is natural that the combrnatlon of by with b

' : v_produces a larger number than the comblnatron of b wnth bk The next defmrtlon



o '} the condltlon

o foranybe

- gives the rnathern“atical expression of this p:rOperty,.}
Def|n|t|on 4 4 :F is sand to be “monotonous” if |ts bmary operator f satlsfles

Ciheb, tenfbb)2fBB)  (424)

Monotonlcrty is a rather general property compared to commutatnvnty and

i - associativity because it should ‘hold.even for combining functlons wh|ch do not

- have blnary operators. It is true that when one piece of evndence is replaced by
jone provrdlng stronger bellef F shouId produce a Iarger value Cu

| '_Defi_nition'a ,4,5:: Fis “positively rei_nforcing” if

jF(b{,vv...',‘b,',»'?) s _"1?5 o a2y

e '_,"'.‘or its blnary operator f satrsﬂes

 Definition 4.6. Fis ffn'egatively rein"forc‘ing‘_f”Aif

"*-;._f(bi, bm)s (min e} @27
- ) ,‘or its bmary operator f satrsfres

. femsmniam o <428>

= POSI'[IVG (Negatlve) relnforcement means that the. bellef based on the totall -

- evudence is stronger (weaker) than the bellef based on any smgle plece of' L
':'jevrdence ) : ‘ PER o

' In the foIIowmg two sectlons the defmltlons of deslrable propertles of a.[V —
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' jcombmatlon rule play a role of mterpretang mferencmg mechamsms of the
g SUbjeC'[IVG Bayesnan updatmg rules and Dempsters rule of combmatlon :

43. S,Ubj,,e’cti\ie "Beyes'ia'fn U"pda'ting" Rule’e]
The three dlfferent subjectlve Bayessan updatmg rutes have been.

:obtamed by applynng one ‘or two statistical mdependence assumptlons to
vBayes rule. ' GO

' Global independence over T = { Ey, By, ., E, | is defined ast

- PE&E&...&E)=[[P®) . (43.1)

"Cohditien'al }‘independenceover £ given a proposition is defined as: -
P(E&Ex&... &E, |A) = [[PE|A) forallj=t,...n - (4.32)

ICOndltlonal mdependence over £ glven the negatuon of a proposutlon |s

. ;,detlned as:

| 'P(E?,&_FQ&,..&Eml"Aj)=HP(Ei-|Kj‘)‘ forallj=1,..n  (433)

, Usmg Bayes rule the postenor probablhty of A glven the combmed"_

B ;body of evndence can be wntten as - , '

P(E1&E2& &E |A )" P(A)
P(E1&E2& &Em) '

A IE &Ez& . &E, ) _,‘:(4-;3‘?4;)_

Under the assumptlon of condltlonal mdependence in eq (4 3 2) the, N

,Bayes formula in eq (4 3. 4) can be wntten as:



46

| P(A. IE
_L___
)IJ;. PA)

P(A |E1&E2& &Em)— (435) |
- P(Ak | E) }

n o
2{ e H TPAY

Th|s rule has been used by Cheng and Fu (1985) in a rule: based reasoning
» system for diagnosing diseases. ‘

~ The global independence assumption .in equation (4.3.1) togetherVWivth\
the conditional independence in equation (4.3.2) rewrites Bayes' rule as

m PE | A) 7 PAIE)

P(E) “,1_11 P(A)

(A | E\&E... &E = (4.3.6)

=1
- Swain et al. (1985) have used this formula to construct a global fmembership
fun‘Ctipn. Also, the rule for combining measures of belief and disbelief in MYCIN
has been obtained from the binary form (m=2) of eq. (4 3.6) after translatmg
' probablhtles to its own measures of belief and disbelief.-

. Also, applying both condmonal independence assumptlons to Bayes .
~ rule, we can denve the following comblnlng function

_ H'P(Aj |E)
P(A, |E &E,&... &E )="m — (437
‘ HP(AlE +HP(A|E '

; which is the updating'rule used,'in PROSPECTOR,, a ru'lie-based computer
“consultant system intended to aid geologists in evaluating'the favorability of an
exploratnon site for occurrences of ore deposits of partlcular types. lnterestingly,

thls rule is a special case of the rule in eq. (4.3.5) when. P(A) for all'j.

" Nevertheless it is more appealing because this rule expresses the comblned o

measure in terms. of only the conditional probabilities of mdxwdual bodies of -

evidence. ‘Note that the rules expressed in eq. (4.3.5) and eq. (4.3.6)‘|nc_lude'f )

the effect of prior prObabiIities in combining bodies of evidence.



47

A|I of the subjectlve Bayesran updatmg rules descnbed in this section are
‘decomposable The bmary operator of each rule can be easily obtained by
. vsettlng m=2. In the following, we will take a closer Iook at the characterrstlcs of'-

- the rule expressed in eq. (4 3 7)

For a subset A of Q set P(AIE ) = p1 and P(A|E2) Slnce P()

o v] _addrtrve P(A|E)._ 1—pI for i _1 2 The blnary operator of the rule in equatlon' g

'(4 3. 7) is grven as:

| 'pt.'Pg.‘ ,
Py Pz ( “'Pt) ( ‘Pz)

'ﬂ@mwG(ME&%» ‘5@3&"

’The above brnary operator has the followmg propertles

3 »(1) Posrtlvely rernforcrng when. p1 Po 2 ;, and negatrvely rernforcmg when D1

p2 “ Not deflned in terms of reinforcement when p1 1 and p2 2 2 ,or P4
%rndp2<1"_v . S e |
(2) When JaPy P ) Do IS the rdentlty of the blnary operator. Srnce
P1 A 12 P2) = P2

- the. rule deals wrth addltive probabnhtres vrepres_ents.th_e total_,rgnorance _O_f '
evrdence for the rule. S o SRRt i

‘_ (3) When p1 = 0 (or 1 fA(p1, p2) =0 (or 1) exce’pt p2 =1 ”_(orf(‘)); 0 and 1-are the.
~annihilators of the bmary operator that"i-s ‘when E1' provides complete

certalnty either for A (p1 =1) or for A (py = 0) the other body of evrdence
cannot affect the combmed be!ref measure ‘ - ‘

fA O ‘i and fA 1 0 ) are not defmed th|s rule cannot combrne two bodles of
evidence which are completely contradrctory et e :

N Flgure 4. 1 is a graph|cal mterpretatron of the brnary operator based on
set- theoretrc operatrons In the figure, the upper-lett rectangle represents the
idegree of belref for A- based on the combined evidence. whrle the Iower-nght

- srectangle represents the degree of behef agamst A based on: the combined

evrdence The upper-rlght and Iower-left rectangles represent the measure

| :]whlch falls to be commltted to elther A ora..

The questlon now |s WhICh mdependence assumptlon |s empmcally
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PAE) =P,

PRIE)=1-P,

1.,

O AMA =A
Py Py

AFR=D

. AA=R
(1-p,) (1-p,) -

' Flgure 4.1 Graphlcal Interpretatnon of Bmary Operator of Subjectnve
‘ L Bayesuan Updatmg Rule in Equaﬂon (4 3. 7) -



more reasonable and ylelds a better updatrng scheme Controversrally, |t has

| "-“..“;;"v;:been shown that there is’ lnconsrstency between: some lndependence ‘

. assumptions and their updating rules. We will begm the discussion’ with the

";‘;followrng lemmas whrch were: stated and proven by Pednault et al (1981) and”f o
Johnson (1986) respectrvely o LI -

'"11-‘-"'“"},7Lemma 4 1 lf Q consrsts of n (n > 2) mutually exclusrve and exhaustrveg .-: o

"‘e”’v.'_”proposrtrons re rf ZP(A ..1 and P(A &Aj) Oforr;e j, then equatrons (432) |

S ’_vand (4 3 3) together rmply equatron (4 3. 1)

i When n=2(rz= {-"A;K-}L_),,fthe above lemma doss not hold. -

t'-'l_emma 4 2 lf Q consrsts of n mutuaIIy exclusrve and exhaustrve proposntrons '

= f:where n > 2, and if equatrons (4.3.2) and (4 3.3) are assUmed then there is at'

- »most one prece of evrdence that produces updatmg for the proposrtron S

'_ Lemma 4 2 says that under the above condrtrons regardmg Q at most one :
'f’:'prece of evrdence can alter the probabllrty of any g:ven proposrtron thus a

'-v,although updatrng is’ possuble multrple updatrng for any of the proposntlons |sl L

- .rmpossrble The followmg lemma is. from Cheng et al (1986)

'Lemmé “4?'3?s’dppésé"'thai’Q‘ : {A' A} K équéﬁdﬁs”(?at 3 ), (4 3. 2) and (4 23)
~are- assumed then there is at most one plece of evrdence that produces"
.-,,,updatlng for each proposrtron : : s L

As a consequence of the above lemmas in order for probabllltles of two o

B or more mutually exclusive and exhaustrve proposutrons to be updated and' -

'“? .allow multrple preces of evrdence to mfluence a decrslon one of the condltlonal s _} e
R gmdependence assumptrons should be elrmrnated In fact Charnrak (1983) and R

o “_Johnson recommend the updatlng Scheme in eq (4 3.5). fO" mference about any

| number of mutually exclusrve and exhaustrve proposrtlons
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4.4. Dempster’s Rule of Combination

“Dempster’s rule is a generalized scheme of Bayesian-inference to
aggregate bodies of evidence provided by multiple information sources. Let my
| and m, be the basic probability assignments associated respectuvely ‘with the
belief functlons Bel; and Bel, which are inferred from two entirely distinct bodies
of evidence E and E,. For all A}, Bj, and X, €, Dempster's rule (or
Dempster's orthogonal sum) gives a new belief f’U'nctio-n-denoted.by o

..(Be[=‘$e[|®$e£z S -.-(4-.‘4'.1)1

"The basnc probablllty a33|gnment assocnated wnth the new bellef functlonls
deflned as: T o

CmX) ==K Y mA)myB) Xez@) (4.4.2)

o ArBEXg T U ~

~where K is the measure of coan|ct between fBe[1 and Qieé as. deflned m
Deflnltlon 3. 4. S

_ Dempsters rule computes the. basnc probablhty of Xk, (Xk) from the
' product of m1( i) and my(B ) by considering all A; and B; whose mtersectnon is
X, Once. mis computed for every X, c Q, the bellef functlon is obtained by the
- sum of m's commltted to X -and its subsets. The denomlnator (1=K normahzes

the result to compensate for the measure commltted to the empty set so thatthe

- total probablhty mass has measure one. Consequently, Dempsters rule B
discards the conflict between E, and E2 and carries thelr consensus to the new

‘ fbehef functlon - |
“There are several ponnts of interest with regard to this rule First, it

- .requires that the basic probability assignments to be combined be based on
, entirely distinct bodies of evidence and refer to the same frame of discernment

Q. Secondly, it is both commutative and associative. Therefore, the order or
" grouping of evndence in'combination does not affect the result, and a sequence
o "';"fjof lnformatlon sources can be combuned either sequentlally or pawwuse Flnally,

_ o kln the above equatlon is the measure of conflict between E; and E,, which
__rep_resents the amount of the total probabilllty that is committed to disjoint (or
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contradictory) subsets of 2. lf Kis equal to one, this means that E1 and' E, are
~completely contradlctory and the orthogonal sum of their basrc probabllrty
_;assrgnments does not exist. , j 5 »

, ‘To exhibit the propemes of Dempsters rule, suppose that there are only
two focal elements A and A in £ and the basic probabrllty assrgnment m, based

. OnEis given as:

‘mi(A)=pi, m &) = ql, m,(Q):‘l—-pI—q! for|_1 2 (4.43)
“where pl+ql<1 i.e., they are non- -additive. |

Then the respectrve interval-valued behef functron given E,(i=1,2)

supports A with [pl, - -q;], and A with [q;, 1-pl- Dempsters rule produces the
new basuc probabrlrty assignment m, and by equatron (2. 2 9) the support‘

, ‘functron for Aand A based on the total evidence is given as

Py PPy (1 ~Po= qg) (‘1-.p1-q1)'p2'

(AIE &E)
? Bl 2N Pl T SO
O (=p.) (1= . o
=1_( p1)(‘ ) . 444
1‘p1'q2fq1'P2 ' S
0,949, (1=p,~q)1+(1-p,—q,)q
Sp(A IE &Ez) 112784 B LA & W AV
1-p,°0,-9;°P,
1-q,)-(1- e
:=1—( 9,0 (1-4,) | S (4.4.5)

B P P ¢ PRy oY

Figure 4 2 shows the grephioal ihterpretatioh of D’empster’s rule for the above
"case The probablllty mass committed to represents the uncertainty-

concerning the support for A and A.. The conjugate plausibility function PLis
obtained by equatron (2.2.14). In general, Dempster’s rule has the following
propertres R | S

(1) Commutativity and associativity.

(2) [, PA®IO0, 1] = [Sp, P4; [0, 1] plays the role of identity for the rule.



- mlA)=p,

 AmA=A

P{Py

 ANQ=A

my(A) = q | WP

KﬁA:_@ '

ANQ=A

q1%1—p2—q2) -

- QNA =A

”(1 —p1—q1)p2

QnNQ =0

~ Figure 4.2 Graphical Interpretation of Dempster's Rule when Q ={ A, A} -
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i ;(3) When pl+ql = 1 i. e they are addltlve equatlon (4. 4 4) is equal to equatlon
| (4 3.8), and. the resultmg belief tunctlon becomes addmve - o

| (4) For any interval [5P’ 0, 0, [5P: -‘1’4@[1 1]=[1,1], and for any |nterval [5P
‘ ?4?&[1 1] [5p, P[0, 0)=[0, 0]; [0, 0] and [1 1]are ann1h|lators forthe rule

( ) [0 O]@[t 1] is undefrned Dempsters rule cannot combrne completely_ |
confhctlng bodles of evidence. PR a

(6) The comblned mterval is no wider than any rnterval to be comblned | e

< 1fPi‘qi - ;,fo_r_'i ¥ 12 (446)

"*',Slnce the wrdth of an mterval valued behef measure corresponds to the L

_ ‘measure of uncertamty, |t seems mtumvely reasonable that the value of the
measure of uncertalnty decreases as the amount of ewdentlal mformatlon-
increases. ‘ ‘ ‘

The only. condmon that Dempsters rule- requrres is that the bodres of
-evidence to be comblned must be entlrely distinct. In the context of the problem
- 1of multnsource data ciassmcatlon combining enturely distinct bodies of evrdence'

s consndered as ‘a fusmn of the mdwrdual observatlons provnded by
: mdependent sensors The meanlng of. lndependence here .is that anf”
B observation from one. sensor does not have: any effect on an observatlon from
: any other sensor. L '

' The previous two sections described the functional cha’ract'eri's’tics' of the

subjectlve BayeS|an updatlng rules and Dempsters rule in terms of the

deS!rabIe propertles of combmatlon rules In this section, the bmary operators.
of Dempsters rule (eq (4 4 4)) and a subjectlve Bayesran updatlng rule (eq

o ‘(4 3. 8)) are compared w1th respect to thelr sensrtnvnty to small changes of the |

S ;Imtlal behef measures to be combmed ‘, s I | |
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Suppose we are cIassrfylng a plxel denoted by a vector X into. one of a

set of ‘mutually exclusrve and. exhaustlve classes 01, co2, and 033, based on two' o

-|ndependent data sources Let E1 and E2 denote the bodres of evrdence

provnded by the two data sources and Q {A1, Ao, A3} denote the frame off '

| }dlscernment ‘where. AI represents the event of X' belng cIassnfled to ;.

o f‘Suppose that the basnc probablllty assrgnment numbers based on each data’_

- 'source are grven as

: m1(A1) 5 m1(A2)_ 1_5_p, m1(A3)_ | (451) |
and L . } SR I

| ”’2(A1)— 1-—8—p, ”12(A2) 5 mz(Aa)—, 1 U (4;5.2)} B

o Note that the -above measures are addmve there ls nol‘measurel of :

f_ uncertamty Hence both data sources are belueved to be completely relrable
} and the mformatlon provided by the data sources |s assumed to be exact and
-precrse for representlng the behef measures R A

When 8 0 and 0 <p << 1, there is strong conflrct between the bodres of.

o ."evrdence provrded by the data sources The only’ agreement between them is

‘that Az is_highly lmprobable In other words X is hardly: belleved to beIong to
-On the contrary, the. equation (4.3. 8) - recall that it-is-a specral case of

S .Dempsters rule when the bellef measures are addrtuve ~ ylelds the comblned _

: measures as

m(A1|E1&E2) m(A2| E1&E2) 0, m(A3| E1&E2)—1

S wrthout regard to the value of p The result expresses that (03 |s the only'-} PO

o ﬂpossrble class for X Wthh is completely agamst our intuition.

. : Now in order to examine How sensitive the comblnatlon rule is to sllght .
BT 'changes of |n|t|al measures Iet 6 be a non-zero smaII number Then we f|nd

o 8(1—8—p) o N
m(A1|E1&E2) m(Azl E1&Ez) 25(1 8—p) + p2 ;“ ST (453) :

A E E L (4.5.4)
m( 3| 1& 2) 28(1 - p) N p2 T ( )



s ‘,v_"{_.,TabIe 4 1 shows”-therresults of the equatlon

| Result of Combrnatlon by Dempsters Rule for
Addltrve Behef Measures SRR

m(A1|E1&Ez)
m(Ag| E1&E2) 0076
- m(Ag E4&Ep) | 0.848

| '0;3_20‘ | oasr |
0360 | o106 -

e v.'.:‘By comparmg the combmed measures for 8 0001 and O 05 we can draw a B
-f,iconcluswn that the extreme sensrtrvrty may lead to totally drfferent decrsronsrﬁ o
' "”;when the numencal representatlon of bellef is coarse Recall that the measures;

" _f-sensrtrvrty when the measures of bellef are subaddltrve’?

o f“_‘rellable sources"include the measure of uncertaln.'

- "'V’jof belref in the above example are addltrve W|II Dempsters rule show such_

When the data sources are not completely relrable whrch |s true in most ‘
';.‘-L,cases of real world data sources the bellef measures. based on the. partlally,_ '
Suppose both data_

o {sources are assugned the same amount of measure of uncertalnty o, that is, o

o -[j ana, .

m1(9) ’"2(9) a EER e L

: ,where 0 < o < 1 o is assrgned to the frame of dlscernment Q to represent thev | -
‘..}."partlal |gnorance of belref based on the mcomplete data sources k The_n the

"12(A1) (1—a)(1—8—p),,me(Az) (l—a)a mz(As) (l—a)p ('4.:5’56)

i :‘-»’*Now the belref measures become non addltrve and they are represented |n» | -

4.3.8) for various smali values of &
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terms of interval-valued probabilties in Table 4.2. " In this particular case, since’

aII the focal elements are smgleton the ‘width of their IV belief measures is the
same - .

" Table 4.2 Interval-valued Belief Measires after Combination
by Dempster’s Rule for Non-additive Belief Measures.

% | = | s | =

A_1 | (1-a)8.v ('l—ot)8+a : [ »(1Qa)(1'—6—p'»)- '(1—0;)(‘1—'8—b)+a

‘Az' v(l—or)‘(l—S—p)’ (1 o)(1- 8—p)+oc ‘ '(vl—-a)S.vv ' (léa)8+a -

Az | ‘_(l—Oﬂ)P (l—oc)p+oc ” ‘(l—or)p"v .  (-aypra

- Dempster’s rule yie'lds, the new basi,c 'probabi‘,lity‘ﬁ_as_sig‘nment_a‘s::‘

1-00){8(1-0) (1-8—p)+a(1-p)}

m<A1|E1&E2>—m<A2| E1&E2)—' TR (4.5.7)
| m(Asl BBy - f““"ﬁi“_‘ T = - s

e S
mQ B &E) = (459)

£ where k=(1- a)2{1—p+28(p+8—1)}

. Let o= 0. 1, which means that the data sources. are hlghly relrable but still |
mcomplete For 3=0 and p=0.1, the comblned measures are

(A4 E; &Ez)  m(Ag] Er&Ey) = 0.409, m(Ag| By &E2)=,. 0.132



; Compared to those WhICh are addntlve the non addrtlve measures after bemg
L ;f “-'comblned by Dempsters rule are ‘more’in. accordance wnth human mturtlon
.-,,‘;,‘Table 43 shows the results of. Dempsters rule comblnrng non addrtlve
g ;;,measures for vanous small values of8 O T SRS

.‘ prowded by confhctmg bodles of evrdence

,__fTable 4 3 Result of Comblnatlon by Dempsters Flule for ,_
o Non addltlve Belref Measures SRR

S Ayl Et&E2)
o m(Azl E{&Ep) -
o -;-,m(Aal E1 &Ez)

| f} ,By assrgnmg a small amount of uncertamty to the data sources we can avond‘ -

':‘,’the extreme sensmvrty of Dempsters rule to sllght changes of measures',_

Slnce the problem of extreme sensmwty of Dempsters rule was exposed

o 'iby Zadeh (1979) Dubois and Prade It 985) proposed as an alternatlve a

_"possrbrhstlc rule of comblnatlon based on. the theory of possrbuhty whtch is

o ."'related to the fuzzy set theory Zadeh and Dubors et al. insist that the extreme.

ensmvrty of Dempsters rule |n combmlng addmve probabtlmes is the effect. of“

' l_‘the normallzatlon m tts denomlnator They thmk that the normahzatlon-‘ ‘
suppresses an |mportant aspect of |nformat|on obtamed from the confhctmg '

g ~bodies of evrdence ‘S0 that Dempsters rule may yleld hlghly countennturtrve

| _results Accordlng to the above example, however the cause of the extreme o

- ',sensmvrty Iles in-incorrect representatlon of belret ‘not in- Dempsters rule itself. :

"‘Recall that the frame of dlscernment consrsts of mutually exclusrve and"

L :exhaustrve hypotheses 1f two: sources were completely relrable there mlght ber i
: 7 lrttle confhct between the bodles of evrdence provrded by them Conversely, if
. there were strong confhct between bodres of evrdence the sources provudrng..‘“ ‘




the eVIdence could not be completely rellable elther or both of them shouldn.
'have non- zero measure of - uncertalnty In concluslon lnterval valued
probabrlltles are more adequate than conventlonal addltrve probabrlrtres to
represent belief.

- 4.6. sur‘nma:r.v |

ln this chapter after defmlng desrrable propertles for combination: rules to
,be formulated as. functronal equations, the mferencmg mechanlsms of.

- subjectlve Bayeslan updatlng rules and Dempster’s rule were examined in

_:'.terms of their properties. The comparlson revealed that Dempsters rule is a
more general scheme to comblne bodies of evidence providing the belief
functions represented by interval-valued probabilities. It has been observed
~ that in combining conflicting bodies of evidence, Dempster's rule produces
more robust and consistent combined belref measures when the belief
measures are interval-valued. '

~In this chapter, the contnbutlons of this research are the formal defrnmons

e of the desirable propertles of combination rules, mterpretatrons of the

', ,mferencmg mechanlsms of the exrstmg combination rules, and the analysis of
’-*the robustness of Dempster's rule in the aspect of its. differential behavror ;

o accordlng to sllght changes of initial belief measures.



CHAPTER 5

DEClSlON MAKING BASED ON INTERVAL-VALUED
s PROBABILITIES

E [5‘-.1..;L*lntrod,ucti’on, 3
Maklng a decnsnon is the last step before evaluatlng the performance of a
iclassn‘ler in any pattern recognltlon problem Over the past three decades _

,"statlstlcal decusron theory has played an |mportant role |n the decrsuon process_" |
of statlstlcal pattern recognltlon technlques . |

In conventlonal statistical methods for pattern recognmon whereﬁ»_

-'statlstlcal mformatnon is. represented by pomt-valued probabllltles there is only:_- -
" one decrsron rule to use in decrdlng whether or: not a glven pattern belongs to

-~ some prespecufled class of patterns. The decrsron rule glves an estlmate of the
' unknown true class of the pattern and the estlmate varies dependmg on. the
crltenon underlylng the decrslon rule For. example the' “Bayes decision rule”
~devised in such a way that the “average rlsk”'rs m|n|m|zed The Maxrmum‘
'Postenor classrfrcatlon wh|ch is the most common classnflcatron method in
: f_remote sensmg uses a “Bayes decusuon rule with 0—1 loss function.”

In the prevnous chapters representatlon and comblnatlon of statlstlcal

' 'ewdence in the form of mterval-valued probabllltles were studled Although -

'.'5.|nterval valued probab|l|t|es provrde an innovative means for the representatlon :

" of evrdentlal lnformatlon ‘they make the decision process rather compllcated

"v,_'vkand -entail more lntelllgent strategies in makmg decisions. Based on the
fevrdentlal lnterval ‘bounded by degrees of support and plausnblllty, one has"v .
~ ‘more than one ch0|ce for a decision rule.- One can make a decision elther ‘.
- based on any one of support or plausublllty, or based on thelr average ' '

Thrs chapter presents an account of basrc elements in the decrsuon

L theory for pattern recognltlon based on interval- valued probabllltles It will be

o ’ﬁ:notlced that under a certaln condltlon those basic elements are a generallzatlon :
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- of the elemen’rs of BayeSian decision theory. This chapter also formalizes the
l decnsron maknng process and develops decrsuon rules for the evudentlal

Lo lntervals

5.2, "lrit'erva‘ll-'\ial'ued '-E"xpeot"akti‘.ohls

© Let [L, u]' be an interval-valued probability defined in the Boolean

‘algebra B of subsets of Q, and V denote a real- valued function. defrned over Q o

o ={w}. Dempster(1968) defines an “upper drstnbutlon functlon and a “Iower- '

EAS »}'dlstnbutron functlon respectively as:

F*(V) ({(OIV(OJ)<V}) et T
i Cfor o< vicee i (B21)
F*(V) ({wIV((D)<V}) ' g
S The palr [F* F*] defmed above has the followmg propertles
B (i) Both are nondecreasrng, ie., | e
i v1 <v2 then R )<F*(v2) and F*(v1)<F*(v2)j-vf._l.v_'",_:‘(_5.:2,,“2)
2 "(ii)"Both are contmuous fromthe nght re S e S
| *"*".i-ijore>o "m F*(v+s) F*(v) and gmo.p*(v;e)_;r,‘cv)’» - (5.23)
() () = Fare) = 1; ‘F*’(—,w) =Fu(=)=0  (524)
) it F*(vo) O(F*(vo) 0) | -
j‘then F* (v) O (F*(v) = O) for every v< v0 AT o - (5.25) -
(v}) : ~‘F*(v)>F*(v) for-es<vee f *‘»'(:5.2.6) o

The proof of the above propertres is trivial. (r) - (rv) are the same as the»
f'fpropemes of the ordrnary drstrlbutlon function. Refer to Papoulls(1984) for thelr
_.,proofs And. (v) isa dlrect consequence of eq (2 4. 3) o :
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‘ Further Dempster defmes h|s “upper expectatlon and “Iower_' |
expectatron as: '
E*(V)= [v dF.(v) |
| (5.2.7)
EuV)= [vaF*(v)

Note that the upper and Iower stars are mterchanged ltis necessary in order to -
keep the relation E* (V) > E (V). For any real- valued functlons V and W»

- defmed over Q E* and Ex have the foIIowmg propertles
Y E (V)> E*(V) o (B2
(i) ¥ V(o) > ‘W() foral 0eQ@
E*(V) 2 E* W) and E*(V)>E*(W) D (5.2.9)

_ Dempsters upper and lower expectatlons generaIiZe fhe con‘c’e‘pts of -
. upper and lower probabllmes Speakmg in. detarl let ZA be the mdrcator '

~ function of ACQ |e

o f1 foreeA

DR gA (5.2.10)
0 otherwise , :

o Then, by,_the'above_d‘efinition’s and th‘e'conjugate relations'hip of ‘Z[ahd'_L |

EX( jzdF* ju{mle( w)<z “}) dz

A(5.'2.1 1_"')

Eul(Z,) - |z dF*(z) = [z-u(olz A-(co)si}) dz o
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_  For pattern recognition problems, it seems natural to defivneupper’and
;,Iower probabrlrtres respectlvely by ‘upper and lower envelopes i.e., the

C Supremum and the mfrmum of a certain class of- probablllty measures as,
o expressed in Deflnrtron 2. 2. 'As mentloned earlier in section 2.4, the envelopesr

} ~are a subclass of the axromatlcally defmed lnterval valued probabrlltres Also if
) L IS 2 monotone and Uis 2- alternatrng, then they are envelopes SR

Suppose that L and ‘uare glven as
aA) mf{n(A) ne r-P} SRR L I
foraed - (5.2.12)
& ‘U(A) sup{rt(A) ne P} e i

o where T is the class of the probablllty measures domrnated by u Then the
: f‘followmg Iemma is: proved by Wolfenson and Fine (1982) ' :

| "C'L'em'ma -5 '1' - For an rnterval valued probablllty [L u] the upper and Iower '

"expectatlons can be grven as , S B
B v?' SUP B V)

o ' . - (5.2.13)
| *,(, )= e "(i. )

:'vrff Lis 2- monotone and u is 2 alternatrng, where V is a real valued functlon“

g .‘over Q and E (V) is. the expected value of V' with respect to the probabrlrty ‘
L fmeasure A e ST (NS

The upper and lower expectatrons in: (52 13) ha'v_e »vthe.tollOWlng
‘vpropertres as well as. the propertres in (5 2.8) and (5.2.9): EERE

(i) E*(V)<E( )<E*(V) f0fany7€€ T, L . oo (5.244)
(iv) Forany nonnegatlvefunctronWoverQ | RS | |

o {a+bE (W) uf‘bé,_o Do
’- E bW ' e e (5.2
| (ast D=la+bEuw) b <o B2
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. f(a+bEL(W) ifb20
Eu(a+bW) = S | . (5.2.16)
' a+bE*(W) if b<0 . : g

E Whe:refa andlfb are constants. -

“This section introduces two different definitions of the interval-vaiued
“expectations; one which applies to any system of interval-valued probabilities,
and the other Wthh applles only to a system of 2- monotone and 2-alternating
_interval-valued probabllltles in general the two’ deflnltrons do not coincide in a
class of all sets of probability measures over B. Dempster (1968) already

argued that for a general convex set T lt can happen that o

Iv dF*V(v)<‘ n'zf?E,t(V) (5217)

-—00

The second deflnmon IS not onIy unapt to a general system of mterval valued
| “, probabrlltles but also. computatlonally mtractable Forthe expectatrons in eq.
- (5.2.13) to be usefull, an explicit expression of 7 in P must beavallable.’

53, Decision Rules based on Interval-Valued Probability

Consider a baS|c classrfrcatlon problem where an arbitrary pattern XeX
- from an unknown class is assigned to one of n classes in Q. Let A{wjley) be a
~.measure of the “loss” incurred when the decision w; is made and the true
‘ pattern class is in fact mj, where i, j =1, ..., n. Also, let &(x). denote a decision .

- j " ruIe that teIIs which class to choose for every pattern X. Usmg the upper and

" »}Iower expectatlons in eq. (5.2.7), the “upper expected loss” and the “lower
expected Ioss of makmg a decision d‘)( X)=0; are obtained as: '

it =v.2'“»°°i."°’i') ey SN

"1=1 o
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3 where fux and Lx are respectlvely the upper and the Iower probabrlltles for X

| | berng actually from “’1

) Based on the |nterval valued expected losses the. most desnrable -
:;;decrsron rule is the one which: has the upper expected Ioss less than the lower

expected Iosses of the others i.e.,

Ox) =0 it t*(x>< a(x) Cforgte.n 0 (532)
~ This rule is. called an “absolute rule.”

: The “Bayes Ilke rule |s the one whrch mlnrmlzes both the upper and the
Iower expected losses e, ey : L

tb(x) o, tf( X < fx )-‘ and  L(0S&X) f_fcsr_i;l,,._;.,hnf’.f(s.:,sj.,a)l
'In partrcular when krs the “0—1 loss functlon e

b it &(x) # o)

~the lhleif\?al-vé'lled expected loss in eq. (5.3.1) is simplfied as:

» i) = 2 £x(®) - rx(co.)

: ""S_iﬁéé;ﬁ‘zt‘he"/'jf\i'tréit?télmlls"ft»i;'" the r’i'ght hand s‘ides are co’nst’ant for i=1, ..., n,
‘r‘ninimizing' both l*(”)-and’Lk( x) corresponds to maxrmlzmg ux((o,) and Lx( I)

‘_Hence the decnsnon rule m eq (5 3. 2) becomes |
(X) nx lf ‘Ux(w.l>‘ux(w,) and I«(w)>Lx( ) forr1 W (536)

A problem wrth the above decrsron rules is that there does not always :

"f'exist ® whrch satrsfres the condrtlon in eq. (5 3. 2) or. (5 3. 3) whlch can lead to_ f '"
.‘5‘],ambrgurty In companng a parr of the mterval valued expected Iosses there are
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. -three different kinds of relationships distinguished by their relative locations:
(1) dIS]Olnt mtervals N . e PR
(x) > Lk(x) > A0 2 L (B3

(2) overlapped mtervals

W0 b2 bW (639
(3) ’“._eswdhinlervals; - | S L o
AW 2 ) > kM 2 LK (539)

The f0llowing'.exa,m_ple'iIIus'trates:thesve intervals. .

Example 51. LetQ= {oy, 0)2, co3, (04} [Lx ux] denotes the mterval valued ,

'probablllty functlon of subsets of Q glven a pattern x Suppose that the ba3|cl
probablllty assrgnment mx of [Lx U] is glven as -

({031}) ({0)2}) 0.3 "lx({m1-<0a}) 0.34  my({o, 034})—016

“and mx( ) 0 for any other subsets A of Q Then the |nterval valued
probabllltles of the smgletons are obtamed as ' ' -

: fo | {0} {og} {4}
oy | o2 [ o3 [ o | o
u, | 054 | o046 .| o034 | 016

For the 0~1 loss function, the expected loss interval of w, is nested in ay's, ©1 is
overlapped with w3, and w,is disjoint with respect to oy and co2 The Bayes llke
rule does not produce a decusmn o

“The above example shows a 5|mple case where the Bayes like decision
'rule leads to ambnguuty In such an ambiguous. srtuatlon one may withhold the

RN __-demsmn and wa[t for a new plece of mformatlon Otherwuse the- amblgwty may



o '6'6 |
. “j,be resolved by resortmg to the followmg rule so called “mrnlmum average '_ S
expected loss rule”™: S - = .

o B+ byx) (X)+£e<( X) .
.&)‘(x)f;jq)i. |f 5 5 _‘: for j— 5 -;7'(75._,-’3.10)

IA

: *For the 0-1 loss functlon th|s rule is called “maxrmum average probabllrty ruIe __
and the: decrsron is. made according to '

o ,&()‘() i " ux(m‘i); Ly (@) 5 ',ux'(m;l ;Lxl‘ﬂ)i) -:.]for J=1n(5311) ._

- As an alternatlve to the absolute rule and the Bayes llke rule there are o

two other rules by which a decision is made according to individual measures of
'the mterval for instance, either the upper expected loss or the lower expected .
loss: 2 o Sl

(1) min'imumﬁ upper fe,)'(pected loss rule:

»&(x)'—_,mi RRCELCE for _|=1n |

For the 0—-1 Ioss functron this rule may be renamed “maxrmum upper T
probablllty rul,e or. “maximum plausrbllltyvr_ule and the decrsron |s made
according to o B Lo

M=o it )2 Gle)  for i=1'--.-»’7[_:‘ (5313) |

‘(‘2)>r’hinirnum'lQWer'ex'p'ected loss rule: B o
o) =a if Li(x) < Lyfx) ~ for j=1,--li,h | "':"-'('é-;3'-.1‘-14)'

For the 0—1:loss function, this rule is called “maxrmum lower probabrlrty
- rule” or “maxrmum support rule” and the decnsnon |s made accordmg to :}

6‘)(X)= o i Lx( )>Lx((0j)‘ for- l‘l ” (5315)]'“

Although the above two rules always produce decrsuons and there rs nof .
ambiguous situation in makmg a decision accordlng to the rules they do not
utilize all of the mformatlon represented by the lV probabllltles Th_e_' _



performance of these rules will. be compared W|th the minimum average" _
: expected loss rule in the next chapter by applyrng them to problems of ground-,:
' cover classrflcatlon based on remotely sensed and geographlc data LT e

5.4, ‘Su‘mm’a'rvy' o

The purpose of 'lhlS chapter was to formallze the decrsron maklng"_ o

process for any system of rnterval valued probabllrtles in partlcular thev; .
process was consrdered from the vrewpomt of statlstlcal decrsmn theory

Flrst two drfferent deflnmons of lnterval valued expectatlons were-_
: -studled and thelr statlstlcal propertles were compared with- those of the: ordlnary.
: expected value Then the absolute rule and the Bayes Ilke rule for evudentlal"
~intervals. were developed based on the general interval- valued expectatlon ,
'Slnce these. rules are_not always satisfied, they may requnre an-extra. step to.v
resolve amblguous situations. -In order to resolve the amblguous sntuatlons this
; chapter proposed the minimum: average expected loss rule As alternatlves to :
‘the absolute rule and the Bayes l|ke rule, the mlnlmum upper expected Ioss rule" .
' and the mlmmum Iower expected loss rule were proposed R

N Whrle the absolute rule and the Bayes -like rule make decrsrons based on.
»both the upper and the lower expected losses, the minimum upper expected
loss rule and the m|n|mum lower expected Ioss rule make demsrons based on
either the upper or the lower expected loss. ln the evndentlal reasoning, the
“lower probability and. the upper probability. represent respectlvely the minimal
and the maxrmal degree of belief. Hence, the minimum lower expected loss -

L . rule ‘may be chosen when the decision process needs to be conservat:ve and

the minimum upper expected loss rule. may be chosen when the decision maker -
'_,rs confldent about the |nformat|on represented by IV probabllltles

} ~In thrs chapter the contnbutlon of the research is in the formal
} development of the demsron -making process and the decision: rules for ;nterval-
- valued probabllltles ' N -



6.1.

CHAPTER 6
EXPERIMENTAL RESULTS

Introduction

~Inthis chapter, the methods presented in this report are applied to

problems ‘of ground cover classrfrcatlon for multlspectral data combrned with
other geographic data. The multisource data (MSD) classification based on the

.evrdentlal reasonrng (ER) method |s |mpIemented as the foIIowrng procedure

in the trarnlng stage

Compute the global correlatlon coefflcrent matrrx of multlsource data and-‘ ‘
reform the data set if necessary.- Throughout the - experrments the global.

', correlatlon information will be used to conflrm the “dlstlnctness“ of bodles of
"evrdence as required by Dempsters rule.

'For each class, select trarnrng pixels and compute statistics for each source.

Compute the separability measures of each source and the average |
measures of conflict between pairs of the sources as defined in Section 3.4.
Rank the data sources and assign a degree of relia’bil’ity to each source.

| .The steps in the test stage cIassnfylng “unknown” pnxels will be descrrbed by

, consrdenng an actual problem of cIassrfylng a test pixel to one of the classes in
Q= {wy, oy, 3, co4} based on two data sources denoted by S and So.

xI Test vector representrng the test pixel obtalned from Sl (| 1 2)
: Source rehablllty of S,, 0<a;<. ,
pw (x,) -Conditional probablhty densﬂy of xI glven j.

m, Basic probabrlrty assrgnment based on Sl ,
m: Basrc probablllty assugnment based on Sy and 82



FON 3 :CompUte m m1@m2 by usmg eq (4 4 2)

5;} ' Support tunctlon based on} Sy and‘SQ -
1’[ Plausublllty functlon based on 81 and 82 SR S
Suppose that pm(x,) forl 1 2and J- 4are obtalned such that ;
| Pm1(x1) ng(x1)>Pm3(x1)v pa)4(x‘l) se A
pa,z(le pw3<x2>>pm1(x2>' > Puglie)

(A) Usmg the consonant bellef functlons : 7 ,
| *”'«'-'The focal elements based on S1 are {m1} {o)1, (02} {co.,, wz, m3} and Q

. ;:'""'.\_rbf'The focal elements based on Sz are {0)2} {0)2' ‘°3} {‘”2’ w3’ 0)1} and Q

f 1 ;:f:Compute m1(A) and mQ(B) by usmg eq. (3 3 9) where A and B denote the | :

" focal elements of §;and S,, respectlvely

e 2. },‘Multlply m, by % forthe subsets of Q and add oc, to m,(Q) O

- 4 .‘For each sungleton 0),, compute o AR SRS ,
({wi}) m({w.}) and fw({w.}) < z'mm)t—*g- -
";‘.:',:vslf;,Classlfy the test plxel to a class accordlng to one of the decusnon rules for
lV probabllltles in’ Chapter5 S A T
(B) Usmg the partlally consonant bellef functlons

o »;'Based on the relatlon m the hlerarchlcal structure of the classes suppose
S thatQ hasapartltlon {{co1 0)2} {cos, 0)4}} S :

o L .The focal elements based on S1 are {co1} {co1, 0)2} {(03} and {m3, co4}
"{vThe focal elements based on 82 are {coz} {mz, (o1} {0)3} and {m3, (o4}

.,‘f;.,;‘. ::'1,__,'Compute m1(A) and mQ(B) by us:ng eq. (3 3 10) and (3 3. 11) where A
TR "and B denote the focal elements of Sy and 82, respectlvely R

Ty f,MulthIY m, by a, forthe subsets of Q and add a, to m.(Q) o



.4 Foreach sing,leton ;, compute

| St = m () and Hfeh) = 3, m(A)
: . Am{m,};@
5 Classn‘y the test prxel to a class accordrng to one of the decrsmn rules for
v probabllmes in Chapter 5. | |

Flgure 6. 1 is the block dragram of for classn‘ymg a plxel in the MSD classm-‘ .
. -catlon based on the ER method SR : :

_ L The experrments have been performed over three dnfferent |mage data
sets ‘Table 6.1 shows the names and types of data. sources of the multisource
data sets. ‘More detailed descriptions will be given in the following sections.
’Each data set also has a geometrically registered, digitized: ground truth ‘map as
a reference based on which the accura0|es of all subsequent classmcatrons will .
be evaluated. B

" The next section presents the experimental results of the proposed
method applied_to the Anderson River data set. The intention of the expefiment
‘is to assess the ability of the method in capturing and utilizin'g ‘the information
~obtained from topographlc data sources as well as multlspectral data sources.
In Section 6.3, the method is applled to the Indrana agncultural area data set_
: whrch contalns only-a single multlspectral data source ‘The purpose is to show
“ the possrblllty that the MSD classification based on the ‘evidential reasonmg
method can overcome the effects of the Hughes phenomenon [Hughes (1968)]
- which results in lowered classification accuracy for high-dimensional data with

~ limited number of training 'samples. The goal is to show that improved

'-classiﬁcation can be obtained by de,composing a high-dimensional data source
into smaller and more manageable pieces and treating them as muiltiple data
sources. The possublllty becomes more concrete in Section 6.4 where the
method is applied to a simulated High Resolutron Imagmg Spectrometer
-.(HIRIS) data set WhICh is composed of 201 bands ’

In every apphcat|on the classrfrcatlon accuracres of the MSD classmca—

-_tlon'are compared with those of Maxumum erellhood (ML) classrflcatrons based

. on t__he _stacked vector approach. - Since the stacked v__ector aP.Proach_ treats o
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c0mpo_un'd vectors as data from a singie-- sou’rc'e; the'comparison'of thevMSD

5 ’and the ML classifications will assess the advantages and the disadvantages of

the multrsource data ana|y3|s approach compared to a standard smgle source
o analysrs approach used in’ remote sensrng : I

vTabIev"G.t; Multisource :Dat'a Sets.

‘ ~Name ,‘ e - Types of Data Sources - ,
Anderson River Data Arrborne MSS SAR Elevatron Slope Aspect
Indlana Agrlcultural Area e Alrborne MSS FER . :
| FineyCounybaa | wRIS |

62 Classmcatron ot Multlspectral Data combmed wrth Topographlc
Data ' e

, The Anderson Rrver data set* used in the flrst expenment consrsts of 3
muitrspectral data sources (optlca! and radar) and 3 topographlc data sources
Table 6. 2. descnbes the types of data. sources for the first experlment The

_’f?‘lmage of thus data set consrsts of 256 Imes by 256 columns and covers a

ff forestry site around the Anderson River area in Brrtrsh Columbia, Canada

. Source 1is 11-band Alrborne Multispectral Scanner data (A/B MSS) Sources
- 2.and 3 are Synthetlc Aperture Radar (SAR) |magery in Shallow mode and
_Steep mode respectrvely The column “spectral band” for sources 2 and 3

“describes the band and the transmit and receive type of SAR |mages For
: ::example XHV. means that the. |mage is. obtalned in X- band (1 3cm) of. the.

microwave regron by horizontal polarization transmit and vertlcal polarrzatron o

g ’recelve Sources 4 - 6 provide digital terrain data obtained as follows

L The SAR/MSS Anderson Rlver data set was acqurred processed and Ioaned
" to Purdue University by the Canadian Center for Remote Sensing, Department
,t_‘of Energy, Munes and Resources of the Government of Canada = ;




_Tablé 6.2 Descripﬁon”of Ander's’_vvon Ri}vérv vDatavSe't.v |

~ Source

Index - |

. Spectral

Channel

_Type

ABMSS

Region

| visble |

4245

| s0-55 |
60-.65 |
65-.69 |

f: ‘Near'IR“ |

70-79 |
.80-.89 |
.92-1.10 |

Jle e oo s w2

 SAR

" Thermal |

~ Shallow

XHV -

 XHH
Y
- “LHH

SAR

| Steep

XHV
XHH
LHY

- Topo-
graphic. |

Elevation

'LHH

Aspect

Slope o R

,Spect_ra[’f . RE
Bandum) f
"4z |
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‘a) dlgrtal elevatlon model (DEM)
| gray level {elevatron (rn meters) 61 996} 7 2266

oy ;b) drgrtal aspect model (DAM)

gray level aspect (rn degrees)
) drgrtal slope model (DSM)
gray level = slope (rn degrees)

Table 6 3 lrsts the rnformatron classes in the area, and Frgure 6 2 shows -
 the ground truth map. More than three quarters of the areais covered by mixed

o forestry. The information classes were. defined based ona forestry map, and it -

| ‘,has been observed that some of the classes are very drffrcult to classrfy
_‘accurately In_this experrment 6 of the more- separable classes were selected,
;and these are Irsted in Table 6.4. Figure 6.3 drsplays the test areas of the 6

cIasses over the enhanced A/B MSS rmage ‘Some-of the freld Iabels are not

readable However they can be confrrmed by the ground truth map in Figure

8.2, Frgures 6.4 and 6.5 are Synthetic Aperture Radar |magery respectrvely in. |

‘ Shallow and Steep mode, and Flgures 6. 6 through 6 8 are the drgltal terrain
rmagery of the data set : ’

o Table 6 5 is the global statistical correlatron coeffrcrent matrix among the
-data sources Correlatron coefficients between pairs- of vanables from different

o ’sources are: generally qurte low compared to those’ from the same source.

' ‘When the data canbe assumed to be: normally drstnbuted therr uncorrelated- |

. ness |mplles statrstrcal mdependence In the experrments we treat the data

- sources (lncludrng the topographrc data sources) which have relatively Iow
correlatron as “globally mdependent” in order to assume that they reasonably
B closely satrsfy the “drstrnctness” of bodres of evrdence requrred by Dempster s'
,’rule ‘ ' S : e
o ln the experrment wrth the Anderson Rrver data set 100 prxels per class
, were used for trarmng data whrch is between 4% and 8% of the total prxels of
" the classes in the test fields. The training samples are unlformly distributed over
o the test frelds so that they may be consrdered as good representatrves of the



Table 6.3 Information Classes in Anderson River Data Set.

|l class |
" Index |

Cover
"Types

Tree:

1 Sizes |

No.of
Pixels

% of .
Total

© N O OTA W N

11
12
13
14
16

19

18 |

Douglas Fir (DF) 1
“DF 2 |
- DF3
DF4

- Bare Soil, Slides
DF+Other Species 1
~ DF+Other Species 2.
- DF+Other Species 3

'DF+Lodgepole Pine 1

DF+Lodgepole Pine 2
DF+Cedar 1 -
~ DF+Cedar 2.
Lodgepole Pine
Hemlock+Cedar
- DF+Hemlock

" Hemlock+DF 1

Hemlock+DF 2
- Rock; Talus

> 40m

31 -40m
21 -30m

| 10-20m

‘> 40m

1 31-40m |
21-30m |
31-40m

21 30m
> 40m.

31 - 40m

10 -20m.

31-40m
31 -40m
31 -40m
21-30m

1946

13158 |
6576

1045
" 1i1 0

1973
5761 -
1309

' 510
5636

2483
2895

113

3173
2961

825

456
1982

12624

297
20.08

 10.03

1.59.

017

3.01

879 -
2.00
0.78

- 8.60
- 3.79
4.42

- 017

- 4.84
4.52
1.26

- 0.70
- 3.02
19.26

Forest Clearings‘

Tota

65536

' 100.0



Douglas Fir 1
Douglas Fir 2
Douglas Fir 3
Douglas Fir 4
DF+Other Species 1
DF+Other Species 2
DF+Other Species 3
DF+Lodgepole Pine 1
838l DP+Lodgepole Pine 2

Figure 6.2 Ground Truth Map of Anderson River Data Set.

DF+Cedarl
DF+Cedar 2

TV oene e

DF+Hem lock
Hemlock+Cedar
Lodgepole Pine

Bare Soil, Slides
Wock. Talus
Forest Clearing



Table 6.4 lnforhiatidn‘ Classes f,o,r:Te;sf of"Ahdérsbn _Rivé’r Data Set.

Class

_.-Cover ' | Tree No. of . % of

Index |

2
3

7
10
14
19

DF+Lodgepole Pine 2 (df+/p2)| 21-30m| 1589 | 15.37

" Types Sizes | Pixels -] Total

Douglas Fir 2 (df2) | 31-40m| 2246 21.72
Douglas Fir 3 (df3) 21-30mf 1501 | 14.52
DF+Other Species 2 (df+0s2) 31 -40m| 1352 1 13.08

Hemlock+Cedar (hc) | 31-40m| 1587 | 15.35

Total

Forest Clearings (fc) 2064 19.96

| 10339 | 100.0

N ‘Figure'6.3 Test Areas over Histogram Equalized A/B MSS

(Channel 10) Image of Anderson River Data Set.



Flgures 6 4 H!stogram Equahzed SAR-Shaliow mode (LHH)
o Image of Anderson River Data Set-

Flgures 6.5 Hlstogram Equalized SAR-Steep. m@de (LHH)
' !mage of Anderson aner Data Set




Figure 6.7 Digital Aspect Image of *And:é'rson River bata Set.

¥



Figure 6.8 Digital Siope Image of Anderson River Data Set.




i . Table 6;’5,S‘_‘taii:s‘ticall Correlation Coefficient Matfix of.Ander'soni .RiVer.Daté Set.

12 3 4 5 6 7 8 9 10 11

1.000 0815 0753 0709 -0.670 0.633 0.626 0.573 0.459 0.520 0.593
. 1.000 0956 0.933 0.905 0.882 0.875 0.686 0.505 0.563 .0.747
5 1.000 0.975 0.961 0.955 0.951 0.677 0.465 0.516 0.792

~ 1.000 00996 0984 0.981 0744 0.530 0.570  0.765|

© -1.000 0992 0.990 0742 0526 0.562 0.761f

" 1000 0.998 0.672 0.442 0.477 0.760]

i 1.000 0.684 0.454 0.490 0.773
1 1.000 0926 0956 0.617

1.000  0.959 0.464

| 1.000  0.532

__1.000f

HW N =

{ aB
I mss |

23 0omNuoe o




~ Table 6.5, Continued.

_SAR STEEP

~ TOPOGRAPHIC |

| sar sHaLLow
. LHH LHV YHH

XHVY | 5

LHH -

LHV -

XHH

XHV

Aspect Eleva  Slope |

| sAR

SHAL |

LHH
LHV

XHH
XHV |

1,000 0.323 - 0.447 0.316

©1.000 0312
.. 1.000

0.326

10.086
0.161 -
0.007
0.161

10.097
0.164
0.085
'0.166

0.147
£ 0.187
0.105
10.201

0.143 .
-0.208

0.104

-0.216

jo.114.
0.106
10.033
0.082 -

-.027

-.033
-177
-.062

-.006 |
0.027 ||
0.022 ||
- 0.046

| SAR
| STEEP

"LHH
LHV

XHH |
XHV |

. 1.000

- 11.000

0.348
1000

0.472
0.338

' 1.000

0.378
0.558
0.391

0.094
0.150
0.139

0.175

0.101
-054
0.131
- 0.027

0.131

0.064 |
0.124 |

“0.072 ||

i TOPO |

Eleva

Aspect|

1.000

1.000

0127
71.000

117 b

-.023 |
1.0 i

€8



Table 6_.5; Continued.

__SAR SHALLOW |  sSAR STEEP___ | TOPOGRAPHIC |
~LHV__ XHH XHV | LHH LHV  XHH XHV |Aspect Eleva Slopel =~
l0.074 0.094 o0.102 0.088 [-123 0.008 -.193 -035 |-076 -589 -039 |
0.082 0.105 0.107 0.097 |-117 0.041 -190 -.005 }-063 -546 -055 | .
0.075 0.103 0088 0.087 |-099 .0.061 -169 0,017 |-041 -424 -061 |
0.074 0.102 0.082 0.087 |-.081 0.076 -140 0.038 |-031 -333 -.071
0.069 0.099. 0070 0.082 |-072 0.081 -128 0.045 |-024 -271 -074
|0.060. 0.089 0.052° 0.070 |-.065 0.078 -.122 0.044 |-013 -217 . -.066
0.062 0.093 0.051 0.073 |-.065 0.079 -.121 0.047 |-.009  -.205 -.067
0.103 0.147 0.127 0.139 |-074 0.096° .-.101 0,074 |-034 -327 -107 |
0.099 0.145 0.135 0.141 |-066 0.086 -079 0.069 }-036 -320 ~-.100 |
~lo.108 0158 0.136 0.154 |-076 0.083 -100 0.068 |-042 -365 -106 [ =
J0.092 0.131_0.089 0.110 |-.084 0047 -152 0014 {-072 -341 -066 |

“A/B |
~Mss |

© o NG AWK

- O

s
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4000 T BRI
EEREE T ~ Elevation
~ Aspect

Number~ ‘o‘f Pixels .

192 . 256
Gray Value '

Flgure 6 9 Hlstogram of Anderson Rlver Topographlc Data (Total Area)

I o ===== DFP2 |

" Number of Pixels

128

Gray Value

Fugure 6 10 Classwnse Histogram of Trammg Samples of a Subset
- of the Classes in theAnderson Rlver Elevatlon Data.
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_ Number of Pixels
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Gray Value S "

Flgure 6 11 CIasswuse Hlstogram of Tralnlng Samples of a Subset
of the Classes in the Anderson Rlver Aspect Data ’

, o .. DF+082 1

27 — &

64

Gray Value

Flgure 6 12 CIasswnse Hlstogram of Trammg Samples of a Subset
RO of the. Classes in the Anderson Rlver Slope Data ’
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~ total samples.” As we can observe in Figures 6.9 through 6.12, some of the
~ classes defined in Table 6.4 cannot be assumed to be normally distributed in

o the topographrc data. Thus, it was decrded to adopt a nonparametnc appr’oach' :

- : accuracies than the ML method especrally for the trarnmg data.

- classification, mterval valued belief functions for the bodies of statastrcal”__"f_"- "

~ such as the “Nearest Nelghbor" (NN) method [Fukunaga (1972)] in computlng- .

'probablllty measures while the optlcal and radar data sources were assumed to"_ '
) have Gaussian probablhty densrty functrons Table 6. 6 compares the overall anl

classrflcatlon accuracies. obtalned by the ML method with - the Gausslan

,assumptlon and k NN method for the mdrvrdual topographlc data sources The o | i
results show that the topographic data are -information- bearmg inthe sense of

' , classnfrcatron and suggest that the topographrc data sources especrauy- Sl

Elevation, should be included in the classification. Although the k-NN method =~
N results |n various classlflcatron accuracies for different k’s, it always gives hlgher;f.

In the. MSD

, evrdence provnded by these topographrc data, sources were constructed from' o
~the. hkehhood functrons obtarned by the. 2- NN method SE

© Table 6.6 Overall Classification Accuracy (%) obtained by ML~

S ~ Method and k-NN Method for Topographic Data Sources.

= —

[sampes_

Method

Elevation |

Aspect

. Training

4583 |

67.00

©50.00 -

2 NNl‘

1 5 NN*_f, |

| 4450

R LTes“t,i:ng“\»‘ _

. 4284

- 3206 |

45.33

3563

4679

5NN

4503

aps |
467 | Ca
46,50 o
s |
"f30.72’_”_§'j- o
3451 | o



Table 6.7 Average Measures of Conflict between Pairs of Sb,urce:s,fusing o
- Partially Consonant Belief Function for Training Samples. ‘

SAR

SAR

Aspect

| Elevation |

'S.Io,pe

1 sShallow
ABMSS |

.362

Steep
402

390

343

" SAR
" Shallow

.328.

384

391

M7
424

__Steep

o402 |

387

483

©.395

I Aspect .

- Elevation |

397 B

= ——

Table 6.8 Average Measures of Conflict between Pairs of Sources using

Partially Consonant Belief Function for All Samples.

SAR
Shallow

SAR
- Steep

. -As_péct .

' Elevation -

Slope

A/B MSS |

375

411

402

352

421

SAR -

336

407

384 |

429

| Shallow
- SAR
'St'ee_g '

413 |

.401

446

_ Aspect

399

.382

|| Etevation |

413
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_ “In order to rank the sources by their rehabrlrty, the average J-M distance -
and the average Transformed Dlvergence of each source were calculated and
: _"compared with the overall classification accuracy obtalned by the ML method

'»over the trammg samples (Table 3.2). We also computed the average

; -rmeasures of conflict between pairs of the sources usrng the consonant bellef_. :

o 'functron (Tables 3. 3 3. 4) and the partlally consonant bellef function (Tables 6.7,

6.8). Assumrng that A/B MSS is the most relrable in the sense of classmcatlon
all the measures agree that Elevatlon and SAR Shallow are the. 2nd. and the
B _3rd respeotrvely ‘They do not agree at all for the remaining sources ln the

FRE - multisource data classification with this data set, the remarnmg sources have
B been consndered as equally relrable ‘ S _

For the purpose of comparlson the ML classrfrcatron based on the' h
’stacked vector approach was carned out for varlous sets of the data sources,
'addlng one source at a time to the A/B MSS data in the order Elevatlon SAR- .
Shallow ‘SAR- -Steep, Aspect and Slope Then the MSD classification - was - -

: 'performed using dlfferent combrnatrons of mterval valued belief functions and

' vdecrsron rules - Tables 6. 9 and 6. 10 compare the results for the training

: samples and the test samples respectrvely Even though the compounded data _ : B |
" in the ML classification were treated as having Gaussian distributions, the ML

- and the MSD methods produced smrlar results for the tramlng samples This is

ot surprrsrng because the ML method: uses conventlonal ‘additive probabilities

- assuming that the knowledge concernrng the actual unknown. probabrlitles is _'
o ‘complete whrch rs reasonable as far as the trarnrng samples are concerned

ln the- MSD classmcatlon usrng the partrally consonant bellef functlon.
(PCBF) the. mformatron classes were partrtloned as {df2 df3; df+lp2} and

{df+osz he, fc} This partltron was made on the basis- of the classwise

“separability measures of the individual sources. so that the average separablllty
' ‘-‘between the partltlons as maxrmrzed St SRR L

, 7' Comparmg the performance of the two bellef functlons the consonant .
_belref functron (CBF) was better for the tramrng samples whlle PCBF was better

i " 'forthe test samples tis not known at this point whether CBF. or PCBF is better-, -

_'As far as the decnsuon rules are concerned the maxrmum plausrblilty (MP) rule - ;
'was superlor to the other rules the maxrmum support (MS) rule and the _
.jmaxrmum average probabllrty (MA) rule lt |s also not known |n general whrch.
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Table 6.9 Results of ML Classmcatlon and MSD Classmc‘atlon " SRS
: . over Tramlng Samples of: Anderson Rlver Data o

Rule- 1 | 14 | 124 1-4 | 1-5 1-6

ML | . | 8250 | 88.67 | 91.67 | 92.00 | 92.83 | 93.50

MP | - | 89.83 | 92.00 | 9250 | 93.17 | 94.33

fcer | Ms | - | 867 | 9117 | 91.33 | 92.33 | 9367 |

 MA | - | 8850 | 91.00 | 91.67 | 91.67 | 93.50

o MP | - | 867 | 9150 | 9217 | 92.67 | 93.83 ||

Ms | - | 8683 | 8967 | 9133 | 91.00 | 9217 |

‘MA | - | 8750 | 90.17 | 91.83 | 9167 | 92.83 |

Table 6.10 Results of ML Classification and MSD Classification
over Test Samples of Anderson River Data.

Decision | | " “Sources
Rule

1 [ 14 |124f1-4]1-5]1-86 ||

I me | | 7416 | 7777 | 70.13 | 78.93 | 79.80 81 o1

,, Mp | - | 8060 | 8239 | 82.69 | 83.02 | 84.54
fcer| Mms | - | 7845 | 81.42 | 8167 | 82.24 | 8365

MA | - | 7821 | 80.95 | 82.05 | 81.88 | 83.16

I | M | - | soss | 8276 | 8315 | 84.27 | 85.95
~|Pcer| Ms | - | 7894 | 81.31 | 81.64 | 83.05 | 84.16

| mMA | - | 7849 | 8167 | 8225 | 8378 | 84.44 |



rule |s the best Further research is needed to determlne whether gurdelrnes |
3 ucan be devrsed for selectron of the bellef functlon and decns;on rule ’

The MSD classrflcatron for all the sources was |terat|vely performed wrth :
L varrous degrees of source rellabrlrty In: thrs case, the MP rule. was used as a-
’decrsron rule because lt produced the. best results in- the classrfrcatron off

T "overall classrfrcatlon results over the tramlng samples and the test samples’ '
.,_;.fi;‘respectlvely The results show not only that the classrtlcatlon accuracy ‘may.
e fi‘fmcrease as the relrabrlrtles of the addltlonal data sources are vaned but also. o
o ’“f‘_that it can be degraded if the addltlonal data sources are drscounted too much
o tis also observed that the vanatlons in the accuracy. by PCBF are relatrvely |
smaller than those by CBF The reason is because the wrdth of a partrally: o
' .‘-consonant mterval valued probabllrty |s usually less than the wrdth of a

EEn 7' ‘Table 6;11 ‘Flesults of MSD Classrflcatlon over Tramlng Samples of Anderson -
‘ :*.Ftrver Data wrth Vanous Degrees of Source Rel:abllrty o

| ‘, ». 3 4 5 ‘Overall (%)
1 cer [ 10| 08 | 06| 08| 06| o5 | sesss
04| 08 04 | o
. 1 0 | 10 | 10 | 10 83
07 é;;'~:[o;5‘ 0.7 | 05 | 05

-multlple data sources wrth equal rellabllltles Tables 6. 11 and 6 12 show the 3



‘consonant mterval valued probablhty, which makes PCBF Iess sensltlve to the—,;i
g changes in source: rehabnhty —

Overall the MSD cIassmcatlon usrng evrdentlal reasonlng was able toh '
produce hlgher accuracy than the ML classification. The mcrease in the

: _classrfrcatlon accuracy obtalned by the MSD classnflcatlon should be pnmanly T

. attributed to the ER method’s capability of adequately" represe‘ntmg bodies of
statistical evidence by interval- valued probabilities. FUrther‘mOre‘ the MSD
~_classification:was. capable of mcorporatrng various degrees of. source rehabllltyf}"
| ;}lnto the process by: treatlng the multiple sources: separately It was alsoi
o ﬁj‘possmle in this particular expenment to utilize non-parametric mformatron usung |
~the k-NN method together with’ parametrlc mformatron ~ This is another'
':fadvantage of- _the MSD c_Iassnfrcatlon by treatlng the.‘multl_ple sources sepa_rately .

Table 6.12 Results of MSD CIassrflcatlon over Test Samples of Anderson o
Rrver Data wrth Varlous Degrees of Source Reliability.

| | sburce Reliability . '-,
12 3| 4| 5 | s | Overall (%)
|10 10| 10| 10| 10| 10| 454 1
| ] 10 | 08 | 08 | 08 | 08 | 08 | 8540
- cBF | 10 | 08 | 06 | 08 | 06 | 06 | 8569
40 | 07| 05| 07 | 05 | 05 | 8425
| 10| 06| 04| 08| 04| 04] 8304
10 | 1.0 | 10 ] 10 | 10 | 1.0 85.95
|10 ]| o8| 08| 08| 08| 08 86.09
pceF | 10 [ 08 | 06 | 08 | 06 | 06 | 8674
|10 | o7 | o5 | 07| 05| 05| 8527
10 | 06 | 04 | 08 | 04 | 04 | 8321
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o 6‘;3.,,,"Cl'aSSification 'of‘ s‘inglé_;source ,Mul,tispectral‘ | D;Yata .

A | In the prevrous sectlon the proposed method was. applred to the

: 'iclassrfrcatron of multrsource data obtarned by vanous sensors. The data set ‘
— used in thrs sectron is 12-band. Arrborne MSS data whose flrghtlrne ID is: “CRN
i BLT LO FL21 taken on August 21, 1971 Table 6.13 descrrbes the spectral

i'regrons and bands of the 12 lnput channels compnsrng the MSS data. The size
- ofthe. |mage is 220 lrnes by 140 columns, and the. lmage covers an agncultural

' ’_area in Indrana Frgure 6.13 is the ground truth map: of thrs area, which lsf
iy r‘drgltrzed and geometrlcally registered with the MSS data lmagery

Although the regrstratron has been made very carefully, the ground truth

e map contams geometnc reglstratron errors. The error is more notrceable along

~ the boundaries between different ground types. Ifthe whole area were used for
; test, incorrect classifications evaluated on the basis of the ground truth map -
'would result not: only from: bad pertormance of a classifier but also from the
geometric. regrstratlon error In order to avord this confusron test areas were
| ‘fchosen Flgure 6. 14 shows the test areas on the MSS rmage (Channels 1,4,
_.9) There were 9 rnformatron classes. for the test, and Table 6.14 llsts them wrth‘ -
' 'v»therr actual number ot prxels counted from the ground truth map DT

: Th|s experlment was desrgned to observe how the proposed method |
govercomes the Hughes phenomenon when the number of trarnlng samples rs -
80 small. . The strategy underlyrng the method is to’ decompose the relatrvely

' ; large body of evrdence into smaller more manageable preces to assess

o ifrplausrbrlltles based on, each plece and to comblne the assessments by a
“"comblnatlon rule. ‘ SRR S

- The set of multlple data sources was formed as shown |n Table 6 15 by
,_drvrdrng the 12 band MSS data based on’ the global statrstrcal correlatlon’
.V(Table 6.1 6) whrch corncrdes wrth the spectral regrons As expected the :

B correlatron between parrs of- bands from drfferent spectral regrons (except the o

thermal reglon) are relatrvely low compared to those wrthrn each spectralf.

| :fregron ‘Even though the thermal band was relatrvely hrghly correlated wrth the -

- visible bands we chose to treat itas though it were a distinct’ source The'
' f’consequence of havrng done so'is apparent in the experlmental results S



Table 6 13 Descrlptlon of Alrborne MSS Data of Indlana
: Agncultural Area Data Set :

“Spectral
" Region

Input

" Channel”

“Spectral

_ Band@m) |

~ Visible

0.46-049
0.48-0.51
050-054

~ 052-057
S ;Qv,54% 1060
|  os8-065

0 061-070

- Near--
Infrared

072-092 |
1.00-1.40

1 - Middle
Infrared

s 200 2.60

150-1.80

' " Thermal

9.30 117of ”

Tab'le».6;14 Informatio_n Cflasse‘sv in Indiana Ag'ri;c{:ultubral Area Datg S-ét. -

: Class
Index

Cover
Types

" No.ofTest

Sa‘mple's

1

® N O oA WN

o ,1',C°m S
~ ‘Soybean
Non-Farm

Pasture

Oat
Wheat -
Sudex
‘Hay
Wood

3489 | 2
6454 | 4
593 |
398
602
936
'1,1361 o
115

6.11
8.31
4.44

298

4.51

- 7.01
~ 3.08
- 270
"aose

13360;: ‘

_100.0 H

: I_ Tot-él ‘

94



Soybean

Non-Farm

Wheat

Figure 6.13 Ground Truth Map of Indiana Agricultural Area Data Set.



F|gure 6.14 Test Areas over A/B MSS (Channel 8) Image
of Indiana Agricultural Area Data
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'For. each class from 15 1030 samples unlformly dlstnbuted over the test
flelds were selected for training. Flrst the ML classmcatlon was performed with

. -various sets.of the. lnput bands. Tables 6.17 and 6. 18 are the results over the

‘training samples and the test samples respectlvely The overall classification

accuracy is the percentage ratio of the number of the correctly classified plxels o

_ “to the total number of ‘pixels while the average classr‘llcatlon accuracy is'the
anthmetlc mean of the classwuse accuracres ‘

o , Then the proposed method was applied to subsets of the lnput channels
- treating them as multlple sources. Tables 6.19 and 6.20 show the results of this
MSD classmcatlon over the tralmng samples and the test’ samples, respectlvely
_ In this case the consonant belief functlon and the maximum plausrblllty rule
- were adopted and the “multlple sources” were assumed equally rellable

S In the ML classrflcatlon both the overall and the average accuracres

: 'flncreased as the number of features was increased for the tralnlng samples but
, ‘}thls was not true for the test samples In the MSD classmcatlon utlllzmg aII lnput
"channels although both accuracies were below 100% for the tralnlng samples
they were comparable to or higher than the accuracres produced by the ML
method “The results exhlblt two lnterestlng features ~First, the classmcatlon

o accuracy for the MSD class:flcatlons decreases as the set of bands is'more

~finely subdivided. This is because ,more,lnformatlon in inter-channel statistical
correlation is lost as the data set is more finely subdivided. - Second, there is'a _

Table '6';15:Div,i‘ded Sources of lndiana Ag*riCult’Ural AreaData .,.S:et., SO

 Source | . Spectral .} dmput | .
Index — §. Reg|on Channels
1l visible o 107 |
2a - 'Near Infrared i 8 9 ]
2b |  Middle Infrared | 1011 |
2¢ | Near & Middle Infrared | 8to11 -
2} Therma | 12
2 Infrared . | 81012

R = — - I



' Table 6.16 Statiéticail. Co_rrélation Coefficient Matrix‘Of Indyiéna Agr_icUItural Area Data Set. -

1.000.

Band | 1 2 3 4 5 6 7 | s 9 | 10 11 12 |
1 | 1000 864 899 750 836 .839 909 | -312 284 | .413  556| .726|
2 | '1.000  .893 696  .868 .913 = .939| -.355 -267| .371 .577| .767|
3 1.000 .885 .954  .892  .904{ -195 -174| 442 547 691

4 . 1.000 919 - 794 .733| 047 -003| .491  .489| 542
5 | . 1.000 908 .885| -160 -.140| .448 .548| 692
6 1.000 936 | -353 -310| .393 577 .805]
7 | _1.000| -445 -358| .409 607 | 830}
8 | 1000 .858| .350 .076| -.520
9 1.000 | 517  .254| -.415
10 ~ |'1.000 .861| .378

11 - 1.000| 623
12 S

86



' Table 617 Results “of"Ml"'_"CIaSSi-fiCati‘oh byer‘T'rai"h-ihg Samples for V‘arious Sets of Input Bands.

Percent Agreement wnth Ground Truth- Map

Class Index (No. of Plxels per Class)

“Accur racy

InpU't:._.” '

J Ba-n_ds

(30).

1

30

3 4 5 6 7 8 9

(18 (15) (15 (18)  (15)  (15)  (15)

Overall‘

_Average

.. 1 TO »1‘2,;;
1t07
‘8t0 12
I 8to11:
1 89
1011

42

100.00

96.67
100.00
196.67
96.67
100.00

. 83.33

1100.00

96.67

- 76.67

83.33
83.33
.86.67

100.00 100.00° 100.00 100.00 100.00 100.00 100.00

100.00 * 80.00 - 93.33 83.33 93.33 86.67 93.33
100.00  66.67 100.00 - 94.44 93.33  60.00 100.00
100.00 ~ 46.67 100.00 7222 ~ 93.33 66.67 93.33
86.67  0.00  6.67 ~77.78 '73.33 20.00 86.67
100.00  20.00  20.00  0.00 53.33 40.00 93.33 |
. 93.33 0.00 40.00 1111 0.00 0.00  0.00 |

E oo.;oo_ E
- 92.26.
1 91.67
- 83.33
- 64.88

61.90

43.45

1100.00
.'91.48 |
90.12
| 82.84
- 59.01- ||
56.67

34.94

66



Table 6.18 Results of ML Classification over Test Samples for Va_riou;s.Sets,,;oflnbut Bands :

Percent Agreement with Ground Truth Map

. Class Index (No of Plxels per Class)

~ Accuracy ||

input
Bands

1
(3489)

2 .

(6454)

3 4. 5 8 7 8

(593) (398) (602)  (936) (412) (361)

9.__.

(115)

Overall

Average|

1t07

8,9
10, 11

: L_12

f_1‘to 12

8to12.
8to11

199.08

89.45
96.70

196.10
90.51

93.24
81.11

97.92
72.89

91.56

73.27 -
82.00
60.75 -

87.02 4271 6894 90.81 19.90 66.20

91.57 41.21 80.56 . 67.09 38.59 - 43.49

199.16  40.70 95.51 71.47 74.21 54.85

97.64 33.92 .91.86 63.25 72.33 - 54.29
86.68 0.00 10.80 66.35 54.13 15.24

-93.76 10.80 20.26 ~ 4.70 ~56.55 26.87

91.30
1 71.30
- 97.39
9478
- 95.65
9565 |

90.97
75.17
89.02 |

7892
75.13
62.72

66.23

80.18
. 75.27

5570 ||

- 51.40

84.13

90.21  0.00 34.72 - 37.07  0.00  0.00

0.00

69.99

3636 |

004
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Table 16»;19‘-Results~o,f MSD Cllaszification over Tfraining'Sample-s.' e S '

Percent Agreement with Ground Truth Map

i - Class Index (No of Pixels per Class)

Accu racy

I_n'put -
 Sources

T

@0

@)

(15 (15 (15 (18) (s (15  s)

3 4 5 6 7 8 9 | Overall

1 2.
1 20 2d
1,2a,2b,2d

100.00°
1100.00

100.00 -

100.00 -
100.00

196.67

86.67 100.00
80.,00; 100.00
_73.33 100.00

100.00
100.00 -
100.00

94.44 100. 00 100.00
94.44 100. oo 100.00
88.89 100.00 100.00

1_'00.00{'
100.00 |
193.33 |

_ 9_8_.2,1
. 95.24.

- “'Table 6.20 "Results of,.:MSD Cla’ssificati'oh cver Test :Samples.' o

Percent ‘Agreement with Ground Truth Map ”

Class Index (No of aneis per Class)

1 Accuracy

Tnput

~Sources

(3489)

(6454)

(593)  (398)  (602) (936) (412) (361) ,-(1;1-‘5).'"

Overall

Average

1,2

1 2a 2b 2d

| 9770
©:96.85 ¢

95.51"
91.78
91.74 -

96.12 5578  96.68 84.51 70.87 82.27
9562 47.74  96.51 - 76.39 63:11 8227 93.91

o739

53.08 86.31
89.97
_89.41

82.69

95.28 - 38.44 93.36 - 75.64 57.28 8504 95.05

.81.01

A‘ve r agé_ | i

_94.69]

i0L
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consrderable mcrease in the average classrflcatron accuracy of the MSD
classmcatlon for the test samples as' compared to the ML classmcatlon
accuracy. Itis expected because the MSD classrfrcatlon classrfres prxels based
on the assessment of multlple sources mstead of a smgle source. - This is'a
major advantage of the MSD classification over any single source data
classrfrcatron Wh|Ie the ML classification based on the stacked vector
approach combines the features in the raw data level ‘and bunes their relatlve
rellabllltles in the statistical correlation mformatlon the MSD classification
comblnes the multlple groups of the features after assessing- the mdrvrdual
groups with explrcrt consrderatlon of their relative rellabthtles SRR

In order to demonstrate the Hughes phenomenon the ML classuflcatlon
over the test samples was performed wrth vanous numbers of the best features ,
as determmed by feature selection usmg both the J- M drstance and the
_ Transformed Divergence. The result of the feature selectron was, from best to ‘
worst: 8 12, 11, 10, 9 7, 6, 4, 5 3 2, and 1. As shown in Flgure615 the ML_
method gave the hlghest accuracnes at8features (8 12 11,10, 9 7 6,4).

- .However, the MSD classification based on the proposed method was
able to utilize all features when applied to a “multisource” data set consisting of
two “sources”: one having the 8 best features and the other having the
'remainin'g 4 features. The first 4 lines in Table 6.21 are the results of
classification with various degrees of reliability applied to the second source.

Another set of multisource data was formed by drvrdrng the features into
two groups each of which has roughly equally good features. The classmcatron
‘result from applying the proposed method to this data set is shown in the last
line of Table 6.21. In this particular case, although. the dependencres,between
. sources were ignored, the accuracies were the highest. This is due to the
‘ reinforCing characteristic of Dempster’s rUIe which means that the combined
'body of evrdence provrdes stronger support than any mdrvndual body of
evndence -
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- 901

70 7t

 Classification Accuracy (%)

0 2 4 6 8 10 12 14
R Number of Features b :

Flgure 6 15 Results of ML Classnﬂcatlon over: Test Samples - -
: for Vanous Numbers of Features s

Table 6. 21 Results of MSD Classmcatlon for Data Set
: formed by Feature Selectlon ‘ ,

Bands in Source 1 | - 'B_andsih S‘o?urcer»z ,
(Source Reliability) | (Source Reliability)

Overall | Average

*5321 (1.0 9527 | 89.29

-,81211109764 ) ]
©9 | 9607 | 9042
)

.0)

-

9665 | 90.07
B ‘ | 9681 | 89.96
7_8119652(1 0 ‘—,12107431(1.‘0)’ | 96.89 | 9113

_;_L_L—&

1.0
.0
1.0

,\AAA
"~ S~
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6.4. 'Classification oanlRlS Data .

‘ The ngh Resolution lmagmg Spectrometer(HlRIS) is an Earth Observmg
- System (EOS) sensor developed for high spatlal and high spectral resolutlon It
can provide more |nformat|on in the 0.4 to 2.5um spectral region than any other,‘
earth- -observing sensor. Table 6.22 compares some of the attributes of HIRIS
and early Earth satellite observmg sensors. [Goetz and Hernng (1989)] "

The hlgh dlmensmnallty of HIRIS data causes several dlfflcultles in
classnfymg the data. In addition to the hlgh computatlonal cost. of classﬁymg
such data, a- huge-amount of tralnlng samples is necessary in order to have
ac_cur_a__te estimation of the statistical parameters using all 192 channels.
"\Fu'rthermore unless these parameters can be accurately estimated, it is even
|mposSIble to use statlstlcal feature ‘selection technlques to reduce the -
dlmenS|onaI|ty ‘ '

In thls sectlon the proposed method is applued to the classmcatlon of
. HlRIS data by decomposlng the data into smaller pleces le subsets of

Ta:ble"6.22 CvomparISOn.s of MSS, Thematic Mapper (TM) and l—llRlSt

S MSS | TM__ | HIRIS
No of Spectral Bands ' ’k 4 _Y " 3 AR 192
IFOV(ground) o 79m 30r120m | 30m I
I pynamic Range | _ebits | 8bits | 12bits ‘- | .
(- ~ Swath Width | 185km N 185km  30km “
_ DataRate | 7.63Mbitsisec | 67.4Mbits/sec | 300Mbitsisec "
R | 0.45-0.90um | : |
| 'Speétral,negion” | 05-1.4pm | 1.55-1.75um 0.4-2.5um
R | | 2.08-2.35um | B
s - 10.4-12.5um .
IL ‘Spectral Resolution | 0.1-0.3um | 0.6-227um |  0.01um |




105

spectral ‘bands' The data set uSed in this experiment' ’is simulated HIRlS data

o obtalned by RSSIM [Kerekes and Landgrebe (1989)] ‘RSSIM is a simulation
'_'ftool for the study of multlspectral remotely sensed |mages and assocnated5

PR vsystem parameters It creates realistic multlspectral lmages based on detailed e |

- models of the' ground surface, the atmosphere, and the sensor 'l'_able 6.23

L prowdes a descrlptlon of the snmulated HlRlS data set.

Flgure 6. 16 is-a vrsual representatlon of the global statlstlcal correlatlon

S coefflcsent matnx of the data The image is produced by convertlng the absolute
 values of coefﬂcrents to gray values between 0 and 255. Based ‘on the
B Vfcorrelatlon |mage ‘the 201 bands were divided into. 3 groups in such a way that -

~ intra-correlation is maxrmlzed and inter-correlation is m|n|m|zed Table 6:24

~ describes the multisource data set after division. Note that the spectral reglons "
- | jof the lnput channels in Source 3 comcrde wrth the water. absorptlon bands.-

| W|th 225 trammg samples (a th|rd of the total samples) for each class the

: ML classmcatlon and the multlsource data classmcatlon usmg the consonant -

bellef functlon and the maxnmum plausrbrllty decrsuon rule were performed over =

- the total samples for varlous sets of the sources ‘and the results are listed in

” 'Tables 6. 25 and 6.26. In the multlsource data classrflcatlon for Source 1 and
‘Source 2, first the sources were given the equal rellablllty and then Source 2
'was dlscounted with degree of rellablllty 0. 9 to show the effect of varylng N

C degrees of rellablllty on the classn‘lcatlon accuracy

 Table 6.23 Description of Simulated HIRIS Data Set.

Name | FineyCountyDaaSet |
Data Type e 201 band HlRlS data simulated by RSSIM A
o Spectral Reglon b 04 24um De ST
',»"»Spectral Resolutlon SR Oowm p ,
| lmage S|ze i 45 lmes X 45 columns (2025 samples)
‘7 ;,‘lnformatlon Classes | Wlnter Wheat Summer Fallow Unknown




" ’Flgure 6.16 Global Sta’ustncal Correlation Coefﬂment Image
: of Finney County Data Set. . '




e The results of the ML method apparently show effects of the Hughes '

L ;f‘f’phenomenon the accuracy goes down as. the dlmensronallty of the source
g mcreases whrle the number of tralmng samples is’ flxed Cn partrcular the "

.‘vaccuracy decreases by a consrderable amount when all features are used

' 'resence of the Hughes phenomenon causes the ML method to be partlcularly

' ..:sensutrve toa bad source Source 3in thrs case Meanwhrle the proposed "

, | f‘i‘MSD classrflcatlon method always shows robust performance and glves
ifﬁf;i_con3|stent results L | T e e

To explore how to handle a srtuatron in wh|ch the tramlng samples were |

o ':‘.A;'-"i}too limited to permit use of all available features, both methods were run agarnvg_ |

f:”-wrth 68 tralnlng samples (10% of the total samples) and the results are shown
in Table 6.27. In. this: case the features were selected wrth a unlform spectral

.f|nterval from Source 1 and Source 2 excludrng the features in. Source 3 The -

“.”vfttable shows the number of features actually used for. the subdrvrded sources )
-~ Four cases were run, ‘each with a different spectral interval, resulting in-atotal of
LB 40, 31, and 20 features respectlvely The proposed method performed“= -
etter'rn’all four cases than drd the ML method .

| Table6.24 Divided své'urée..s'.Of:H"B'S; DataSet.

Input Channels NoofFeatures

- | Source nde)k "

Source1 ; 1 35 107 - 141, 157 201 L s
| Source 2 36 95 60
o e L 9%6- 106 a. 35 - 145um) o

142156 (1 81-195um)

- Sowced
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Table 6.25 Results of ML Classification with 225 Training __:Sarhﬁles__' o

Source 's1 | s2 s3 st,s2 | Al
(Classification | 2575 | 7560 | 4583 | 7456 | 6514 |
Accuracy (%) - o e R D

W|th 225 Training Samples

Table 6 26 Results of Multlsource Data Classmcatlon

Reliabilty of o

: Classificatioh o

' S1 | s2. S3 Accurécy (%) )
10 | 10 10 7763
10 | 1.0 |notused| 7783
10 | 09 |notused 78.32

| Tel',ble' 6.27 Results of Classifications with 68 'Trainin'g Samples..

. C'?SSifidatidn Accu‘racﬁyﬁ(é/;)’ ROt

S1

S2

“Sources S2 S1 | S2 S1 | s2 | st

# Features| 33 | 18 | 27 | 13 | 21 10 | 14 6
ML 7743  82.40. 82.86 81.82
"MSDC | 8222 84.10 85.04 81.90
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| 65 Disoussion

In thls chapter the Evrdentlal Reasonmg (ER) multlsource data

o 'classlfrcatron method presented in Chapters 3,4, and 5 has been applred 0. the 8
..ground cover classlflcatron of various multlsource data sets. Once |t is
‘determlned Wthh belief functlon and decrsron rule will be used thew'
," 4 : i;'.lmplementatron of the method is as easy as |mplement|ng a typrcal ML method

L The first expenment wrth the multlsource data set consnstrng of 3 multl-l"'.‘ :
T “channel data sources and 3 topographlc data sources was mtended to assess

. }_,'“;the abrlrty of the ER method in capturing and utlllzrng the lnformatlon obtained

R t_trom the topographlc data sources as well as the multlspectral data sources: I

this partlcular expenment some of the classes could not be assumed to be -

‘ -'normally distributed in the topographic data. Thus, in the MSD classrflcatlon"'

o , 'based on the ER method the nonparametrlc Nearest Nelghbor method was

" adopted to compute the llkellhood functions’ of test samples Wthh were: ‘then f 3.

i ‘-'used to construct the IV, belref functlons for the bodles of evrdence provuded by
- wfthe topographlc data sources. By treatrng the multrple data sources separately,

‘v"’the proposed method was able not only to utrlrze nonparametnc lnformatron, |

L ftogether wrth parametnc information but’ also to mcorporate varlous degrees of
- source rellabllrty into the process. The method provrdes more than one. chorce,-
-'__ffor representatlon of statistical- evrdence and a decrsron rule; these chorces glve
a lot of flexrblllty to the multlsource data analysrs At th|s pomt in the research it
o s nOt known exactly which chorces should be made in general the chorces‘
B ;must depend on our. knowledge concernlng the: context of the specufrc problem,

‘ fsuch as the hrerarchlcal structure of mformatlon classes and the amount and |
'fvrellabllrty of avallable mformatlon

The ER method was: also applled to the classmcatron of two srngle- '

' soufce data sets 12- band AB MSS data, and 201 band srmulated HIRIS: data. |

""ploth expenments were’ desngned o observe how effectlvely the proposed

. _Ti’-_fmethod utilizes the avallable features and overcomes the Hughes phenomenon |
" -whéen the number of tra|n|ng samples is small “From single source data a

" multisource data set was formed by decomposrng the high-dimensional data N

f’mto smaller and-more manageable pleces based on the global statlstlcal_ “
_fcorrelatlcn lnformatlon A e S R R
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In" the experime'ntal results for the 12-band A/B ‘MSS data, two
ob,sé-rvat-ions were made: (1) the classification ‘accuracy of the MSD
classifications decreased as the set of bands was more finely subdivided, and
(2) the average classification accuracy of the MSD classification increased
significantly compared to the ML classification accuracy. Accdrding to the first
observation, inter-channel statistical correlation '_'must be .ke‘pt within the
sUbdivided. sources (consistent with the independence aSsumption.of
Dempster’s combinatibn rule). Similar results were observed when the MSD
classification was performed for the set of features subdivided based on feature
selection. Although dependencies between sources were ignored, the
,classmcatlon accuracy was increased due to the reinforcing characteristic of -
-Dempster’s rule.

- The _experimehtal results for the 201-band simulated HIRIS data showed
that the MSD classification provided robust and consistent performance despite
the eX|stence of an inconsistent source when training samples were very '

" limited. The information obtained from an lnadequate number of training

: samples is considered to be inexact and incomplete. - The results have
demonstrated the ability of the ER method to capture uncertain information
based on inexact and incomplete bodies of evidence, and consequently to
utilize features as effectively as pOSSIb|e '
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| CHAPTER 7 |
CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

7.1 Conclusions

The problem of drawing inferences using - subjective probability
measures is not. a trrvnal one, especially when |t |nvolves multiple mformatlon o

,sources assocrated with varlous degrees of relative rellablllty In thls report wei o

have rnvestlgated how mterval valued probabilities can be used to represent -
and mtegrate evrdentlal mformatlon obtained. from varlous data sources

IV probablllty is a generallzatlon of the conventlonal pornt valued-‘
probablllty It has been known as a more adequate scheme than the._
, conventlonal addltlve probabilities: for representmg partlal information provrdedﬁ
by inexact and mcomplete sources. Chapter 2 reviewed various systems of IV
- probabilities and introduced an axiomatic approach to IV probabilities. In the -
. axiomatic approach the upper and the lower probabllltles are given by a palr of -

set-theoretic functions. ' : B

One of the basic problems in applying lV probabllltles to a real-world -
problem is how to infer the upper and the lower probablllty functions given a -

_body of evndence Chapter 3 investigated formal methods of constructing v

f-‘probablllty functlons when the given body of evrdence is based on. the
| outcomes of statistical experlments governed by a probablllty model. This
~ report has malnly focused on the two IV belief functions, the consonant and the
'partlally consonant belief functions, which are based on the Likelihood
',PrlnC|ple Even though they require certain assumptlons WhICh are not difficult

“to satisfy in practice, they have mathematically simple and readily usable
formulas. - In order to include the relative reliabilities of sources in a multisource
data analysis, the attempts to represent quantitatively the degree of reliability by

the average Jeffries-Matusita distance, the average Transformed Div'e'rgence;'_ .
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and the average measures of conflict between pairs of sources were made.
o vThese measures were used to rank the multlple sources accordmg to the -
relatrve rellabrlrtles of the sources :

In the analysrs of multlple data sources, a combmatlon rule is an’

’::,essentral tool in order to base mterences and decisions on all available '
, o ‘lnformatron Chapter 4 formally stated desirable properties of combrnatron rules
and mvestngated the mferencrng mechanisms of the subjectlve Bayesian

s updatrng rules and Dempsters rule for combining multrple bodles of evidence.

~ - It'was also noted that. Dempsters rule is a generallzed form of Bayeslan
jrnference wh|ch is characterrstrcally relnforcmg and robust to small varlatlons |n

} probablllty measures to be comblned "The robustness of Dempsters rule was
analyzed in the aspect of its dlfferentlal behavior accordrng to sllght changes of
- initial bellef measures ' ' . : = '

i Chapter 5 presented an account of baslc eIements in the decrsron theory
g for pattern recognltlon based on v probabllltles and developed the absolute
rule and the: Bayes -like decnsnon rule for evidential intervals on the basis of the

general interval-valued expectatron A problem with these rules is that there
may happen amblguous situations where decnsrons cannot- be made ~The
' ,mlnlmum average expected loss rule was proposed to resolve such ambrguous’

fsrtuatlons ~ Further, the ‘minimum’ upper expected Ioss rule and the m:mmum
_ lower: expected loss- rule were proposed as alternatrves to the prevnous two
: rules , . : : T :

Overall concepts of mterval valued probabllltles have been |mplemented
. and evaluated as a new method for classmcatlon of multlsource datain remote
»sensrng As descrrbed in Chapter 6, the proposed method was applled to three
- separate: sets of multrsource data, one. consrstrng of three" multi- channel data

‘sources and three topographrc data sources, and two consrstmg of sungle-t
, "source multlspectral data. - The. purpose of applylng the method to the smgle-
'. source data sets ‘was to utilize as many features as’ effectlvely as: p055|ble
ff(when trarnmg samples are limited) by decomposmg a Iarge number of
) 'channels into: smaller and more manageable subsets based on’ the global‘
| '»;’statrstrcal correlation.” ' - S S

ln the method each data source is consndered as a body of evrdence



' provrdrng partral rnformatnon ‘When the body of evidence is represented by IV
probablhtles the width of the rnterval represents the uncertainty associated with
the corresponding source. The ‘method comblnes the mdrvrdual bodles of
“evidence into . the total body of evrdence By treatmg the data sourcesv
separately,the method is not only able to utilize both parametnc and
nonparametnc information but ‘also able to mcorporate varlous degrees of',
. source rellablllty in-the multlsource data analysrs

~The expenmental results showed that compared to the. conventlonal ML- ,
,classmcatlon the proposed method gave higher and more robust classification
‘ Haccuracres for test samples even when a far less reliable source was included
in the data set. The increase in average classification accuracy was
noteworthy. The results also showed that the classification accuracies could be
increased by varying the degree of rehabrllty assrgned to. each source as well
,"as by choosmg an appropnate decision rule." - " ‘ L

The most |mportant feature of the method is the capability of plausible
_reasoning under uncerfainty in pattern recognition, especrally where multiple
" data sources are not 100% reliable or provide conflicting information. . The -
“method of classification for multisource data based on IV probabilities can also
be used to good advantage when there are only small numbers of training
samples and reliable estimation of statistical information requires drvrdmg the
.'hrgh d|menS|onal data lnto Iower—drmensronal subsets. '

7.2 'Sugges‘tio,ns» for Further Research

 The Evrdentral Reasomng method deve!oped |n thls work could be
further |mproved in the followmg respects: ‘

(1) Computatronal complexity: It is apparent that the processmg time will
increase as the number of sources increases. Furthermore, since Dempster's
. Vrd'rlvev_computes. the IV probability of a subset Ac @ as the sum of the basic
”:"pr_oba_birlity assignments of A and all the subse_ts of A, ‘th}e_ cdrn‘pUtationaI
~ complexity grows exponentially with the number of elements in Q. A possible
“way to reduce the computation is to restrict the number of focal elements to be -
considered. - In a remote sensing cbntext, this is possitble byfbd'es'i‘gning the
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eI ..classes hlerarchically

i »k'(2) Generallzatron of the mlnlmum average Ioss ruIe Although the minimum

S upper expected loss rule (maxumum plausnblllty rule) produced the best results»
o rinthe experrments |t is consndered to be due to the belief: functlons used. In

; ’general the mmlmum average loss rule is consndered to be more reliable than
any other ruIe because it- mcludes both the. upper ‘and the’ Iower probabrlrtles
o This rule may be generahzed by consrdermg the IV expected Ioss as a convex
- set of measures : - g ' . ‘
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