
Purdue University
Purdue e-Pubs

LARS Symposia Laboratory for Applications of Remote Sensing

1-1-1980

Parallel Processing Implementations of a
Contextual Classifier for Multispectral Remote
Sensing Data
Howard Jay Siegel

Philip H. Swain

Bradley W. Smith

Follow this and additional works at: http://docs.lib.purdue.edu/lars_symp

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Siegel, Howard Jay; Swain, Philip H.; and Smith, Bradley W., "Parallel Processing Implementations of a Contextual Classifier for
Multispectral Remote Sensing Data" (1980). LARS Symposia. Paper 323.
http://docs.lib.purdue.edu/lars_symp/323

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4949697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Flars_symp%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/lars_symp?utm_source=docs.lib.purdue.edu%2Flars_symp%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/lars?utm_source=docs.lib.purdue.edu%2Flars_symp%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/lars_symp?utm_source=docs.lib.purdue.edu%2Flars_symp%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages

Reprinted from
Symposium on

Machine Processing of
Remotely Sensed Data

and

Soil Information Systems
and

Remote Sensing and Soil Survey

June 3-6, 1980

Proceedings

The Laboratory for Applications of Remote Sensing

Purdue University
West Lafayette

Indiana 47907 USA

IEEE Catalog No.
80CH1533-9 MPRSD

Copyright © 1980 IEEE

The Institute of Electrical and Electronics Engineers, Inc.

Copyright © 2004 IEEE. This material is provided with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the
products or services of the Purdue Research Foundation/University. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

PARALLEL PROCESSING IMPLEMENTATIONS
OF A CONTEXTUAL CLASSIFIER
FOR MULTISPECTRAL REMOTE SENSING DATA

HOWARD JAY SIEGEL~ PHILIP H, SWAIN~

AND BRADLEY W, SMITH
Purdue University

ABSTRACT

Contextual classifiers are being de­
veloped as a method to exploit the spati­
al/spectral context of a pixel to achieve
accurate classification. Classification
algorithms such as the contextual classi­
fier typically require large amounts of
computation time. One way to reduce the
execution time of these tasks is through
the use of parallelism. The applicability
of the CDC Flexible Processor system and
of a proposed multimicroprocessor system
(PASM) for implementing contextual clas­
sifiers is examined.

I. INTRODUCTION

Contextual classifiers. are being de­
veloped as a method to exploit the spati­
al/spectral context of a pixel to achieve
accurate classification. Just as· in writ­
ten English one can expect to find certain
letters occurring regularly in particular
arrangements with other letters (qu, ee,
est, tion), so certain classes of ground
cover are likely to occur in the "context"
of others. The former phenomenon has been
used to improve character recognition ac­
curacy in text-reading machines. We have
demonstrated that the latter can be used
to improve accuracy in classifying remote
sensing data [1-3]. Intuitively this
should not be surprising since one can
easily think of ground cover classes more
likely to occur in some contexts than in
others. One does not expect to find
Wheat growing in the midst of a housing
subdivision, for example. A close-grown,
lush vegetative cover in such a location
is more likely the turf of a lawn.

Classification algorithms such as the
contextual cla~sifier (and even much sim-

This work was sponsored in part by the
National Aeronautics and Space Adminis­
tration under Contract No. NAS9-15466.

CH1533-9/80/0000-0019 $00.75<£)1980 rITE

pler algorithms used for remote sensing
data analysis) typically require large a­
mounts of computation time. One way to
reduce the execution time of these tasks
is through the use of parallelism. Vari­
ous parallel processing systems that can
be used for remote sensing have been
built or proposed. The Control Data Cor­
poration Flexible Processor system is a
commercially available multiprocessor sys­
tem which has been recommended for use in
remote sensing [4,5]. PASM is a proposed
multimicroprocessor for image processing
and pattern recognition [6].

Section II briefly describes the con­
text classifier and gives an algorithm for
performing it. The use of the Flexible
Processor system to implement the classi­
fier is explored in Section III. The use
of PASM to implement the classifier is
discussed in Section IV.

II. THE CONTEXTUAL CLASSIFIER

The image data to be classified are
assumed to be a two-dimensional I-hy-J
array of multivariate pixels. Associated
with the pixel at "row i" and "column j"
is the mUltivariate measurement n- vector
X .. £ Rn and the true class of the pixel
~J

8ij t n = {wl' •.• ,w
C

}. The measurements

have class-conditional densities
f(xlw

k
), k = 1,2, ... ,C, and are assumed to

be class-conditionally independent~ The
objective is to classify the pixels in the
array.

In order to incorporate contextual
information into the classification pro­
cess, when each pixel is to be classified
p-l of its neighbors are also examined.
This neighborhood, including the pixel to
be classified, will be referred to as the
p-array. Intuitively, to classify each
pi,al, the contextual classifier computes
the probability of the given observed

1980 Machine Processing of Remotely Sensed Data Symposium
19

pixel being in class k by also considering
the measurement vectors (values) observed
for the neighbor pixels in the p-array.
Specifically, for each pixel, for each
class in n, a discriminant function 9 is
calculated. The pixel is assigned to the
class for which g is greatest. Each value
of g is computed by summing the weighted
probabilities of the p-l neighbor pixels
occurring in all possible classification
states. This is described below mathema­
tically for pixel (i,j) being in class wk.

The description is followed by an example
to clarify the notation used. Further de­
tails may be found in (1,2,7].

where

X~EX .. is the measurement vector from the
-1J ~th pixel in the p-array (for pixel

(i, j))

9 ~ E9.. is the class of the ~th pixel in the
-1J p-array (for pixel (i,j»

f(x~i9~) is the class-conditional density
of X~ given that the ~th pixel is
from class 9~

aP(9 ..) = GP (8
1

,8 2 , .•. ,8) is the a priori
-1J p

probability of observing the p-array
9 1 ,8 2 ", .9p '

Within the p-array, the pixel locations
may be numbered in any convenient but fix­
ed order. The joint probability distribu­
tion GP is referred to as the context
distribution.

To clarify the computation of the dis­
criminant function, consider the following
example. Let the context array (neighbor­
hood) be the p=3 choice shown in Figure
11.1 with the pixels numbered such that
the pixel (i,j) to be classified is asso­
ciated with Xl and 91 , pixel (i,j-l) is

associated with X2 and 92 , and pixel

(i,j+l) is associated with X3 and 9 3 ,

Assume there are two possible classes: n =
{a,b}. Then the discriminant function for
class b is explicitly

gb(X, .) -1J L3
9 .. En ,
-1J

9
1

=b

f(Xlib)f(X2ia)f(X3ia}G(b,a,a)

+ f(Xlib)f(X2ia)f(X3ib)G(b,a,b)

+ f(Xljb)f(X2ib)f(X3ia)G(b,b,a)

+ f(Xlib)f(X21b)f(X3ib)G(b,b,b)

Note that G3(~ij) = G(9 1 ,9 2 ,9 3) is the

relative frequency of occurrence in the
scene of the specific neighborhood confi­
guration (9

1
,9 2 ,9

3
),

After computing the discriminant functions
ga and gb for pixel (i,j), pixel (i,j) is

assigned to the class which has the larger
discriminant function value.

Algorithm 1, shown in Figure 11.2, is
one way to implement the contextual clas­
sifier. The particular classifier consid­
ered here uses a horizontally linear
p-array of size three. This is shown in
Figure ILL

First consider the main loop. Let
the original image to be classified be an
I-by-J array called A. Columns 0 and J-l,
the two side edges of the image, are not
classified since these pixels will not
have both right and left neighbors. The
variable "value" will contain the maximum
"g" (discriminant function) value calcu­
lated for pixel (i,j). This variable may
be updated as the "g" for each class is
calculated. The variable "class" is the
class associated with "value." In the
main loop, "g(i,j,k)" is a call to a
function to calculate the discriminant
function for pixel (i,j) and class k.
This function is called I * (J-2) * C
times, once for each class for each pixel
being classified.

Consider the calculation of g(i,j,k).
The class of pixel (i ,-j) is held constant
at k, while all other possible class
assignments are considered for pixels
{i,j-l) and (i,j+l). For each assignment
of classes for the pixels neighboring
pixel (i,j), of which there are C*C, the
product of the class-conditional densi­
ties ("compf") is weighted by "G(r,k,q),"
the a priori probability of observing the
3-array (Wr'~'Wq)' The "G" array is pre-

determined and prestored. For each call
"g(i,j,k)," the value of "sum" for that
i,j, and k is calculated. "Sum" is then
returned as the value of "g(i,j,k)." In
this straightforward version of the
g(i,j,k) routine, the function to compute
a class-conditional density ("compf") is
cal.led C*C times each time "g" is called.

1980 A1achine Processing of Remotely Sensed Data Symposium
20

Now consider the "compf" routine.
This calculates the class-conditional
density for pixel (a,b) and class k using
the following equation:

where the measurement vector for each
pixel is of size four, Lkl is the inverse

covariance matrix for class k (four-by­
four matrix), ~ is the mean vector for
class k (size f8ur vector), "T" indicates
the transpose, anc;l "log" is the natural
logarithm. For each class, the algorithm

I 1
-1

uses log Lk ,Lk , and mk as precomputed

constants. For each call "compf (a,h,k),"
the value of "eexpo" for that a,b, and k

is calculated. "eexpo" is then returned
as the value of "compf(a,b,k)."

Algorithm 1 1xecutes the "compf" sub­
routine I*(J-2)*C times. Since for each
pixel there are C "f"s (class-conditional

,densities), this approach is inefficient
by a factor of C2 • Algorithm 2 rectifies
this problem by saving certain "f" values
rather than recalculating them.

The Algorithm 2, shown in Figure II.3,
implements the contextual classifier with­
out the redundant executions of "compf"
that occur in Algorithm 1. Let X, Y, and
Z correspond to the pixels (i,j-l), (i,j),
and (i,j+l), respectively, where (i,j) is
the pixel to be classified. Each of X, Y,
and Z is a vector of size C. Element t
of X will contain the class-conditional
d7nsity ("compf") 'for the current (i,j-l)
p~xel for class t. Y and Z are defined
similarly. By using these three vectors
to save the class-conditional densities,
7ach density (for a given pixel and class)
~~ calculated only once, instead of
C times.

. The main loop of Algorithm 2 is modi­
f~ed to calculate the class-conditional
densities for the first three columns each
t~me a new row is considered (i.e., each
t~me "i" is incremented). Each time a new
pixel in a given row is to be classified
(Le., just before "j" is incremented),
these values are updated. In particular,
X gets the Y values, Y gets the Z values,
and new values are calculated to update Z.

The new discriminant function calcu­
lation, g', does not call the subroutine

"compf." It gets the values it needs from
the X, Y, and Z arrays. For each call
109' (k) I" the value of "sum" for that k is
calculated. "Sum" is then returned as the
value of "g' (k) ."

The same "compf" routine is used for
both Algorithms 1 and 2. Algorithm 1
calls this routine I* (J-2) *C3 times, while
Algorithm 2 calls it only I*(J-2)*C times.

There are other techniques that can be
employed to make Algorithm 2 even more ef­
ficient that have not been included in or­
der to avoid obscuring the basic program
flow.

The serial complexity of Algorithm 2
can be calculated in terms of assignment
statements, multiplications, additions,
and "compf" calculations. To initialize
X, Y, and Z for new rows, I*C*3 assign­
ments and calls to "compf" occur. For
each pixel, at most C+l assignments to
"value" and "class" occur, C assignments
to "current" occur, and C calls to

"g' (k)" occur. In addition, for each row,
the X, Y, and Z vectors are updated J-3
times, each update using 3*C assignments
and C calls to "compf." Each execution of

109' (k)" uses 3*C2 multiplications, c2 ad­

ditions, and C2+1 assignments. Thus, the

total complexity for Algorithm 2 is:

I(J(C3+7C+2)-(2C3+14C+4) assignments;

3C 3I(J-2) multiplications;

I*J*C

additions; and

"compf"
calculations.

The growth is proportional to

I*J*C3 assignments, multiplications and
additions, and I*J*C "compf" calculations.

In this section, a contextual clas­
sifier based on a horizontally linear
neighborhood of size three has been ana­
lyzed. Algorithms for contextual clas­
sifiers using other size and shape neigh­
borhoods would be analogous to the algo­
rithms which were presented.

Algorithms 1 and 2 are written for
conventional uniprocessor systems. Sec­
tions III and IV will examine how to im­
plement Algorithm 2 on a CDC Flexible
Processor system and on a multimicropro­
cessor system such as PASM.

1980 Machine Processing eX Remotely Sensed Data Syrll)OSium
21

I'

I

III. FLEXIBLE PROCESSOR SYSTEM IMPLEMEN­

TATION OF THE CONTEXTUAL CLASSIFIER

This section discusses programming a
CDC Flexible Processor system [4] simula­
tor to perform a size three linear neigh­
borhood contextual classifier. The Flexi­
ble Processor system is briefly overviewed.,
Then the simulation is described.

The basic components of a Flexible
Processor (FP) are shown in Figure 111.1.
Each FP is microprogrammed, permitting pa­
rallelismat the,instruction level. An
example of the way in which N FPs may be
configured into a system is shown in Fi­
gure 111.2. There can be up to 16 FPs
linked together, providing much parallel­
ism at the processor level. The FPs can
communicate among themselves through the
high-speed ring or shared bulk memory.
The clock cycle time of each FP is 125
nsec (nanoseconds). Since 16 FPs can be
connected in a parallel and/or pipe lined
fashion, the effective throughput can be
drastically increased, resulting in a po­
tential effective cycle time of less than
10 nsec.

An FP is programmed in micro-assembly
language, allowing parallelism at the in­
struction level. For example, it is pos­
sible to conditionally increment an index
register, do a program jump, multiply two
B-bit integers, and add two 32-bit inte­
gers -- all simultaneously. This type of
operational overlap, in conjunction with
the multiprocessing capability of the FPs,
greatly increases the speed of the FP
array.

The following list summarizes the im­
portant architectural features of an FP:

User microprogrammable.
Dual l6-bit internal bus system.
Able to operate with either 16- or

32-bit words.
125 nsec clock cycle.
125 nsec time to add two 32-bit

integers.
250 nsec time to multiply two B-bit

integers.
Register file (with 60 nsec access

time) of over B,OOO l6-bit words.

In order to debug, verify, and time
FP algorithms, a simulator for an array of
up to 16 FPs has been developed. This
simulator runs under the UNIX operating
system on a PDP-II series computer at
LARS and has been used to program a maxi­
mum likelihood classifier [1]. An assem­
bler for the micro-assembly language has
also been developed.

The experience gained through the use
of the simulator has made evident the fol­
lowing advantages and disadvantages of the
system.

Advantages:

Multiple processors (up to 16).
User microprogrammable -- parallelism

at the instruction level.
Connection ring for inter-FP communi­

cations.
Shared bulk memory units.
Separate arithmetic logic unit and

hardware multiply.

Disadvantages:

No floating-point hardware.
Micro-assembly language -- difficult

to program.
Program memory limited to 4k micro­

instructions.

More details about the FP may be
found in [B]. Information about the asse~
bIer and simulator used at LARS to assem­
ble and execute the FP programs for the
contextual classifier is presented in [7].

Consider the implementation of a con­
textual classifier on an array of N FPs.
A~sume the neighborhood is horizontally
l1near, as shown in Figure 111.3. Divide
the A-by-B image into subimages of B/N
rows A pixels long, as shown in Figure
III.4. Assign each subimage to a differ­
ent FP. The entire neighborhood of each
pixel is included in its subimage. Each
FP ca~ therefore execute the uniprocessor
algor1thm presented in Section lIon its
own subimage. No interaction between FPs
is needed, i.e., each FP can process its
subimage independently.

The LARS FP microassembler and simu­
lator are being used to gather statistics
on the execution time for the size three
horizontally linear neighborhood contex­
tual classifier. Due to the fact that
each FP is microprogrammable, determining
program correctness and analyzing execu­
tion times is done through the use of the
microassembler and simulator. The current
implementation of the contextual classi­
fier uses 744 microinstructions, stored
in the micromemory (see Figure 111.1).
The format of the data words of the pixel
measuremen~ vectors, covariance 'matrices,
etc., cons1sts of a l4-bit two's comple­
ment'exponent and a l7-bit sign-magnitude
mantissa. The covariance matrices, loga­
rithms of the determinants of the covari­
ance matrices, a priori probabilities (GP),
and the X, Y, and Z vectors are all stored
in the large file (see Figure 111.1). In
this way, each FP has all the information
it needs for performing the classification

1980 Machine Processing of Remotely Sensed Data Symposium
22

),
d

on its subimage. The subimage data itself
would be stored in a bulk memory (see Fi­
gure 111.2). A multiple FP configuration
which associates one bulk memory with each
FP would be best for this application. For
testing the FP contextual classifier pro­
gram, the classification of one row of
eight pixel measurement vectors (stored in
the large file) using four classes is
being evaluated. The FP contextual clas­
sifier program is currently being debugge~
The timing results of using the FP simula­
tor to classify actual data using Algorithm
2 (Figure 11.3) will be presented at the
symposium.

For the horizontally linear neighbor­
hoods, when using N FPs together to pro­
cess an image, each FP handles l/N-th of
the image. Therefore, nearly a factor of
N improvement is attained over the time
required for one FP to implement the con­
textual classifier. (A perfect factor of
N improvement occurs if B is a multiple
of N. The minor degradation in perfor­
mance when B is not a multiple of N is
discussed in [2].) Vertically linear and
diagonally linear neighborhoods (Figure
111.5) can be processed in a manner simi­
lar to that for horizontally linear.neigh­
borhoods [2].

Consider nonlinear neighborhoods,
that is, neighborhoods which. do not fit
into one of the linear classes. For exam­
ple, all of the neighborhoods in Figure
111.6 are nonlinear. It can be shown that
there is no way to partition an image into
N (not necessarily equal) sections such
that a contextual classifier using a non­
linear neighborhood can be performed with­
out data transfers among FPs [2]. The way
in which to assign pixels to FPs in order
to minimize computation time will depend
upon the particular image size, number of
FPs used, the time required for inter-FP
communications, and the shape and size of
the neighborhood. A detailed analysis of
the interaction of these factors is cur­
rently under study.

IV. MULTIMICROPROCESSOR IMPLEMENTATION

OF THE CONTEXTUAL CLASSIFIER

. This section describes a method for
~mplementing the contextual classifier on
a large-scale multimicroprocessor system
such as PASM [6,9-11]. PASM is a dynami­
cally reconfigurable system being designed
at Purdue University for image processing
and pattern recognition tasks. The PASM
design will support up to 1024 processors.

Other 'computer archi tects have pro~2sed
parallel processing systems with 2 to
216 microprocessors [12,13]. The method
for implementing the contextual classifier
on PASM will be based on the use of the
SIMD mode of parallelism.

The acronym SIMD stands for "single
instruction stream -- multiple data stream"
[14]. Typically, an SIMD machine is a conr
puter system consisting of a control unit,
N processors, N memory modules, and an in­
terconnection network. The control unit
broadcasts instructions to all of the pro­
.cessors, and all active processors execute
the same instruction at the same time.
Thus, there is a single instruction stream.
Each active processor executes the instruc­
tion on data in its own associated memory
module. Thus, there is a multiple data
stream. The interconnection network, some­
times referred to as an alignment or permu­
tation network, provides a communications
facility for the processors and memory
modules. Examples of existing SIMD ma­
chines include the Illiac IV and STARAN
[15,16].

One way to model the physical struc­
ture of an SIMD machine is shown in Figure
IV.l. As indicated, there are N proces­
sing elements (PEs) where each PE consists
of a processor with its own memory. The
PEs receive their instructions from the
control unit and communicate through the
interconnection network.

To demonstrate how SIMD machines ope­
rate, consider the following simple task.
Assume that A, B, andC are each one-dimen­
sional arrays (vectors) and that the task
to be performed is the elementwise addi­
tion of A and B, storing the result in C.
In a uniprocessor system, this can be ex­
pressed as:

for i = 0 to N-l do

C(i) A(i) + B(i)

This computation will take N steps on a
serial machine.

Assume that A, B, and C are stored in
a SIMD machine, with N PEs, such that A(i),
B(i), and C(i) are all stored in the memory
of PE i, 0 < i < N. To perform an element­
wise addition of the vectors A and Band
store the result in C, all PEs would exe­
cute (simultaneously)

C = A + B

with PE i doing the addition of A(i) and
B(i), storing the result in C(i). Thus,
in this case, the SIMD machine does in one
step a task requiring N steps on a serial
processor.

1980 Machine Processing of Remotely Sensed Data Symposium
23

Consider a variation on this example.
Assume the N-step serial task is:

for i = 1 to N-l do

C (i) A(i) + B (J-l}

C(O) = A(O)

Given the data allocation above (i.e., A(i),
B(i), and C(i) in PE(i)}, an SIMD machine
does this task in three different steps:

1. The value of B(i-l) is moved,
through the interconnection network, from
PE i-l to PE i, 1 < i < N. Most proposed
and existing SIMD Interconnection networks
can do this in one parallel data transfer
[17].

2. In PE i, add A(i) to B(i-l) and
store the result in C(i), 1 < i < N (PE 0
is disabled). -

3. In PE 0, store A(O~ in C(O) (all
other PEs are disabled).

Thus, this example demonstrates the
need for the interconnection network and
methods for disabling PEs.

This simple example was provided to
familiarize the reader with the concept of
the SIMD mode of parallel processing. More
complex examples involving image process.­
ing and feature extraction can be found in
[18,19J.

consider the implementation of the
contextual classifier discussed in Sections
II and IlIon a microprocessor-based SIMD
machine. Recall that the neighborhood is
as shown in Figure 11.1, i.e., a horizon­
tally linear neighborhood with p=3. The
approach to decomposing the task will be
similar to that used in Section III for
the FP system. In both cases, the image
is divided into N subimages, and each sub­
image is assigned to a different processor
for classification computations. However,
there are three main differences:

1. It is technologically and economi­
cally feasible to construct a multimicro­
processor SIMD machine with many more than
16 processors. Therefore, while the "N"
for the FP system is limited by 16, the
"N" for the multimicroprocessor system
could be as large as 256, 512, or 1024.

2. The differences in computational
capabilities between an FP and an off-the­
shelf microprocessor must be considered.
For example, depending on the microproces­
sor chosen, 16 FPs may be faster than 32
microprocessors.

3. In the SIMD mode of parallelism,
the program (Algorithm 2) is stored in the
control unit, not in each microprocessor.
The control unit broadcasts the instruc­
tions to the microprocessors. The control
unit would also store the GP array., 'broad­
casting the appropriate array element to
all the microprocessors when it is needed.
In the FP system, each FP would store a.
copy of the program and must store or have
access to the GP array.

Thus, a SIMD machine can be used to
perform the contextual classification
based on a horizontally linear neighbor­
hood of size three without any inter-PE
communication. As in the case of using
the FP system to implement the classifier,
the implementation using an SIMD machine
with N microprocessors can achieve as much
as a factor of N improvement over the use
of a single microprocessor. The exact
improvement will be a function of the image
size and N.

To attain a perfect factor of N im­
provement, B (in Figure 111.4) would have
to be a multiple of N. Since N in the
SIMD case would be a multiple of the N in
the FPcase, this is less likely to occur.
When B is not a multiple of N, then Ca)
some PEs may have to process more rows
than others (leaving some PEs underutiliz­
ed), or (b) each PE would process a sub­
image including a partial row (requiring
inter-PE data transfers). The alternative
which is best would depend on the image
size, the way in which subimages are allo­
cated to PEs, N, the processor speed, and
the interconnection network speed. The
situation for vertically linear and dia­
gonally linear neighborhoods is similar.
Nonlinear neighborhoods require inter-PE
communications, but the best way to imple­
ment such a classifier would depend on the
factors just mentioned and the neighborhood
size and shape. These implementation con­
siderations are currently being explored.

v. CONCLUSIONS

Algorithms for performing contextual
classifications using a size three horizon­
tally linear neighborhood were presented.
Algorithm 1 was a straightforward approach.
Algorithm 2 was a more efficient approach
that avoided redundant calculations. The
serial computational complexity of Algo­
rithm 2 was sho~n to have a growth propor­
tional to I*J*C assignments, multiplica­
tions, and additions, and I*J*C "compf"
calculations. The way in which N FPs
could. perform the classifications N times

1980 Machine Processing of Remotely Sensed Data Symposilm
24 _

faster than a single FP was explained.
The use of N microprocessors in "the SIMD
mode of parallel processing to do the
classifications N times faster than a
single microprocessor was discussed.

In summary, contextual classifiers
have been shown to be powerful remote
sensing tools in other papers. Their main
disadvantage is their computation complex­
ity. This paper has demonstrated how
parallel processing can be used to over­
come this disadvantage.

VI. REFERENCES

1. P. H. Swain, H. J. siegel, and B. W.
Smith, "A method for classifying multi­
spectral remote sensing data using con­
text," Proceedings of the 1979 Machine
Processing of Remotely Sensed Data
Symposium (IEEE Catalog No. 79 CH 143(}-
8 MPRSD), pp. 343-353, June 1979.

2. P. H. Swain, H. J. Siegel, and B. W.
Smith, "Contextual classification of
multispectral remote sensing data
using a multiprocessor system," sche­
duled to appear IEEE Transactions on
Geoscience Electronics, April 1980.

3. J. C. Tilton, P. H. Swain, and S. B.
Vardeman, "Context distribution esti­
mation for contextual classification
of multispectral image data," in these
proceedings.

4. Control Data Corp., C~ber-Ikon Image
Processing System Des~gn Concepts,
Digital Systems Division, Control
Data Corp., Minneapolis, MN, January
1977 •

5. J. L. Kast, P. H. Swain, and T. L.
Phillips, The Feasibility of Using
a Cyber-Ikon System as the Nucleus
of an Ex erimental A ricultural Data
Center, LARS Contract Report 8,
Laboratory for Applications of Remote
Sensing (LARS), Purdue University,
West Lafayette, IN, February 1978.

6. H. J. Siegel, L. J. Siegel, R. J.
McMillen, P. T. Mueller, Jr., and
S. D. Smith, "An SIMD/MIMD multi­
microprocessor system for image pro­
cessing and pattern recognition,"
Proceedings of the 1979 IEEE Computer
S~c~ety Conference on Pattern Recogni­
t~on and Image Processing (IEEE Cata­
log No. 79 CH 1428-2C), pp. 214-224,
August 1979.

7. P. H. Swain, P. E. Anuta, D. A. Land­
grebe, and H. J. Siegel, Vol. III:
Processing Techniques DevelOpment,
Part 2: Data Preprocessing and Infor­
mat~on Extraction Techniques, LARS
Contract Report 113079, Laborato'ry
for Applications of Remote Sensing
(LARS), Purdue University, West Lafay­
ette, IN, November 1979.

8. Control Data Corp., Cyber-Ikon Flexi­
ble Processor Programming Textbook,
Digital System Division, Control Data
Corp., Minneapolis, MN, November 1977.

9. H. J. Siegel, "Preliminary design of
a versatile parallel image processing
system," Proceedings of the Third Bi­
ennial Conference on Com utin in In­
d1ana, In ~ana Un1vers~ty, B oom1ngton,
IN, April 1978.

10. H. J. Siegel, P. T. Mueller, Jr., and
H. E. Smalley, Jr., "Control of a par­
ti tionable mul timicroprocess.or system,"
Proceedings of the 1978 Intern~tional
Conference on Parallel Process~ng
(IEEE Catalog No. 78 CH l321-9C), pp.
9-17, August 1978.

11. H. J. Siegel, F. Kemmerer, and M.
Washburn, "Parallel memory system for
a partitionable SIMD/MIMD machine,"
Proceedings of the 1979 International
Conference on Parallel Processing
(IEEE Caralog No. 79 CH 1433-2C), pp.
212-221, August 1979.

12. H. Sullivan, T. R. Bashkow, and D.
Klappholz, "A large-scale homogeneous,
fully distributed parallel machine,"
Proceedin s of the Fourth Annual S m­
pOS1um on Computer Arch1tecture IEEE
Catalog No. 77 Ch l182-SC), pp. 105-
124, March 1977.

13. M. C. Pease, "The indirect binary n­
cube microprocessor array," IEEE
Transactions on Computers, V~C-26,
No.5, pp. 458-473, May 1977.

14. M. J. Flynn, "Very high-speed comput­
ing systems," Proceedings of the IEEE,
Vol. 54, pp. 1901-1909, December 1966.

15. W. J. Bouknight, et al, "The Illiac
IV system," Proceedings of the IEEE,
Vol. 60, pp. 369-388, April 1972.

16. K. E. Batcher, "STARAN parallel pro­
cessor system hardware," AFIPS Confer­
ence Proceedings Volume 43: 1974 Na­
tional computer Conference, pp. 40S-
410, May 1974.

1980 A1achine Processing of Remotely Sensed Data Symposium
25

I I
I

17. H. J. Siegel, "Interconnection networks
for SIMD machines," Computer, Vol. 12,
No.6, pp. 57-65, June 1979.

18. L. J. Siegel, P. T. Mueller, Jr., and
H. J. Siegel, "FFT algorithms for SIMD
machines," Proceedings of the Seven­
teenth Annual Allerton Conference on
Communications, Control, and Computin ,
pp. , Un~vers~ty 0 I ~no~s­

Urbana, October 1979.

Main Loop

for i = 0 to 1-1 do /* row */

begin

for j 1 to J-2 do /*

begin /*

value -1 /*

class -1 /*

for k 1 to C do 1*

begin

current = g(i,j,k)

if current > value

column */

for each pixel

max "g" */

class with max
"gil

for each class

then value = current

class k

end

print Pixel (i,j) is classified as
---"class"

end

end

Figure 11.2. Algorithm 1 -- Implementa­
tion of a contextual classifier.
Main Loop.

*/

*/

*/

19. H. J. Siegel, P. H. Swain, L. J. Siegel,
P. T. Mueller, Jr., and J. El-Achkar,
Parallel Image Processing/Feature Ex­
tract~on Al~orithms and Architecture
Emulation, Technical Report TR-EE
79-51, School of Electrical Engineer­
ing, Purdue University, West Lafayette,
IN, November 1979.

Discriminant Function Calculation

function

sum 0

for r 1

begin

for q

sum

end

end

g(i,j,k)

to C do /* all possible
classes

1 to C do /* all possible
classes

compf(i,j-l,r)*compf(i,j,k)

*compf(i,j+l,q)*G(r,k,q)+sum

return (sum)

*/

*/

Class-Conditional Density Calculation

function compf(a,b,k) /* for pixel (a,b) ,
class k */

x A(a,b) /* x is pixel measurement
vector */

expo = loglrk 1- [(X_~)T r;l (x-~)] * .5

return (eexpo)

Figure 11.2 (cont.). Algorithm 1 -­
Discriminant function and class­
conditional density routines.

1980 Machine Processing of Remotely Sensed Data Symposium
26

Main Loop

for i = ° to 1-1 do /* row */

begin

for k 1 ~ C do

begin /* compute f's for 1st 3
columns */

X(k) compf (i,O,k)

Y(k)

Z(k)

end

for j

begin

value

1

compf (i,l,k)

compf (i,2,k)

to J-2 do /* column */

/* for each pixel

-1 /* max "g" */

*/

class -1 /* class with max "g"

for k 1 to C do

begin

current = g' (k)

if current > value

then value

class

end

current

k

print Pixel (i,j) is classified as
"class"

if j < J-2

then /* update X,Y,Z arrays */

for k = 1 to C do

begin

X(k) Y (k)

Y(k) Z (k)

Z(k) compf (i,j+2,k)

end

end

end

*/

Figure 11.3. Algorithm 2 -- Implemen­
tation of a contextual classifier.
Main Loop.

Discriminant Function Calculation

function g' (k)

sum °
for r = 1 to C do /* all possible

classes */

begin

1 to C do /* all possible
classes */

sum X(r) * Y(k) * Z(q)

*G(r,k,q) + sum

end

end

return (sum)

Figure 11.3 (cont.). Algorithm 2 -­
Discriminant function calculation.

(i, j-l) (i,j) (i,j+l)

Figure 11.1. A p=3 context array
(neighborhood) .

" "
Figure 111.1. Data path organization

in the CDC Flexible Processor.

1980 Machine Processing of Remotely Sensed Data Symposium
27

I:
I.:

TO I/~ BUFFER MEMORY

..... ---+-t--1r----t-t-1-- TO IMAGE
DISPLAY STATION
CONTROL CONSOLE

RING

TO ALL BANKS
L-__ ---I--4-----,--t-.-+---- OF IMAGE

DISPLAY MEMORY

Figure 111.2. Block diagram of typical
Flexible Processor array.

IT]

Figure III. 3.
borhoods.

~

1 ... 1]

Horizontally linear neigh­
Each box is one pixel.

A
~ ,
n

1 · · ·
8-1

Figure 111.4. An A-by-B image divided
among N Flexible Processors.

8

Figure 111.5. Vertically linear and
diagonally linear neighborhoods.

Each box is one pixel.

Figure 111.6. Nonlinear neighborhoods.

~
B

Each box is one pixel.

CONTROL UNIT

~ ...

a

Figure IV.I. A general model of an
SIMD machine.

1980 Machine Processing of Remotely Sensed Data Symposium
28

	Purdue University
	Purdue e-Pubs
	1-1-1980

	Parallel Processing Implementations of a Contextual Classifier for Multispectral Remote Sensing Data
	Howard Jay Siegel
	Philip H. Swain
	Bradley W. Smith

