
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-18, NO. 2, APRIL 1980

Contextual Classification of Multispectral Remote
Sensing Data Using a Multiprocessor System

PHILIP H. SWAIN, MEMBER, IEEE, HOWARD JAY SIEGEL, MEMBER, IEEE, AND

BRADLEY W. SMITH, STUDENT MEMBER, IEEE

Abstract-A statistical model of spatial context is described and pro-
cedures for classifying remote sensing data using a context classifier are
outlined. Experimental results are presented. Because the computa-
tional requirements of the context classifier are very large, its imple-
mentation on multiprocessor systems is investigated. Some of the
special considerations necessary for such implementations are described,
with particular reference to implementation on an array of Control
Data Corporation Flexible Processors.

I. INTRODUCTION
FOR MORE THAN a decade, efforts to extract information

from multispectral remote sensing image data have proved
increasingly successful. To a large extent, these efforts have
focused on the application of pattern recognition techniques
to the multispectral measurements made on individual ground
resolution elements, i.e., scenes have been classified pixel-by-
pixel based on the measurement vectors associated with the
individual pixels [1] . Progress has been achieved through de-
velopment of increasingly sophisticated methods for extract-
ing information from the spectral domain to characterize the
classes of interest.
However, there are many applications for which the classes

of interest can be better characterized if the spatial informa-
tion in the remote sensing data is utilized in addition to the
spectral information. Characteristic spatial features include,
for example, shape, texture, and structural relationships.
Some interesting and useful research has been accomplished in
recent years in the direction of incorporating spatial informa-
tion into the data analysis process [2] - [4].
One way to approach spatial information in image data is to

recognize that the ground cover associated with a given pixel,
i.e., its "class," is not independent of the classes of its neigh-
boring pixels. Stated in terms of a statistical classification
framework, there may be a better chance of correctly classify-
ing a given pixel if, in addition to the spectral measurements
associated with the pixel itself, the measurements and/or
classifications of its "neighbors" are considered as well. Notice
that at some point "neighborhood" must be explicitly defined.

If the objects in the scene tend to be rather large relative to
the resolution of the sensor, i.e., each object is likely to con-

Manuscript received January 3, 1979; revised December 13, 1979.
This work was supported in part by the National Aeronautics and
Space Administration under Contract NAS9-15466.
The authors are with the School of Electrical Engineering and Labo-

ratory for Applications of Remote Sensing, Purdue University, West
Lafayette, IN 47907.

sist of many spectrally similar pixels, this fact can be exploited
nicely by applying a combination of scene segmentation tech-
niques and sample classification (sometimes called "per-field"
classification) [3]. More generally, the image can be con-
sidered a two-dimensional random process and the characteris-
tics of this process incorporated into the classification strategy.
This is the objective of the approach described here, in which a
form of compound decision theory is employed to improve
scene classification through use of a statistical characterization
of context. This work is an extension of an idea by Welch and
Salter [5].
As increasingly; complex forms of data and data analysis

methods are employed, the computational requirements tend
to become more demanding. Although improvement in the
raw speed of digital computer components can be exploited to
some extent to meet these requirements, it is clear that evolv-
ing computer architectures, especially those involving multiple
processing elements, have much to offer. The context classi-
fier described here has computational requirements which are
severe and rapidly become more so as the size of the con-
textual neighborhood is expanded. It is a natural candidate,
therefore, for multiprocessor implementation.

II. THE CONTEXT CLASSIFIER

The image data to be classified is assumed to be a two-
dimensional N1 X N2 array of multivariate pixels. Associated
with the pixel at "row i" and "column j" is the multivariate
measurement vector Xi1 E R' and the true state or class of the
pixel Oije Q = {Xi, * - *, co} The measurements have
class-conditional densities f(X coi), i = 1, 2, - * *, m, and are
assumed to be class conditionally independent. The objective
is to classify theN = N1 X N2 observations in the array.
The action (classification) determined by the classifier for

pixel (i, j) is denoted by ai1 E Q2. To pursue a Bayesian (mini-
mum risk) strategy, let the loss incurred by taking action a11
when the true class is Oi be denoted by L (Oi, a11) for some
fixed nonnegative function L (-,). The loss associated with
classification of the array is defined to be the average loss in-
curred over theN classifications in the array:

1 L (di0 , aij).N I1
(1)

In the most general case, the action ai1 may depend on all of
the observations in the array. Let X denote this "vector of
vectors," i.e., a vector the components of which are measure-

0196-2892/80/0400-0197$00.75 C 1980 IEEE

197

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-18, NO. 2, APRIL 1980

i-1' j

i,j-1 i,j

a p-3 choice a p-5 choice

Fig. 1. A p-pixel neighborhood.

ment vectors. Then the expected loss is

R(X) = E 1 L(0,,, ajG(X)]
= N>

~jE [L(011, a11 (Xi))I
N

(2)

The goal is to find a decision rule (the rule for choosing a,1

based on X) which minimizes R (X).
When context is ignored, the action (classification) depends

only on the measurement vector Xi, of the pixel to be classi-
fied, in which case ai,(X) = ai,(Xi,). In order to incorporate
some neighborhood information in the decision process, a

neighborhood-the "context"-is defined, consisting of an

arrangement of p pixels, such as shown in Fig. 1. The arrange-

ment actually used will be based on physical and other practi-
cal considerations related to the environment and application.
Let Xi,E RnP be a p-vector of n-dimensional measurement
vectors associated with pixel (i, j) to be classified and let

eiiE fP be the corresponding p-vector of actual classes. The
function ai1(XK11) maps p vectors of observations into single
classes (i.e., classifies pixel (i, j) based on XAU). The expected
loss over the full array is

R(X) = E E [L (0 i, ai, (Aj,))]. (3)

Now if L(,) is taken to be the 0-1 loss function (no loss for
a correct classification, unit loss for an error) and the measure-

ments in a neighborhood are assumed to be class conditionally
independent, then the expected loss will be minimized if each
pixel measurement Xi, is classified into class 0k maximizing
the a posteriori probability p(0ij1 I.X) or, equivalently, the
discriminant function

P

gk (Xii) f= f(X,lol) GP(0ij) (4)

2ij=@k2pO,1=Wk

where

XI E Xij measurement vector from the Ith pixel in the p-
array,

01E Oij class of the lth pixel in the p-array

f(XI 01) class-conditional density of XI given that the Ith
pixel is from class 01,

GPCii) = GP(01, 02, * * *,,Op) a priori probability of ob-

serving the p-array 01, 02, * * *,0o.

Within the p-array, the pixel locations may be numbered in
any convenient order. The joint probability distribution GP is
referred to as the context distribution.

To clarify the computation of the discriminant function de-
fined by (4), consider the following example. Let the context
array be the p = 3 choice shown in Fig. 1 with the pixels num-
bered such that the pixel (i, j) to be classified is associated
with X1 and 01, pixel (i, j - 1) is associated with X2 and O2,
and pixel (i - 1, j) is associated with X3 and 03. Assume there
are two possible classes: Q2 = {a, b}. Then, for instance, the
discriminant function for class b is explicitly

-3
9b(Xij)=1 f(XI 0I) G3 (Qii)

iiEE Q3,
O6=b

=f(X1 Ib)f(X2 Ia)f(X3 a) G(b,a,a)
+f(X Ib)f(X2 Ia) f(X3 Ib) G(b,a,b)
+f(X1J b)f(X2 Ib) f(X3 Ia) G(b, b, a)
+ f(X1 b) f(X2 b) f(X3 b) G(b, b, b).

Note that G3 (Qq) = G(01, 02, 03) is the relative frequency of
occurrence in the scene of the specific configuration (01,02,03).
An experiment was formulated to investigate the extent to

which this classifier model can utilize contextual information
in satellite-gathered remote sensing data. In order to avoid
confounding other effects with the impact of context, it was
decided to use a simulated data set generated as follows. A
classification of multispectral remote sensing data was se-
lected which had been judged to be very accurate (typically,
produced by careful analysis and refinement of multitemporal
data). Such a classification could be expected to embody the
contextual content of an actual ground scene. Based on
the classification map and using the associated statistics of the
classes (developed in producing the classification) data vectors
were produced by a Gaussian random number generator and
composed into a new data set. Thus the new data set had the
following characteristics.

1) Each pixel in the simulated data set represented the same
class as in the "template" classification. The template could
be considered the "ground truth" for the new data set.
2) All classes in the data set were known and represented.
3) All classes had multivariate Gaussian distributions with

statistics typical of those found in real data.
4) All pixels were class-conditionally independent of ad-

jacent pixels.
5) There were no mixture pixels.
Although the simulated data is somewhat of an idealization

of "real" remote sensing data, its spatial organization is con-
sistent with a real world scene and its overall characteristics are
consistent with the context model set out above. In essence,
then, what the experimental results based on the simulated
data show is the effectiveness of the context classifier given
that the underlying assumptions are reasonable. Further ex-
periments are required to extend the conclusions of these re-
sults to real data.
Three data sets were selected to represent a variety of ground

cover types and textures. Data set 1 is agricultural (Williston,
ND), with ground resolution and spectral bands approximating
those of the projected Landsat-D Thematic Mapper. Data set
2a is Landsat-l data from an urban area (Grand Rapids, MI).

198

SWAIN et al.: CLASSIFICATION OF MULTISPECTRAL REMOTE SENSING DATA

=
g 89.!5.89

X 88.Z

8 82.5!

079.0/
75.5.

= 72.0

9 68.5/

65.0
0 2 4 8

Nearest Neighbors

(C)

Fig. 2. Results for simulated data. (a) Data set 1. (b) Data set 2a.
(c) Data set 2b.

Data set 2b is from the same Landsat frame as 2a, but from a

locale having significantly different spatial organization. Each
data set is square, 50 pixels on a side. Because of the resolu-
tion of the sensors involved, homogeneous areas in the data are

small, typically a few tens of pixels in data set 1, rarely more
than a few pixels in data sets 2a and 2b.

Fig. 2 shows the achieved classification results. The "no
context" classification accuracy is plotted coincident with the
vertical axis of each graph. Data set 1 was classified using
successively 2, 4, 6, and 8 neighboring pixels; data sets 2a and
2b were classified using 2, 4, and 8 neighboring pixels. The
results speak for themselves. The accuracy improvement re-

sulting from the use of contextual information is quite
significant.
For this experiment, the context distribution GP0jj) was

simply tabulated from the "template" classification.1 But in
a real data situation, such a template is not available (else
there would be no need to perform any further classification).
One can envision a number of ways in which the p-vector dis-
tribution might be estimated for a remote sensing application.
For example, it could be extracted from a classification of the
same area obtained previously. This would require that the
area not have changed too greatly in its class makeup since the
earlier data collection and that the earlier classification was

reasonably accurate. Or, the distribution might be obtained
from a classification of any similarly constituted area. Still
another possibility would be to estimate the p-vector distribu-
tion for the context classification from a "conventional"

1 As a practical matter, only the nonzero entries of the tabulated dis-
tribution are retained, stored as a binary tree structure. This represents
a tradeoff between the amount of memory required to store the dis-
tribution (proportional to mP for m possible classes) and the time re-
quired to access a given entry in computing the discriminant functions
(which would be minimum if the entire distribution were stored in a p-
dimensional array).

classification with "reasonably good" accuracy. All of these
methods produce an estimate of the p-vector distribution, and
a crucial question on which hinges the utility of this approach
is how sensitive the contextual algorithm is likely to be to the
"goodness" of the estimate. This question is the subject of
current research which appears promising.
An experiment was formulated to obtain some evidence con-

cerning the feasibility of applying the context classifier to a
real data situation. The data set used covered a somewhat
larger area of Grand Rapids, MI, containing both data sets 2a
and 2b. Data from small areas of known ground cover were
used to estimate the training class statistics, and data from a
disjoint set of areas of known ground cover were used as "test
samples" to evaluate the classifier accuracy (unfortunately,
the set used for this test was rather small, consisting of only
136 pixels distributed among four urban classes).
A noncontextual classification was performed and found,

based on the test set, to be 81.6-percent accurate. The p-
vector distributions were estimated from this classification and
used to perform contextual classifications using four and eight
nearest neighbors. The four-neighbor classification was 83.1-
percent accurate; the eight-neighbor classification was 84.6-
percent accurate. For this case, then, some improvement in
classification accuracy was achieved by incorporating context
in the decision process, although the improvement was not as
dramatic as for the simulated data sets. Whether this is due to
poor estimation of the p-vector distributions or simply to less
contextual information in the overall data set will be estab-
lished by further investigation.

III. MULTIPROCESSOR IMPLEMENTATION OF
CLASSIFICATION ALGORITHMS

A. Control Data Corporation (CDC) Flexible Processor System
Classification algorithms such as the context classifier (and

even much simpler algorithms used for remote sensing data
analysis) typically require large amounts of computation time.
One way to reduce the execution time of these tasks is through
the use of parallelism. Various parallel processing systems that
can be used for remote sensing have been built or proposed.
These include pipelined processors [6], multimicrocomputer
systems [7], [8], and special purpose systems [9]. The CDC
Flexible Processor System [6], [10], [11] is a commercially
available multiprocessor system which has been recommended
for use in remote sensing [12].
The basic components of a Flexible Processor are shown in

Fig. 3. Each Flexible Processor is microprogrammed, allowing
parallelism at the instruction level. An example of the way in
which N Flexible Processors may be configured into a system
is shown in Fig. 4. There can be up to 16 Flexible Processors
linked together, providing much parallelism at the processor
level. The clock cycle time of a Flexible Processor is 125 ns.
Since 16 Flexible Processors can be connected in a parallel
and/or pipelined fashion, the effective throughput can be
drastically increased, resulting in a potential effective cycle
time of less than 10 ns.
A central feature of the Flexible Processor is its dual 16-bit

internal bus structure, enabling the Flexible Processor to

100.0.

0 97'
ob95.0

900E90.0 /
87.5

& 85.0

g 82.!

0 2 4 6 a
NearestNe)ighbors

(a)

1 86 . /

° 83.0.

.; 77$
72.0*
68.5.

= 61.0

^2 55iSt.5
0o.a> 2 4 8

Nearest Neghbors

(b)

199

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-18, NO. 2, APRIL 1980

DATA PATHS IN A FLEXIBLE PROCESSOR

16 16

Fig. 3. Data path organization in the CDC Flexible Processor.

FLEXIBLE PROCESSOR (FP) ARRAY

TYPICAL CONFIGURATION

TO IMAGE
DISPLAY STATION
CONTROL CONSOLE

TO ALL BANKS
OF IMAGE
DISPLAY MEMORY

Fig. 4. Block diagram of typical Flexible Processor array.

manipulate either 16- or 32-bit operands. If 32-bit operands
are used, the Flexible Processor can be programmed to execute
floating point routines (on its integer hardware) based on the
floating point representation of such systems as the IBM 370
and the PDP-1 1/70. If the needed data width is 16 bits, the
Flexible Processor can be programmed to perform different
operations on each of the 16-bit words simultaneously.
In each Flexible Processor, there are two files of registers,

one called the temporary register file and the other the large
register file. Both are divided into 16-bit subunits. If the
needed path width is 16 bits, the two files can act like four
files, thus creating more addressable user space. A special
feature of the temporary file is its two separate read and two
separate write address registers. This can save much CPU time
in many types of matrix operations. The large register file has

its own two read/write address registers. It is possible to do
either a read or write to either file and simultaneously incre-
ment (or decrement) the address register. The temporary file
is 16 words, 32 bits each, while the large file is 4096 words, 32
bits each. All of the register files consist of 60-ns random-
access memory.
There are three 32-bit general purpose registers called the E,

F, and G registers. All of these registers are connected to the
arithmetic logic unit, which can perform 32-bit additions in
125 ns. The E and G registers are readable directly through
the arithmetic logic unit. The general purpose registers can be
shifted separately, or the E and F registers can be combined
into a 64-bit shift register for double-length shifts. The output
of the arithmetic logic unit is a 32-bit register that is ad-
dressable by byte (8 bits). This makes a variety of byte
manipulations possible. Separate from the arithmetic logic
unit is a hardware integer multiplier, which takes two bytes
and multiplies them to produce a 16-bit result in 250 ns. The
input registers are the P and Q registers, which are each 16 bits
wide. The user can choose which two bytes are to be multi-
plied. The Flexible Processor is equipped with four index
registers and eight corresponding compare registers. The index
can be used for looping and can be incremented or decre-
mented during any statement not addressing those registers.
The Flexible Processor also contains a hardware jump stack, so
it is capable of handling standard types of program calls such
as subroutine jumps.
The micromemory consists of 4K 48-bit words. It stores the

microprogram. Each Flexible Processor in a system can con-
tain a different program.
Input/Output (I/O) for the Flexible Processor depends on

the overall system (i.e., the Flexible Processor array and its
host machine). A Flexible Processor is capable of interrupting
another Flexible Processor for I/O. I/O among the Flexible
Processors is done one of two ways. The first is a very high
speed communication link, arranged in a ring configuration
[10], [11] . Each Flexible Processor has a station on the ring,
and each station on the ring is connected to two other stations,
one to read and the other to write. When a Flexible Processor
does a write to the ring, it gives 16 bits of data and the address
of the destination. If a station receives data for another
address, it shifts the data to the next station. This is continued
until the data reaches the correct station. Special hardware has
been added to remove data from the ring in the event of a sta-
tion failure. Another form of I/O is through up to 16 64K
banks of shared 160-ns memory. This is not as fast as the
previous method; however for large data transfers, it frees the
ring for other communications, as well as providing a buffer
between Flexible Processors. Fig. 4 shows a typical Flexible
Processor system configuration.
The Flexible Processor is programmed in "nicroassembly

language," allowing parallelism at the instruction level. For
example, it is possible to conditionally increment an index
register, do a program jump, multiply two 8-bit integers, and
add the E and G registers, all simultaneously. This type of
operational overlap, in conjunction with the multiprocessing
capability of the Flexible Processors, greatly increases the
speed of the Flexible Processor array.

200

SWAIN et al.: CLASSIFICATION OF MULTISPECTRAL REMOTE SENSING DATA

A
. .~~~-I

B

Fig. 5. An A X B image divided amongN Flexible Processors.

In Section III-B, the use of a Flexible Processor array to per-

form maximum likelihood classifications is discussed. These
ideas are extended for the contextual classifier in Section IIl-C.

B. Maximum Likelihood Classification on a Flexible
Processor System
The pointwise maximum likelihood classification of pixels

using a Flexible Processor array is discussed below. The con-

textual classifier presented in Section II performs computa-
tions similar to those used by the maximum likelihood
classifier, but is complicated by the involvement of "neighbor-
ing" pixels. The analysis approach that has been taken is to
first investigate the implementation of the maximum likeli-
hood classifier and then extend the results to the contextual
classifier.
Consider performing a maximum likelihood classification on

an A X B image with N Flexible Processors. One way to ap-

proach the problem is to divide the image into N subimages
and have each Flexible Processor perform the maximum likeli-
hood classification for all pixels in its subimage. This is shown
in Fig. 5. If all subimages have the same number of pixels, then
the Flexible Processors will be fully utilized, i.e., on the aver-

age, the Flexible Processors will fimish their computations
simultaneously; no processor(s) will have to suspend operation
to wait for others to finish. The classification of the entire
image will take approximately 1/N as much time as it would
take a single Flexible Processor to perform the entire classifica-
tion. Thus maximum improvement, i.e., a factor of N, is
obtained.
Consider the case where each subimage does not contain the

same number of pixels, which will occur if (A * B)/N is not an

integer. This will lead to underutilization of the Flexible
Processors, i.e., some processors will have to suspend operation
to wait for others to finish. However, this underutilization will
be negligible as will be shown.
One way to approach this situation is as follows. To each of

N-1 Flexible Processors, assign a subimage of size.

[(A * B)IN1

where [x], the ceiling of x, is the smallest integer greater than
or equal to x. To the remaining Flexible Processor assign a

subimage of size

(A *B) - ([(A * B)/N] * (N - 1)).

For example, ifA = 117 and B = 196 (a typical LACIE image
[13]) andN= 16, then

[22 932/161 = [1433.251 = 1434

pixels are in each subimage associated with 15 Flexible Pro-
cessors. The remaining pixels, of which there are

22 932 - (15 * 1434) = 1422

are associated with one Flexible Processor. This sixteenth
Flexible Processor will have fewer pixels to classify and thus
will finish before the other Flexible Processors (assuming that,
on the average, the time for the floating point calculations is
approximately the same for all pixels), which implies some
underutilization of this Flexible Processor. Ideally a factor of
N = 16 performance improvement over a single Flexible Pro-
cessor is desired, which, in this case, would require all 16
Flexible Processors to each classify 1434 pixels. To compute
the utilization of the Flexible Processor array, divide the num-
ber of pixels actually classified by the maximum number that
could be classified in the same amount of time if all 16
Flexible Processors were fully utilized. Thus the utilization is

22 932/(16 * 1434) = 99+ percent

Therefore, a factor of 99+ percent of N improvement is
obtained.
In general, using the above assignment of pixels to sub-

images, the utilization of the system is

A *B

[(A * B)IN1 * N

The maximum value of the denominator is A * B +N - 1 and
occurs when A * B = k * N + 1, where k is an arbitrary integer.
Therefore,

min ((A * B)I([(A * B)IN1 * N)) = (A * B)I(A * B +N - 1).
Based on typical sizes of remotely sensed images and the fact
that the maximum size of a Flexible Processor array is 16,

A *B> 100 *N

and

(A * B)/(A * B +N- 1) > 99 percent.

Thus, in general, the worst case performance is 99+ percent
of the ideal factor of improvement over a single Flexible
Processor.
The maximum likelihood classifier has been programmed on

a simulator for a Flexible Processor array at LARS (Purdue's
Laboratory for Applications of Remote Sensing). The simu-
lator displays the contents of the main registers and provides a
variety of tools for debugging Flexible Processor microcode.
Preliminary tests indicate that a single Flexible Processor will
perform a maximum likelihood classification faster than a
PDP-11/70. Exact comparisons of the Flexible Processor
array performance with other systems are difficult without de-
tailed information about factors such as preprocessing and/or
postprocessing of the data not included in the computation
time, data precision used, memory load time, etc. The imple-
mentation of the maximum likelihood classifier currently
running on the simulator indicates that an array of 16 Flexible
Processors will require, on the average, approximately 11 s
plus the time to access bulk memory to read pixel data in
order to classify a 256 X 256 image into 16 classes. All of the

201

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-18, NO. 2, APRIL 1980

data values are assumed to be floating point with 16-bit man-
tissas and 7-bit exponents. Further optimization of this im-
plementation is under study.
The experience gained through the use of the simulator has

made evident the following advantages and disadvantages of
the Flexible Processor system.
Advantages:
1) Multiple processors (up to 16);
2) user microprogrammable-parallelism at the instruction

level;
3) connection ring for inter-Flexible Processor communi-

cations;
4) shared bulk memory units;
5) separate arithmetic logic unit and hardware multiply.
Disadvantages:
1) No floating point hardware;
2) microassembly language-difficult to program;
3) program memory limited to 4K microinstructions.
Based on the investigations to date, the advantages outweigh

the disadvantages. However, alternative approaches, such as
multimicroprocessor systems, must also be considered to de-
termine the most cost-effective approach.
In the next subsection, the way in which a parallel processing

system such as the Flexible Processor array can be used to per-
form context classification is examined.

C. Context Classification on a Flexible Processor System
Consider the implementation of a context classifier on an

array of Flexible Processors. Assume the neighborhood is
horizontally linear, as shown in Fig. 6. Divide the image into
subimages of B/N rows A pixels long, as shown in Fig. 5. If
B = kN, where k is an integer, there is 100-percent utilization
of the Flexible Processors. Furthermore, there is no overhead
for inter-Flexible Processor data transfers, since the entire
neighborhood of each pixel is included in its subimage. There-
fore, a factor ofN improvement is attained.

If (A * B)/N is an integer, but B = kN + x, O < x < N, thci
Flexible Processors can be underutilized in order to keep
neighborhoods within subimages, or Flexible Processors can
be fully utilized, dividing neighborhoods between Flexible
Processors, necessitating inter-Flexible Processor data transfers.
This is shown for a simple example in Fig. 7, where N = 2,
A = 3, and B = 4. In Fig. 7(a) no inter-Flexible Processor
transfers are needed, but Flexible Processor 1 is not fully
utilized. In Fig. 7(b) both Flexible Processors are fully
utilized, but, due to the horizontally linear neighborhood, at
least pixel 11 will have to be sent to Flexible Processor 1 and
at least pixel 12 will have to be sent to Flexible Processor 0.

If (A * B)/N is not an integer, some inter-Flexible Processor
data transfers will be necessary. The number of transfers will
be a function of the way in which the pixels are assigned to
Flexible Processors, as in the previous paragraph. To deter-
mine the computationally fastest approach whenever B =
kN + x, 0< x <N, requires knowledge of the actual image
size, the actual number of Flexible Processors used, the exact
time required to execute inter-Flexible Processor transfers,
and the length of the neighborhood.

Fig. 6. Horizontally linear neighborhoods. Each box is 1 pixel.

ooj1 ol 2~03 |FPO
12 11

(a121)22 23 FP1
(a)

00 401 ! 02 ! 03 FPO
10 J1 12 113FP
120 121 j22_j23

(b)
Fig. 7. Dividing an image into N subimages for horizontally linear
neighborhoods, where N = 2, A = 4, and B = 3. (a) Underutilization,
no inter-Flexible Processor data transfers required. (b) Inter-Flexible
Processor data transfers required, full utilization.

Fig. 8. Vertically linear neighborhood. Each box is 1 pixel.

Fig. 9. Diagonally linear neighborhoods. Each box is 1 pixel.

There are two other cases of linear neighborhoods. These
are vertically linear and diagonally linear, as shown in Figs. 8
and 9. The analysis for these two cases is similar to that for
the horizontally linear case. The vertically linear case is just a
900 rotation of the horizontally linear case. The diagonally
linear case can be simplified to a 450 rotation of the hori-
zontally linear case for B = kN by the proper assignment of
pixels to Flexible Processors. Consider an A X B image,
A < B, and B = Nk. Label the diagonals from O to A + B - 2,
as shown in Fig. 10 for A = 4 and B = 6. The pixels can then
be grouped into B sets ofA pixels as follows.

1) For each i, 0 < i 6 A - 1 the pixels in diagonals i and
i + B form a group of size A.
2) For each j, A - 1 < j < B - 1, the pixels in diagonal j

form a group of size A.
Using these rules, each Flexible Processor is assigned k groups.

Thus the problem has been reduced to the equivalent of the
horizontally linear case, which has already been discussed. The
case for B = kN + x, 0< x < N, is even more complex than
for the analogous situation in the horizontally linear case, and
requires a detailed tradeoff analysis based on the actual image
size, the actual number of Flexible Processors used, the exact
time required to execute inter-Flexible Processor data trans-
fers, and the length of the neighborhood.
Now consider nonlinear neighborhoods, that is, neighbor-

hoods which do not fit into one of the linear classes. For ex-

202

SWAIN et al.: CLASSIFICATION OF MULTISPECTRAL REMOTE SENSING DATA

A

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8

B

Fig. 10. The diagonals of anA X B image.

Fig. 11. Nonlinear neighborhoods. Each box is 1 pixel.

ample, all of the neighborhoods in Fig. 11 are nonlinear. Fig.
1 1(a) and its rotations represent the simplest nonlinear
neighborhood. It is included in all other nonlinear neighbor-
hoods. Thus that neighborhood is called the nonlinear kernel
neighborhood.

It can be shown that there is no way to partition an A X B
image into N (not necessarily equal) sections such that a con-

text classifier using a nonlinear neighborhood can be per-

formed without inter-Flexible Processor data transfers. This
will be demonstrated for the nonlinear kernel, and will thus be
true for all nonlinear neighborhoods. There are three cases to
consider. If there is a horizontal border between two sub-
images stored in different Flexible Processors, then pixels 1

and 2 in Fig. 1 l(a) will be in different Flexible Processors. If
there is a vertical border, pixels 2 and 3 will be in different
Flexible Processors. If there is a diagonal border, pixels 1 and
2 will be in different Flexible Processors. The way in which to
assign pixels to Flexible Processors in order to minimize com-

putation time will depend upon the particular image size, num-
ber of Flexible Processors used, time required for inter-
Flexible Processor communications and the shape and size of
the neighborhood. These factors will also determine the ef-
fectiveness of the use of the Flexible Processor array for per-
forming context classifications based on a given neighborhood.

IV. CONCLUSIONS

The preliminary results from the use of context in classifica-
tion are promising. By studying ways of estimating the p-

vector distribution, choosing the size and shape of neighbor-
hood, etc., it may be possible to develop a highly accurate
classifier for context-rich scenes.

The discussion of performing classifications with the Flexible
Processor System demonstrates one way in which a multiple-
processor system can be used to speed up the processing of

image data. Future work involves programming the context
classifier on the Flexible Processor simulator using different
size and shape neighborhoods and determining the most effi-
cient assignment of pixels to Flexible Processors for each case
examined. The implementation of the classifier on the simu-
lator and eventually on the actual Flexible Processor System
will provide hard data to verify the effectiveness of the parallel
processing approach.
Through the use of parallel, pipelined, and/or special pur-

pose computer systems such as the CDC Flexible Processor
System, the types of computations required for the context
classifier and other computationally demanding processes can
be implemented efficiently. This will not only reduce the
computation time required to do contextual classification but
will also allow the investigation of techniques which may
otherwise be considered infeasible.

REFERENCES
[1] P. H. Swain and S. M. Davis, Eds., Remote Sensing: The Quanti-

tative Approach. New York: McGraw-Hill, 1978.
[2] R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural fea-

tures for image classification," IEEE Trans. Syst., Man, Cybern.,
vol. SMC-3, pp. 610-621, Nov. 1973.

[31 R. L. Kettig and D. A. Landgrebe, "Classification of multi-
spectral image data by extraction and classification of homoge-
neous objects," IEEE Trans. Geosci. Electron., vol. GE-14, pp.
19-26, Jan. 1976.

[41 J. S. Weszka, C. R. Dyer, and A. Rosenfeld, "A comparative
study of texture measures and terrain classification," IEEE Trans.
Syst., Man, Cybern., vol. SMC-6, pp. 259-285, Apr. 1976.

[5] J. R. Welch and K. G. Salter, "A context algorithm for pattern
recognition and image interpretation," IEEE Trans. Syst., Man,
Cybern., vol. SMC-1, pp. 24-30, Jan. 1971.

[6] G. R. Allen, L. 0. Bonrud, J. J. Cosgrove, and R. M. Stone, "The
design and use of special purpose processors for the machine
processing of remotely sensed data," in Proc. Conf. Machine
Processing Remotely Sensed Data, (IEEE Cat. No. 73CH0834-
2GE), pp. 1A-25-lA-42, Oct. 1973.

[7] H. J. Siegel, "Preliminary design of a versatile parallel image pro-
cessing system," in Proc. Third Biennial Conf Computing in
Indiana, pp. 11-25, (Indiana Univ., Bloomington, IN), Apr. 1978.

[8] H. J. Siegel, L. J. Siegel, R. J. McMillen, P. T. Mueller, Jr., and
S. D. Smith, "An SIMD/MIMD multimicroprocessor system for
image processing and pattern recognition," in Proc. IEEE Com-
puter Soc. Conf. Pattern Recognition and Image Processing,
(IEEE Cat. No. CH1428-2), pp. 214-224, Aug. 1979.

[9] K. S. Fu, "Special computer architectures for pattern recognition
and image processing-an overview," in Proc. 1978 National
Computer Conf, pp. 1003-1013, June 1978.

[10] "Cyber-Ikon image processing system design concepts," Digital
Image Syst. Div., Control Data Corp., Minneapolis, MN, Jan. 1977.

[11] "Cyber-Lkon flexible processor programming textbook," Digital
Image Syst. Div., Control Data Corp., Minneapolis, MN, Nov.
1977.

[12] J. L. Kast, P. H. Swain, and T. L. Phillips, "The feasibility of
using a Cyber-Ikon system as the nucleus of an experimental
agricultural data center," Lab. for Applications of Remote Sens-
ing, Purdue Univ., West Lafayette, IN. LARS Contract Rep.
021678, Feb. 1978.

[131 R. B. MacDonald, F. G. Hall, and R. B. Erb, "The use of Landsat
data in a large area crop inventory experiment (LACIE)," in
Proc. Sym. Machine Processing of Remotely Sensed Data, (IEEE
Cat. No. 75CH1009-0-C), pp. 1B-l-lB-23, June 1975.

203

