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PARALLEL PROCESSING IMPLEMENTATIONS 
OF A CONTEXTUAL CLASSIFIER 
FOR MULTISPECTRAL REMOTE SENSING DATA 

HOWARD JAY SIEGEL~ PHILIP H, SWAIN~ 

AND BRADLEY W, SMITH 
Purdue University 

ABSTRACT 

Contextual classifiers are being de­
veloped as a method to exploit the spati­
al/spectral context of a pixel to achieve 
accurate classification. Classification 
algorithms such as the contextual classi­
fier typically require large amounts of 
computation time. One way to reduce the 
execution time of these tasks is through 
the use of parallelism. The applicability 
of the CDC Flexible Processor system and 
of a proposed multimicroprocessor system 
(PASM) for implementing contextual clas­
sifiers is examined. 

I. INTRODUCTION 

Contextual classifiers. are being de­
veloped as a method to exploit the spati­
al/spectral context of a pixel to achieve 
accurate classification. Just as· in writ­
ten English one can expect to find certain 
letters occurring regularly in particular 
arrangements with other letters (qu, ee, 
est, tion), so certain classes of ground 
cover are likely to occur in the "context" 
of others. The former phenomenon has been 
used to improve character recognition ac­
curacy in text-reading machines. We have 
demonstrated that the latter can be used 
to improve accuracy in classifying remote 
sensing data [1-3]. Intuitively this 
should not be surprising since one can 
easily think of ground cover classes more 
likely to occur in some contexts than in 
others. One does not expect to find 
Wheat growing in the midst of a housing 
subdivision, for example. A close-grown, 
lush vegetative cover in such a location 
is more likely the turf of a lawn. 

Classification algorithms such as the 
contextual cla~sifier (and even much sim-
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pler algorithms used for remote sensing 
data analysis) typically require large a­
mounts of computation time. One way to 
reduce the execution time of these tasks 
is through the use of parallelism. Vari­
ous parallel processing systems that can 
be used for remote sensing have been 
built or proposed. The Control Data Cor­
poration Flexible Processor system is a 
commercially available multiprocessor sys­
tem which has been recommended for use in 
remote sensing [4,5]. PASM is a proposed 
multimicroprocessor for image processing 
and pattern recognition [6]. 

Section II briefly describes the con­
text classifier and gives an algorithm for 
performing it. The use of the Flexible 
Processor system to implement the classi­
fier is explored in Section III. The use 
of PASM to implement the classifier is 
discussed in Section IV. 

II. THE CONTEXTUAL CLASSIFIER 

The image data to be classified are 
assumed to be a two-dimensional I-hy-J 
array of multivariate pixels. Associated 
with the pixel at "row i" and "column j" 
is the mUltivariate measurement n- vector 
X .. £ Rn and the true class of the pixel 
~J 

8ij t n = {wl' •.• ,w
C

}. The measurements 

have class-conditional densities 
f(xlw

k
), k = 1,2, ... ,C, and are assumed to 

be class-conditionally independent~ The 
objective is to classify the pixels in the 
array. 

In order to incorporate contextual 
information into the classification pro­
cess, when each pixel is to be classified 
p-l of its neighbors are also examined. 
This neighborhood, including the pixel to 
be classified, will be referred to as the 
p-array. Intuitively, to classify each 
pi,al, the contextual classifier computes 
the probability of the given observed 
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pixel being in class k by also considering 
the measurement vectors (values) observed 
for the neighbor pixels in the p-array. 
Specifically, for each pixel, for each 
class in n, a discriminant function 9 is 
calculated. The pixel is assigned to the 
class for which g is greatest. Each value 
of g is computed by summing the weighted 
probabilities of the p-l neighbor pixels 
occurring in all possible classification 
states. This is described below mathema­
tically for pixel (i,j) being in class wk. 

The description is followed by an example 
to clarify the notation used. Further de­
tails may be found in (1,2,7]. 

where 

X~EX .. is the measurement vector from the 
-1J ~th pixel in the p-array (for pixel 

(i, j) ) 

9 ~ E9.. is the class of the ~th pixel in the 
-1J p-array (for pixel (i,j» 

f(x~i9~) is the class-conditional density 
of X~ given that the ~th pixel is 
from class 9~ 

aP(9 .. ) = GP (8
1

,8 2 , .•. ,8 ) is the a priori 
-1J p 

probability of observing the p-array 
9 1 ,8 2 ", .9p ' 

Within the p-array, the pixel locations 
may be numbered in any convenient but fix­
ed order. The joint probability distribu­
tion GP is referred to as the context 
distribution. 

To clarify the computation of the dis­
criminant function, consider the following 
example. Let the context array (neighbor­
hood) be the p=3 choice shown in Figure 
11.1 with the pixels numbered such that 
the pixel (i,j) to be classified is asso­
ciated with Xl and 91 , pixel (i,j-l) is 

associated with X2 and 92 , and pixel 

(i,j+l) is associated with X3 and 9 3 , 

Assume there are two possible classes: n = 
{a,b}. Then the discriminant function for 
class b is explicitly 

gb(X, .) -1J L3 
9 .. En , 
-1J 

9
1

=b 

f(Xlib)f(X2ia)f(X3ia}G(b,a,a) 

+ f(Xlib)f(X2ia)f(X3ib)G(b,a,b) 

+ f(Xljb)f(X2ib)f(X3ia)G(b,b,a) 

+ f(Xlib)f(X21b)f(X3ib)G(b,b,b) 

Note that G3(~ij) = G(9 1 ,9 2 ,9 3 ) is the 

relative frequency of occurrence in the 
scene of the specific neighborhood confi­
guration (9

1
,9 2 ,9

3
), 

After computing the discriminant functions 
ga and gb for pixel (i,j), pixel (i,j) is 

assigned to the class which has the larger 
discriminant function value. 

Algorithm 1, shown in Figure 11.2, is 
one way to implement the contextual clas­
sifier. The particular classifier consid­
ered here uses a horizontally linear 
p-array of size three. This is shown in 
Figure ILL 

First consider the main loop. Let 
the original image to be classified be an 
I-by-J array called A. Columns 0 and J-l, 
the two side edges of the image, are not 
classified since these pixels will not 
have both right and left neighbors. The 
variable "value" will contain the maximum 
"g" (discriminant function) value calcu­
lated for pixel (i,j). This variable may 
be updated as the "g" for each class is 
calculated. The variable "class" is the 
class associated with "value." In the 
main loop, "g(i,j,k)" is a call to a 
function to calculate the discriminant 
function for pixel (i,j) and class k. 
This function is called I * (J-2) * C 
times, once for each class for each pixel 
being classified. 

Consider the calculation of g(i,j,k). 
The class of pixel (i ,-j) is held constant 
at k, while all other possible class 
assignments are considered for pixels 
{i,j-l) and (i,j+l). For each assignment 
of classes for the pixels neighboring 
pixel (i,j), of which there are C*C, the 
product of the class-conditional densi­
ties ("compf") is weighted by "G(r,k,q)," 
the a priori probability of observing the 
3-array (Wr'~'Wq)' The "G" array is pre-

determined and prestored. For each call 
"g(i,j,k)," the value of "sum" for that 
i,j, and k is calculated. "Sum" is then 
returned as the value of "g(i,j,k)." In 
this straightforward version of the 
g(i,j,k) routine, the function to compute 
a class-conditional density ("compf") is 
cal.led C*C times each time "g" is called. 

1980 A1achine Processing of Remotely Sensed Data Symposium 
20 



Now consider the "compf" routine. 
This calculates the class-conditional 
density for pixel (a,b) and class k using 
the following equation: 

where the measurement vector for each 
pixel is of size four, Lkl is the inverse 

covariance matrix for class k (four-by­
four matrix), ~ is the mean vector for 
class k (size f8ur vector), "T" indicates 
the transpose, anc;l "log" is the natural 
logarithm. For each class, the algorithm 

I 1
-1 

uses log Lk ,Lk , and mk as precomputed 

constants. For each call "compf (a,h,k)," 
the value of "eexpo" for that a,b, and k 

is calculated. "eexpo" is then returned 
as the value of "compf(a,b,k)." 

Algorithm 1 1xecutes the "compf" sub­
routine I*(J-2)*C times. Since for each 
pixel there are C "f"s (class-conditional 

,densities), this approach is inefficient 
by a factor of C2 • Algorithm 2 rectifies 
this problem by saving certain "f" values 
rather than recalculating them. 

The Algorithm 2, shown in Figure II.3, 
implements the contextual classifier with­
out the redundant executions of "compf" 
that occur in Algorithm 1. Let X, Y, and 
Z correspond to the pixels (i,j-l), (i,j), 
and (i,j+l), respectively, where (i,j) is 
the pixel to be classified. Each of X, Y, 
and Z is a vector of size C. Element t 
of X will contain the class-conditional 
d7nsity ("compf") 'for the current (i,j-l) 
p~xel for class t. Y and Z are defined 
similarly. By using these three vectors 
to save the class-conditional densities, 
7ach density (for a given pixel and class) 
~~ calculated only once, instead of 
C times. 

. The main loop of Algorithm 2 is modi­
f~ed to calculate the class-conditional 
densities for the first three columns each 
t~me a new row is considered (i.e., each 
t~me "i" is incremented). Each time a new 
pixel in a given row is to be classified 
(Le., just before "j" is incremented), 
these values are updated. In particular, 
X gets the Y values, Y gets the Z values, 
and new values are calculated to update Z. 

The new discriminant function calcu­
lation, g', does not call the subroutine 

"compf." It gets the values it needs from 
the X, Y, and Z arrays. For each call 
109' (k) I" the value of "sum" for that k is 
calculated. "Sum" is then returned as the 
value of "g' (k) ." 

The same "compf" routine is used for 
both Algorithms 1 and 2. Algorithm 1 
calls this routine I* (J-2) *C3 times, while 
Algorithm 2 calls it only I*(J-2)*C times. 

There are other techniques that can be 
employed to make Algorithm 2 even more ef­
ficient that have not been included in or­
der to avoid obscuring the basic program 
flow. 

The serial complexity of Algorithm 2 
can be calculated in terms of assignment 
statements, multiplications, additions, 
and "compf" calculations. To initialize 
X, Y, and Z for new rows, I*C*3 assign­
ments and calls to "compf" occur. For 
each pixel, at most C+l assignments to 
"value" and "class" occur, C assignments 
to "current" occur, and C calls to 

"g' (k)" occur. In addition, for each row, 
the X, Y, and Z vectors are updated J-3 
times, each update using 3*C assignments 
and C calls to "compf." Each execution of 

109' (k)" uses 3*C2 multiplications, c2 ad­

ditions, and C2+1 assignments. Thus, the 

total complexity for Algorithm 2 is: 

I(J(C3+7C+2)-(2C3+14C+4) assignments; 

3C 3I(J-2) multiplications; 

I*J*C 

additions; and 

"compf" 
calculations. 

The growth is proportional to 

I*J*C3 assignments, multiplications and 
additions, and I*J*C "compf" calculations. 

In this section, a contextual clas­
sifier based on a horizontally linear 
neighborhood of size three has been ana­
lyzed. Algorithms for contextual clas­
sifiers using other size and shape neigh­
borhoods would be analogous to the algo­
rithms which were presented. 

Algorithms 1 and 2 are written for 
conventional uniprocessor systems. Sec­
tions III and IV will examine how to im­
plement Algorithm 2 on a CDC Flexible 
Processor system and on a multimicropro­
cessor system such as PASM. 
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III. FLEXIBLE PROCESSOR SYSTEM IMPLEMEN­

TATION OF THE CONTEXTUAL CLASSIFIER 

This section discusses programming a 
CDC Flexible Processor system [4] simula­
tor to perform a size three linear neigh­
borhood contextual classifier. The Flexi­
ble Processor system is briefly overviewed., 
Then the simulation is described. 

The basic components of a Flexible 
Processor (FP) are shown in Figure 111.1. 
Each FP is microprogrammed, permitting pa­
rallelismat the,instruction level. An 
example of the way in which N FPs may be 
configured into a system is shown in Fi­
gure 111.2. There can be up to 16 FPs 
linked together, providing much parallel­
ism at the processor level. The FPs can 
communicate among themselves through the 
high-speed ring or shared bulk memory. 
The clock cycle time of each FP is 125 
nsec (nanoseconds). Since 16 FPs can be 
connected in a parallel and/or pipe lined 
fashion, the effective throughput can be 
drastically increased, resulting in a po­
tential effective cycle time of less than 
10 nsec. 

An FP is programmed in micro-assembly 
language, allowing parallelism at the in­
struction level. For example, it is pos­
sible to conditionally increment an index 
register, do a program jump, multiply two 
B-bit integers, and add two 32-bit inte­
gers -- all simultaneously. This type of 
operational overlap, in conjunction with 
the multiprocessing capability of the FPs, 
greatly increases the speed of the FP 
array. 

The following list summarizes the im­
portant architectural features of an FP: 

User microprogrammable. 
Dual l6-bit internal bus system. 
Able to operate with either 16- or 

32-bit words. 
125 nsec clock cycle. 
125 nsec time to add two 32-bit 

integers. 
250 nsec time to multiply two B-bit 

integers. 
Register file (with 60 nsec access 

time) of over B,OOO l6-bit words. 

In order to debug, verify, and time 
FP algorithms, a simulator for an array of 
up to 16 FPs has been developed. This 
simulator runs under the UNIX operating 
system on a PDP-II series computer at 
LARS and has been used to program a maxi­
mum likelihood classifier [1]. An assem­
bler for the micro-assembly language has 
also been developed. 

The experience gained through the use 
of the simulator has made evident the fol­
lowing advantages and disadvantages of the 
system. 

Advantages: 

Multiple processors (up to 16). 
User microprogrammable -- parallelism 

at the instruction level. 
Connection ring for inter-FP communi­

cations. 
Shared bulk memory units. 
Separate arithmetic logic unit and 

hardware multiply. 

Disadvantages: 

No floating-point hardware. 
Micro-assembly language -- difficult 

to program. 
Program memory limited to 4k micro­

instructions. 

More details about the FP may be 
found in [B]. Information about the asse~ 
bIer and simulator used at LARS to assem­
ble and execute the FP programs for the 
contextual classifier is presented in [7]. 

Consider the implementation of a con­
textual classifier on an array of N FPs. 
A~sume the neighborhood is horizontally 
l1near, as shown in Figure 111.3. Divide 
the A-by-B image into subimages of B/N 
rows A pixels long, as shown in Figure 
III.4. Assign each subimage to a differ­
ent FP. The entire neighborhood of each 
pixel is included in its subimage. Each 
FP ca~ therefore execute the uniprocessor 
algor1thm presented in Section lIon its 
own subimage. No interaction between FPs 
is needed, i.e., each FP can process its 
subimage independently. 

The LARS FP microassembler and simu­
lator are being used to gather statistics 
on the execution time for the size three 
horizontally linear neighborhood contex­
tual classifier. Due to the fact that 
each FP is microprogrammable, determining 
program correctness and analyzing execu­
tion times is done through the use of the 
microassembler and simulator. The current 
implementation of the contextual classi­
fier uses 744 microinstructions, stored 
in the micromemory (see Figure 111.1). 
The format of the data words of the pixel 
measuremen~ vectors, covariance 'matrices, 
etc., cons1sts of a l4-bit two's comple­
ment'exponent and a l7-bit sign-magnitude 
mantissa. The covariance matrices, loga­
rithms of the determinants of the covari­
ance matrices, a priori probabilities (GP), 
and the X, Y, and Z vectors are all stored 
in the large file (see Figure 111.1). In 
this way, each FP has all the information 
it needs for performing the classification 
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on its subimage. The subimage data itself 
would be stored in a bulk memory (see Fi­
gure 111.2). A multiple FP configuration 
which associates one bulk memory with each 
FP would be best for this application. For 
testing the FP contextual classifier pro­
gram, the classification of one row of 
eight pixel measurement vectors (stored in 
the large file) using four classes is 
being evaluated. The FP contextual clas­
sifier program is currently being debugge~ 
The timing results of using the FP simula­
tor to classify actual data using Algorithm 
2 (Figure 11.3) will be presented at the 
symposium. 

For the horizontally linear neighbor­
hoods, when using N FPs together to pro­
cess an image, each FP handles l/N-th of 
the image. Therefore, nearly a factor of 
N improvement is attained over the time 
required for one FP to implement the con­
textual classifier. (A perfect factor of 
N improvement occurs if B is a multiple 
of N. The minor degradation in perfor­
mance when B is not a multiple of N is 
discussed in [2].) Vertically linear and 
diagonally linear neighborhoods (Figure 
111.5) can be processed in a manner simi­
lar to that for horizontally linear.neigh­
borhoods [2]. 

Consider nonlinear neighborhoods, 
that is, neighborhoods which. do not fit 
into one of the linear classes. For exam­
ple, all of the neighborhoods in Figure 
111.6 are nonlinear. It can be shown that 
there is no way to partition an image into 
N (not necessarily equal) sections such 
that a contextual classifier using a non­
linear neighborhood can be performed with­
out data transfers among FPs [2]. The way 
in which to assign pixels to FPs in order 
to minimize computation time will depend 
upon the particular image size, number of 
FPs used, the time required for inter-FP 
communications, and the shape and size of 
the neighborhood. A detailed analysis of 
the interaction of these factors is cur­
rently under study. 

IV. MULTIMICROPROCESSOR IMPLEMENTATION 

OF THE CONTEXTUAL CLASSIFIER 

. This section describes a method for 
~mplementing the contextual classifier on 
a large-scale multimicroprocessor system 
such as PASM [6,9-11]. PASM is a dynami­
cally reconfigurable system being designed 
at Purdue University for image processing 
and pattern recognition tasks. The PASM 
design will support up to 1024 processors. 

Other 'computer archi tects have pro~2sed 
parallel processing systems with 2 to 
216 microprocessors [12,13]. The method 
for implementing the contextual classifier 
on PASM will be based on the use of the 
SIMD mode of parallelism. 

The acronym SIMD stands for "single 
instruction stream -- multiple data stream" 
[14]. Typically, an SIMD machine is a conr 
puter system consisting of a control unit, 
N processors, N memory modules, and an in­
terconnection network. The control unit 
broadcasts instructions to all of the pro­
.cessors, and all active processors execute 
the same instruction at the same time. 
Thus, there is a single instruction stream. 
Each active processor executes the instruc­
tion on data in its own associated memory 
module. Thus, there is a multiple data 
stream. The interconnection network, some­
times referred to as an alignment or permu­
tation network, provides a communications 
facility for the processors and memory 
modules. Examples of existing SIMD ma­
chines include the Illiac IV and STARAN 
[15,16]. 

One way to model the physical struc­
ture of an SIMD machine is shown in Figure 
IV.l. As indicated, there are N proces­
sing elements (PEs) where each PE consists 
of a processor with its own memory. The 
PEs receive their instructions from the 
control unit and communicate through the 
interconnection network. 

To demonstrate how SIMD machines ope­
rate, consider the following simple task. 
Assume that A, B, andC are each one-dimen­
sional arrays (vectors) and that the task 
to be performed is the elementwise addi­
tion of A and B, storing the result in C. 
In a uniprocessor system, this can be ex­
pressed as: 

for i = 0 to N-l do 

C(i) A(i) + B(i) 

This computation will take N steps on a 
serial machine. 

Assume that A, B, and C are stored in 
a SIMD machine, with N PEs, such that A(i), 
B(i), and C(i) are all stored in the memory 
of PE i, 0 < i < N. To perform an element­
wise addition of the vectors A and Band 
store the result in C, all PEs would exe­
cute (simultaneously) 

C = A + B 

with PE i doing the addition of A(i) and 
B(i), storing the result in C(i). Thus, 
in this case, the SIMD machine does in one 
step a task requiring N steps on a serial 
processor. 
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Consider a variation on this example. 
Assume the N-step serial task is: 

for i = 1 to N-l do 

C (i) A(i) + B (J-l} 

C(O) = A(O) 

Given the data allocation above (i.e., A(i), 
B(i), and C(i) in PE(i)}, an SIMD machine 
does this task in three different steps: 

1. The value of B(i-l) is moved, 
through the interconnection network, from 
PE i-l to PE i, 1 < i < N. Most proposed 
and existing SIMD Interconnection networks 
can do this in one parallel data transfer 
[17]. 

2. In PE i, add A(i) to B(i-l) and 
store the result in C(i), 1 < i < N (PE 0 
is disabled). -

3. In PE 0, store A(O~ in C(O) (all 
other PEs are disabled). 

Thus, this example demonstrates the 
need for the interconnection network and 
methods for disabling PEs. 

This simple example was provided to 
familiarize the reader with the concept of 
the SIMD mode of parallel processing. More 
complex examples involving image process.­
ing and feature extraction can be found in 
[18,19J. 

consider the implementation of the 
contextual classifier discussed in Sections 
II and IlIon a microprocessor-based SIMD 
machine. Recall that the neighborhood is 
as shown in Figure 11.1, i.e., a horizon­
tally linear neighborhood with p=3. The 
approach to decomposing the task will be 
similar to that used in Section III for 
the FP system. In both cases, the image 
is divided into N subimages, and each sub­
image is assigned to a different processor 
for classification computations. However, 
there are three main differences: 

1. It is technologically and economi­
cally feasible to construct a multimicro­
processor SIMD machine with many more than 
16 processors. Therefore, while the "N" 
for the FP system is limited by 16, the 
"N" for the multimicroprocessor system 
could be as large as 256, 512, or 1024. 

2. The differences in computational 
capabilities between an FP and an off-the­
shelf microprocessor must be considered. 
For example, depending on the microproces­
sor chosen, 16 FPs may be faster than 32 
microprocessors. 

3. In the SIMD mode of parallelism, 
the program (Algorithm 2) is stored in the 
control unit, not in each microprocessor. 
The control unit broadcasts the instruc­
tions to the microprocessors. The control 
unit would also store the GP array., 'broad­
casting the appropriate array element to 
all the microprocessors when it is needed. 
In the FP system, each FP would store a. 
copy of the program and must store or have 
access to the GP array. 

Thus, a SIMD machine can be used to 
perform the contextual classification 
based on a horizontally linear neighbor­
hood of size three without any inter-PE 
communication. As in the case of using 
the FP system to implement the classifier, 
the implementation using an SIMD machine 
with N microprocessors can achieve as much 
as a factor of N improvement over the use 
of a single microprocessor. The exact 
improvement will be a function of the image 
size and N. 

To attain a perfect factor of N im­
provement, B (in Figure 111.4) would have 
to be a multiple of N. Since N in the 
SIMD case would be a multiple of the N in 
the FPcase, this is less likely to occur. 
When B is not a multiple of N, then Ca) 
some PEs may have to process more rows 
than others (leaving some PEs underutiliz­
ed), or (b) each PE would process a sub­
image including a partial row (requiring 
inter-PE data transfers). The alternative 
which is best would depend on the image 
size, the way in which subimages are allo­
cated to PEs, N, the processor speed, and 
the interconnection network speed. The 
situation for vertically linear and dia­
gonally linear neighborhoods is similar. 
Nonlinear neighborhoods require inter-PE 
communications, but the best way to imple­
ment such a classifier would depend on the 
factors just mentioned and the neighborhood 
size and shape. These implementation con­
siderations are currently being explored. 

v. CONCLUSIONS 

Algorithms for performing contextual 
classifications using a size three horizon­
tally linear neighborhood were presented. 
Algorithm 1 was a straightforward approach. 
Algorithm 2 was a more efficient approach 
that avoided redundant calculations. The 
serial computational complexity of Algo­
rithm 2 was sho~n to have a growth propor­
tional to I*J*C assignments, multiplica­
tions, and additions, and I*J*C "compf" 
calculations. The way in which N FPs 
could. perform the classifications N times 
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faster than a single FP was explained. 
The use of N microprocessors in "the SIMD 
mode of parallel processing to do the 
classifications N times faster than a 
single microprocessor was discussed. 

In summary, contextual classifiers 
have been shown to be powerful remote 
sensing tools in other papers. Their main 
disadvantage is their computation complex­
ity. This paper has demonstrated how 
parallel processing can be used to over­
come this disadvantage. 
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Main Loop 

for i = 0 to 1-1 do /* row */ 

begin 

for j 1 to J-2 do /* 

begin /* 

value -1 /* 

class -1 /* 

for k 1 to C do 1* 

begin 

current = g(i,j,k) 

if current > value 

column */ 

for each pixel 

max "g" */ 

class with max 
"gil 

for each class 

then value = current 

class k 

end 

print Pixel (i,j) is classified as 
---"class" 

end 

end 

Figure 11.2. Algorithm 1 -- Implementa­
tion of a contextual classifier. 
Main Loop. 

*/ 

*/ 

*/ 

19. H. J. Siegel, P. H. Swain, L. J. Siegel, 
P. T. Mueller, Jr., and J. El-Achkar, 
Parallel Image Processing/Feature Ex­
tract~on Al~orithms and Architecture 
Emulation, Technical Report TR-EE 
79-51, School of Electrical Engineer­
ing, Purdue University, West Lafayette, 
IN, November 1979. 

Discriminant Function Calculation 

function 

sum 0 

for r 1 

begin 

for q 

sum 

end 

end 

g(i,j,k) 

to C do /* all possible 
classes 

1 to C do /* all possible 
classes 

compf(i,j-l,r)*compf(i,j,k) 

*compf(i,j+l,q)*G(r,k,q)+sum 

return (sum) 

*/ 

*/ 

Class-Conditional Density Calculation 

function compf(a,b,k) /* for pixel (a,b) , 
class k */ 

x A(a,b) /* x is pixel measurement 
vector */ 

expo = loglrk 1- [(X_~)T r;l (x-~)] * .5 

return (eexpo) 

Figure 11.2 (cont.). Algorithm 1 -­
Discriminant function and class­
conditional density routines. 
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Main Loop 

for i = ° to 1-1 do /* row */ 

begin 

for k 1 ~ C do 

begin /* compute f's for 1st 3 
columns */ 

X(k) compf (i,O,k) 

Y(k) 

Z(k) 

end 

for j 

begin 

value 

1 

compf (i,l,k) 

compf (i,2,k) 

to J-2 do /* column */ 

/* for each pixel 

-1 /* max "g" */ 

*/ 

class -1 /* class with max "g" 

for k 1 to C do 

begin 

current = g' (k) 

if current > value 

then value 

class 

end 

current 

k 

print Pixel (i,j) is classified as 
"class" 

if j < J-2 

then /* update X,Y,Z arrays */ 

for k = 1 to C do 

begin 

X(k) Y (k) 

Y(k) Z (k) 

Z(k) compf (i,j+2,k) 

end 

end 

end 

*/ 

Figure 11.3. Algorithm 2 -- Implemen­
tation of a contextual classifier. 
Main Loop. 

Discriminant Function Calculation 

function g' (k) 

sum ° 
for r = 1 to C do /* all possible 

classes */ 

begin 

1 to C do /* all possible 
classes */ 

sum X(r) * Y(k) * Z(q) 

*G(r,k,q) + sum 

end 

end 

return (sum) 

Figure 11.3 (cont.). Algorithm 2 -­
Discriminant function calculation. 

(i, j-l) (i,j) (i,j+l) 

Figure 11.1. A p=3 context array 
(neighborhood) . 

" " 
Figure 111.1. Data path organization 

in the CDC Flexible Processor. 
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Figure 111.2. Block diagram of typical 
Flexible Processor array. 

IT] 

Figure III. 3. 
borhoods. 

~ 

1 ... 1 ] 

Horizontally linear neigh­
Each box is one pixel. 

A 
~ , 
n 

1 · · · 
8-1 

Figure 111.4. An A-by-B image divided 
among N Flexible Processors. 

8 

Figure 111.5. Vertically linear and 
diagonally linear neighborhoods. 

Each box is one pixel. 

Figure 111.6. Nonlinear neighborhoods. 

~ 
B 

Each box is one pixel. 

CONTROL UNIT 

~ ... 

a 

Figure IV.I. A general model of an 
SIMD machine. 
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