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ABSTRACT

" 'Methods for classifying rémdt_ely sensed data from multiple data Soﬁfées
. ‘jvfa‘r’é considered. Special interest is in -generaJ metli’ods for j“mﬁlltv;i'SOu‘rce
c;l’é,é'siﬁjcatioﬁ and three such approaches are considered:' De.mjpvster-'Shé.’,fei"
: 'fhéériy;":fu_zzy set theory and statistical mulfisource analysis. ‘Sta‘tistical mul-
tisoufée analysis is investigatéd further. To #pply ‘this.method successfully
it is ne'éeésary to characterize tﬁe "reli#bility" of each data source. Sépar‘a—
_bﬂity méasiires and 'cla.ssif_ication aécuracy are used to measure the reliabil-
‘-ity.-' Th_ese reliability. méasures_ are then associated with reliability ,fé.-ctors
included in ‘the statistical mﬁltisource analysis. Experimgnt,a.l 'res;ults' are
“g‘ivenifo;- the application of >stativstical multisource analysis to. multispectral
sca.l”me"r_data where diﬁe;ent segments of the eléctromagnetic spectrl‘u'n’ba.re
treate& as "different" sources. Finally, a discussiorn‘is included conceming

~ future directions for investigating reliability measures.



CHAPTER 1
- INTRODUCTION

o '~Cémput‘erized infofmatioﬁ extraction from remotely sensed ima;ger& has
been ‘épplied su'ccessfully. over the last two decades. The data used>in ‘the
»p'ro'cessing has mostly been multispectral data and  the - statistical
_pattelin recognition (multivariate classification) methods-.—e;reﬁ now
widely known. Within the last decade advances in‘vspace and comp'u'te"r
technologies have made it possible to amass large amounts of data 'a‘,b.obut
the"Eerth “and its environment. The data are now more and more
‘f};picaliy net - only spectral data but include, for example, forest maps,
,groﬁhd cover maps, radar data and topographic information4 such  as
elevatlon and slope data. We may therefore have many kmds of data from
dlﬁerent sources regardlng the same scene. These are called multlsource

data.

We are interested in using all these data t-o extract more iﬁfermation
and get more accuracy in classiﬁcat‘io.n. However the convenfional
mulfi_va;iate .classiﬁcation methods cannot be used satlsfactorlly
processing multisource data. This is due to several_ reasons. One is that the |
_mﬁltisoi;:__tjce_ .d.ata. need not be just spectral; they _caﬂ for exa_mple be

elevation ranges or even non-numerical data such as ground cover classes or



soil types. The data are also not necessarily in common units and therefore
scaling problems may arise. It is also desirable to determine the reliability of
each source, because all the sources are in general not eq}ially reliable. This
all imblies that other methods than the conventional multivari‘ate

cla’ssiﬁéation have to be used to classify multisource data.

'.'iVa'riousi ad hoc methods have been proposed to classify
multisource data. | However, we are interested in developing more general
: methods “which can be applied to classify any t&pe of data. In particular,
our attention is focused on statistical multisource analysis by means of a
method based on Ba,yesianvclaSsiﬁc'ation theory which was proposed recently
by Swain, Richards and Lee [1]. An extension of this method will be
developed in this report. '

Our objective is to modify the method to take into account the relative
revliab:ilities of the sources of data involved in the classiﬁ'catidn. This r'equifes
a Waj'to quantify the reliability Qf a data source. Its importance Becomés
apparent when we look at the combinatioﬁ of information. The foundation
" of the method for combiha,tibn from various sources consists essentially of
multiplication of source-specific posterior probabilities from all the sources
involved in the classification. If any of the sources are unreliable they can
affect the outcome of the multiplication disproportionately and consequently

increa.se classification err'ori

The bgoal of thls report is to lnvestlgate methods to determlne the
rellablhty and define a correspondmg reliability factor for each data source.
T‘he“ reliability factors are then included in the clasmﬁcatlon proceSs.

‘Experimental results will be given.



CHAPTER 2
PREVIOUS WORK

‘2.1 ‘A Few Early Methods

Several methods have been used in the past to c'lassify
_multi'sOui'ce data. One ,méthod is the "ambiguity reduction” Where’lthe data
are classified based on one or more of the data sources, the results from the
élassiﬁ;:ﬁtion are assessed, and other sources are then resorted to in order to
. ’reéolﬁe tﬂe remaining ambigﬁities. The ambiguity reduétion can be achiev_ed
by 1bgical sorting methods. Hutchinson has used this method successfully
2]. |

A second method is supervised relaxation labeling derived by Richards
et al. [3] in order to merge data from multiple sources. This method, like
other relaxafion methods, tries to develop consistency among a chlecti_oﬁ of
observations by means of an iterative numerical "diffusion” proééss. | So far
this methéd haé not been fully investigated on multiple,v sources and its

iterative nature makes it computationally very expensive.

A third method is to subdivide the data based on a subset of the data
sources and then analyze each subdivision based on the remaining sources.

In this method the data are subdivided in such a way that variation within



: each subd1v1s10n is mlmmized or ellmlnated due to some of the subd1v1d1ng'

variables. 'An example of this method can be found in Strahler et al. [4]

None of the methods described above 1s a general approach in
multlsource clas51ﬁcation and all of them depend heavily on the user. They
all deal with the various sources of data 1ndependently In contrast the -
‘fourth method mentioned here is a general approach which does not deal
with -the data “sources independently TlllS method is the stacked—vector
-approach i.e., formation of an extended vector W1th components from all of
~the data sources and handllng the compound vector in the same manner as.
'data from a single source. This method is the most stralghtforward and the
Simplest of the methods. It works very well if the data sources are sunilar
‘and the relations between the varlables are eas1ly modeled [5] However, the
method is not applicable When the various sources cannot be descrlbed by a
common model e.g., the multivarlate Gauss1an ‘model. Another drawback is
. that -when the multlvarlate Gaussian model is used,‘ vthe computatlonal: cost’
grows A:'as the’ Asquare of . the number of dimensionsl - This | 'imalées “the
computational cost severe if the number of sources is large.

All the methods discussed up to this pomt have ‘s1gn1ﬁcant l1m1tat10ns :
as general approaches for multisource classification. Our goal is to develop a
gene-ral method which  can be used to classify complex data - “sets,
. conta1n1ng both multispectral topographlc and other forms of geographlc
'd;ata_. Three such. methods are d1scussed below. First we discu'ss”stat1st1cal
‘multiSOurce v'analysis:., a probabilistic method which is base_d‘ on Bayesian
decision theory and was developed recently byb Swain, Richards and Lee [1]

Then we address two non-probabilistic approaches for combining sources,



methods based on Dempster-Shafer theory and fuzzy set theory. We will
review the main concepts of these three approaches and then pursue the one
we think is most applicable in multisource classification of remotely sensed

data. -

2.2 S‘t.aﬁisfical Multisource Analysis
As npted previously, this method was proposed recently by ‘Sw#in,
:‘Rlic'hax;.d‘s and Lee [1]. It is a general method which extends well-known
’concepts used for classification of multispectral images when only one data '
~ source is involved. In this method tﬁe various data sources #re, handled
independently and each data source can be modeled by any appropriate
model. The main concepts in the theory are addressed below.
' ‘Assume there are - n separate data sources, each provi_ding a
méasurement is (s = 1,...,n) for each of the pixels of interest. If | any
Qf‘, the sourées “is multidimensional, fhe corresponding x, will bé a
nieasﬁrement vector. Let there be M user-specified information'clasées-iﬁ
the scene (not necessarily a property of the data) denoted wj (j =
1,7 .o ,M). The pixels are to be classified into these claéses. |

Each data source is at first considéred separately. For a givenv source,
an .appropriate training procedure can be used to segment or classify the
data iﬁto a set of classes that will characterize that source. We4 could for
g}g@@ple use clustering for this purpose. The data types are assume,dﬁg be
very general, e.g., both topographic and multispectra‘lb datz.m.-' ’We
therefore refer to the source-specific classes or clusters #s data classes,

since - theyv are defined from relationships in a particular data space.



'-’I-‘he data classes are for instance spectral classes in_- the,fcase ofl |
"spectral data while for topographic data they may for example 'v-be
elevatron 'ranges. 'In' general. “there may not be a simple - oneftoéone
relati_on"_ between theuser-desired informatlon ’classes andv the set of"
data : 'classes available. It is one of the requirements of a multlsource
analytlcal procedure to devise a method by which 1nferences about

1nformat1on classes can be drawn from the collectlon of data classes .

The i-th data class from the s-th source is denoted by d (1 =1, 2 you )

ms), where ms is the number of data classes for source . s. - The

measurement vectors are associated with data classes accordlng to a. set of -

data-spemﬁc membership functlons, dsi Ixs) This means that for-a given.
measurement from the s-th source, f(d;;|x,) gives the strength of ‘association
“of x with data‘c-lass d; defined for that source. |

The information classes ouJ are related to the data classes from a s1ngle
source by means of a set of source-specrﬁc membershlp functions f IdSl

‘. for all i, i, s, where f(w ld31 (x,)) is the strength of assocratmn of data class ~
.d wrth information class wj, possibly influenced by the value of x.- ’I-‘hlsv
expressmn is . dlﬂerent from prev1ous approaches for single 7‘ source
class1ﬁcat10n, where it is often assumed in ‘the analysis that there is a

unlque ‘correspondence between spectral and information classes, once

pr1or probabllltles have been determined.
“Now a set of global membershlp functlons is defined, that collect
together the inferences concerning a single information class _from all of .

‘the data sources (as represented by their data classes). The ‘membership

j:fun'ct"ion’ Fjdfor class w is of th.e general form:



F, = Fjif(wlg@))r] (=12 ...,m; s=1,2,...,0)  (2.1)
‘where rg is the qnality or reliability factor of the s-th source and is defined
to ,.Weight the various sources, re'ﬂecting _the perceived or measured
rehablhtles of the various sources of data. This is very‘ important
because it may be known that all the sources are not equally rehable and
therefore the analyst is allowed to» take into account his conﬁde_nce in the

recommendation of each of the individual sources of data available;
Finally a pixel X = [xg,... ,Xn]T is classified according to the usual

’ 3 ) ) - - » - .. ) - - * 3
maximum selection rule, i.e., it is decided that X is in class w for which

F*_=' mjax Fj v | (2.2)

’ Now' the Inembership functions are defined specifically. = From e)rperience
w1th Bayes1an classification theory a natural choice for the glo‘bal

membership function is the joint-source posterior probablhties ;
' Fj(X) = p(wj IX) = p(wj ixl’xm ... ,Xn) (2.3).

Ifr we make the assumption that the data sources - are statistically

independent, the global membership function may be written [1]: Co
Fy(X) = [p(wp)]' " T p(w; bxs) | | | - (24)
) s=1 ’ o

‘I't may . be argued that independence between two unrelated sources is
unhkely and the 1ndependence assumption may therefore 1ntroduce errors.

‘.On the other hand there are malnly two reasons why _use of the
1ndependence assumptlon is desuable in this case. First, it is clear thait‘

lnteractlons between two data sources can be very complex and conscquontly



hard " to -model. To make wuse of_ dependenCe between sources these
interaetions have to be modeled, but we ’are either unable br'uvnvrilling. te do
~ that. - _Set:ondly, taking dependence irrto account will increase the
‘com'p.lrtatienal complexity of the classification proce’drlre and fm,ay;_ impose
consrderable burden on the computer resources avallable Usmg this
reasqurng, mdependence between data sources is Justlﬁed in -the. global
membérshi§ function. | |

'Novt' consider the individual source-specific membership functierrs
' whrch appear here exphcrtly as source-speclﬁc posterior: prob,‘ab"ilvities.
These can be expressed as: | o o

k) - Solakdak) 09

1=1
' Whére'_sthe source.—s_peciﬁc membership functions appear explicitly -as
p(w, |d5i,»xs) and the data-specific membership functions as p(dgfx;).

Anether;Way to write (2.5) is:
plak) = Srbulydopabapl@)/ot) (9

Implerrientation of the classification technique involves using (25) or (2.6)
to determine the posterior probabilities irr (2.4) and then (2.'2)'i.is used for
the decision. In turn the tluantities .in (2.5) vor.(2.6) as appropriate have
to be estlmated It is now interesting to look at equatlons (2 5) and (2.4)
taken together. In (2.5) we are just looking at one source at a tlme There
vwe_ see exphcltly the relation between the data Vectors and the data classes
ahd the information classes, demonstrating the role of data ciasses' as -

irrter_n__lediaries. Equation (2.4) then aggregates the information from all the



sources of data for each specific information class.

- As seen above, statistical multisource analysis is an extension of one
source Bayesian classification. We now turn away from the Bayesian
framework and look at combination of sources using Dempster-Shafer theory

andbfuzz_y set theory. -

2.3 Dempster-Shafer ‘Theory

Several approaches 'er dealing with the prob‘lem of vquan’vcifying
- uncertainty have been proposed ‘in the literature. One approach comes
from the works of Dempster and Shafer in connection with a mathematical
theory of evidence. The théory as described in Shafer (6] is a depaftﬁre '
' from the _traditiénal Bayesian approé.ch in that mass is assigned to some

-subsets, whereas uncertainty is spread over all subsets.

In this respect the- traditional Bayes approach has been rejected: by

many authors because [7,8]:

1) Knowledge is conditional on the past and this requires large

- amounts of statistical data.

2) It is difficult to ensure and maintain consistency in a collection of
interrelated propositions. This also stemsi from ‘the'need to assign
pbint probability values éven when the underlying models from
which these values are derived are incapable of supplying such

. precise data.



10

3) " Uncertainty about a proposition implies near certainty about the
- negation of that proposition, i.e., Bayesian theory cannot

- distinguish between the lack of belief and disbelief.

2.3.1 Fundamentals in Dempster-Shafer Theory

:Tlié idea is to use a number between zero and one to indicate the
degree of s’uppdrt a body of evidence provides for a proposition. The
fﬁndamental -conéept in Dempster-Shafer theory is the basic probability
assignment m. For a set A, m(A) measures the belief that is committed
vexactly to A alone. It can be defined in the following Way: |

" Definition: Assume m is a set mapping from subsets of the finite set X

into the unit interval, i.e.,
m : 2X — [0,1]

' sﬁch that:

1)} m(¢) =0 | (where ¢ is empty) |
2) S m(A) =1 |
ACX :

m is then called a basic probability assignment. It is worthwhile to note

that:
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1) m(X) is not necessarily one.
2) A C B does not necessarily imply m(A) < m(B)
3) - It is allowed that belief not be committed to either A or A°.

Ti;’is _(iﬁantit& m(A) measures the belief that one commits exactly to A, not
: thé '_tot'al belief that one commits to A. To obtain the me#sure of the‘tortal
Bélief :committed to A, one must add to m(A) the quantities m(B) for all
proper subsets B of A. Then a belief function can be defined in the ‘following

way:

Definition: Given a basic probability assignment m, ‘define the belief

function:
Bel : 2% — [0,1]
~ such thét for any A C X:

Bel(A) = 3 m(B) - )
BCA ,

The evidence for a propoéition A is deséribed by a subinterVal
[s(A),p(A)] of the unit interval [0,1], where
s(A) = Bel(A) ~ (2.8)

pA)=1-s(a) | | (2.9)

The lower value, s(A), represents the "support” for the propositibn
- and sets a minimum value for its likelihood. The upper value, p(A),

denotes the "plausibility” of that proposition and establishes a maximum
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likelihood. ‘Support may be interpreted as the total positive effect that a
body of evidence has on a proposrtlon, while plausibility represents ‘the
total extent to which a body of evidence fails to refute a proposition.
‘The ' degree of  uncertainty about the actual probability value for a
proposition corresponds to the width of its evidential interval; i,e., p(A) -
sv(A)‘. '. If this difference is zero for all propositions, the system is
Bayesian [8]. |

- For example if we represent a proposition A using the notation

Ap(a)p(ayy then (8]

A[O 1] - There is no knowledge at all about A.

A{o 0] " As false.

A[ll] . - A'is true. |

.A[,zo,r]. | Evidenee provides partial support for A.

‘ A[o,.so] -‘ Evidence provides nartial support for A°.

Af20,80) Probability of A is between .20 and .80. Evidence provides

. simultaneously support for both A and A°.

. An important part of Shafer’s theory involves the combination vof‘ belief
fnnetions to form a eomposite belief function, i.e., comhining varie-us
'-sources of ev1dence Shafer accbmplishes this by wuse of Dempste'r’s "rnle
of - comblnatlon, sometlmes called Dempsters orthogonal sum. Thls glves

the aggregated mass that can be ass1gned to the labehng proposmon X
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3 my(A)my(B)

e _ _AnB=X
"bm(X) C1- Y, my(A)my(B)
ANB=¢

(2.10)

We may call Bel,EBel, the orthogoné,l sum of Bel; and Bel,. " Because of

the commutativity and associatiﬁrity of the belief functions:

" Bel;&EBel, = Belz@Bell ‘ (2.11a)

| | (BellE}-)Bel2)@Bel3 %Bel‘l@(Be12®Bel3) | | -(2.11b)

we form pairwise sums and combine two functions at a time to

- accomplish the combination.

" To illustrate use of Dempster-Shafer theory further we ‘gi’ve d‘simpl'e
example using two sources of evidence. In this example the sets A and A°
are subsets of the sét © which is usually referred to as the "frame of

discernment."

For source # 1 we have:
A={a} A ={be} ©={abe}
We assign the basic probability assignments in the following way:
m(A) = 0.6 m(A%) =03 m(O)=0.1
Then we can calcﬁlaté the support and plausibility for each set by usiﬂg

equations (2.8) and (2.9). This calculation gives:

s(A) =06 (A% =03 s(6)=06+03+01=1

p(A)=1-03=07 p(A%)=1—06=04 pO)=1-0=1
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‘We can therefore write:

A A%sq . Opg

' j1<I<)’v'vv-‘i"9‘r‘ source # 2 we have thesame sets:‘ |
P ={a} A ={bc) O={abe)
However, the basrc probability assignments are different:
| m(A) = 03 m(A%) = 0.7 m(e) — 0.0

Ueihg t:hese data we now get:
- s(A) =03 .:s(..Ac) —07 .g(e)"'='o.3'+:o.7 =1 o |
wp(A) ‘=,1v-: 07 =03 P(A°) =1-07 =103 | pO)=1 |
] Wé'caﬁ now write‘:’ | | |

Az Ac[fz,.v]. 9[1,i] o

To calculate the aggregated mass from these two sources we ‘can now use

| Dempster s rule (equatlon (2. 10)) That calculation gives:

m(A) = - 0.6:0.3 + 0.30.1 043
1-——(0607+0303)

0.3:0.7 +0.7:0.1
(0607+0303)

m(Ac) = = 0.57

: 232 ."_D’eci'sion Rules
7- In  statistical pattern recognition methods there is usually a

stralghtforward way to se]ect a decrslon rule to use m decldlng the

' ~preferred label among a range of optlons. For max1mum. hkehhood



15 -

a‘l'gorithms. the rule is usually expvressed in terms of the : rnost‘ _‘favored
label. "This is va*lso the case for the multisource statiétical technique
,desc'r.i'bed above in which class membership is decided on the basis of :
max1m1z1ng ‘,the global membership function. o
ThlS is not the case, though with evidential methods, Where ; an
,ev1dent1al interval bounded by support and plaus1b1hty rather than a.
smgle value is attached to candidate class labels. In that case one has

a number of options potentially to choose among for a declslon rule [9]

Some of the candidates are:
1) YA maximum support rule, where the labeling nroposition jwith the
o hi'g\hest support is chosen. o | |
‘2:)_ o | A,'Inax_imum vplaus;lb‘ilbity rule, 'W_here the pronosition‘- with- a the
L V”vihig.hest plausibility is chosen. : : |
B 3) “ ., An absolute rule, where the proposition whose snppo'rt »ex-ceedjs' all
. ':othe_r plausibilities is chosen. If the width of the evidential interrral -
is larger than the difference between the two highest “SUpports,
" this rnle Wi_ll not giwre a decision. | -
4)‘ o A maximum support and plausibility rul_e‘, where v.the 1abel ¢hosen

| has both the highest supportw and plausibility.

2.3.4° Exa.rnple of Multlsource Classrﬁcatlon Usmg Dempster-

Shafer Theory

K1m et al [10] have applied Dempster—Shafer theory to multlsource

data.’ They use a dlstance measure as the weight of evrdence for data :
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classification to determine the degrees of support based on the multispectral,
digital elevation and digital siope data. In their work the ‘Mahalanobis
distance is used to take into account correlation and dispersion of sa;mplés.
* They define the measure of support for a certain class w; as: |

OBi(2) =1 —Py(2<w) =1 —Fy(w) ) (2.12)
where 2z’ denotes the distance from the mean vector of W td a given
observation vector X. P; (Z < ) is the probability of the event (Z < i’)‘for
S‘aﬂipléé‘ in w and Fy(z’) is the cumulative distribution function of Z. :

It is easy to see that the function By( ) has the properties:

1) - B;: [0,00] — [0,1]
2), ~ B;is nonincreaéing.
'3) " B;j(0) = 1and Bj(cc) =0

Properties (2) and (3) correspond to the human intuition that the
disbelief in the hypothesis.X belonging to class w increases as the distance
between the meah and X increases. Thus 1-Fy(z’) may be considered as the
measure of support for the hypothesis. |

_ Kim et al. use B; toﬁnd the support for the proposition that pixel X in
souréé »s»belongs to class w;. They calculate this for each soﬁrce and then use
Dempstér5's rﬁle to combine the evidence from all the sourceé; so the pixel

~ can be classified using any appropriate decision rule.
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S 2. 4 Fuzzy Reasomng

~ Aside from Dempster—Shafer theory another Way to dea.l w1th
'uncertalnty is to apply the notion of fuzzy or monotonlc measures whlch :
1n1t1ally comes from the work of Zadeh [11] In fuzzy theory a fuzzy set is
",a class of obJects W1th a. continuum of grades of membershlp Such a set is
characterlzed by a membersh1p functlon which as31gns to each obJect a |
grade of membershlp ranglng between zero and one. Therefore for a fuzzy

: subset A of the universe set Ao, w1th membersh1p function pa(x), ¥ we have

f zur(ai) <1 Vfor‘anai- : R (213)

" This i is very dlfferent from conventlonal (" crlsp ") set theory where we have
-an on/oﬁ" membershlp functlon that takes only values 0 or 1, 1e we place
our full conﬁdence in an element be1ng a member of partlcular set ‘or not
. [12] To 1llustrate thls concept further, we know for convent1onal sets that
the Bayesmn probability of the subset A is:-

P(A) = ¥ p(ai) | R '» o -(2l14a;)

,EA ;
, 'On the other hand in fuzzy set theory the correspondlng probablhty is:

PA) = Sk R

ai€A -

' Where p( ) is the probabilityv» density.‘ and u;( ) is the membe:rs_hip functionl.: |
B Tn comb1n1ng ev1dence from multiple sources, fuzzy theory has been
‘,used 1n combxnatlon w1th Dempster-Shafer theory Ishlzuka (13 and

| Ishlzuka et al [14] have extended Dempster-Shafer theory to 1nclude fuzzy

sets. They define the degree that a fuzzy subset A; is 1ncluded in another
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f1'1‘zz'y subset A, of the same universe set A, as:

- min(1,1 — pp(a) + #afa))
A CAy) =

(2.15)
max(sip () @)
where p, and piy, are the membership functions of A; and A, respectively.
The denominator is called the height of the fuzzy subset and 'equ'a;tion (215) -

takes' thé value 1 if A, is completely included in A, and 0 if y A2(

)= 0at
v the point where pAl( ) takes its peak value. - o
o ’I‘hey'also define the degree of interseétion of two fuzzy subsets A, and

A, as:

mgx(uAlnAQ(a))

R W

" min(max(jug (@), max{pa (o)) 1)

where the membership function of the intersection A NA, is defined in f_l_lz_zj

set theory a‘s:_' |
@) =min(a @) (1)

The vdenominator of (2.16) is 1 if the fuzzy subsets A, and A, are

normalized, i.e., iff for all a € A:

afa) = pafa) = 1

The degree that the intersection of A, and A, is ¢ (empty) isd‘eﬁne'd_.ia.s: '

1-— J(AI’A2)
If now an extended Dempster-Shafer probability assignment m(A) is
, : deﬁned‘for‘each fuzzy subset A characterized by p4(a) then equaﬁons (2.15)

and ‘(2.A16) can be used to define a belief function and a combination _rulé
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Which' are diréct ‘extensions of the ones in Dempster-Shafer theory. The
belief function is then: |

Bel(Ai) = %I(Aj_C_Ai)m(Aj) ' :‘(2.‘:1'8)

The combination rule is an extension of Dempster’s rule:

Y J(AgAgy)my(Ay)ma(Asy)
AinAg=Ar

| m(Ak)_ = Y- J(A1i1A2j))ml(Aii)mz(Aéj)A

(2.19)
ApAy RO
‘This extension of Dempster—Shafer theory makes it possible  to use the
o de‘c'isi‘on rules described in 2.3.2. |
" Several othér methods of combining fuzzy sets ‘ha;ve been a‘,ddressed‘ iﬁ
-th§ literature.  Two of them are listed bel§w but will not be dbi}’sclis_sed‘ .a‘my

' furthér_ here.

S1)- Taking minimum and maximum of the membership functions [15].

2)‘ o Using linguistie probability [16].

25 Comparisqn of Multisource Classification Methods fbr»" Use in
?rocessing of Reinotely Sensed Data -

We hé,ve now described methods ubsved for classification ‘;)f mullt‘i'so»urc,e
dat.a As said earlier, we are only interested in general method,s”,‘ggf,‘ m ad
hoc» methods. There were three general approaches discuvss'é:d‘ in - this

: chapteif; '
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; -Démpster-Shafer theory deals with uncertainty in -»thé'- data
measurements and is widely recognized and stﬁdied. It has bveeni examined
in expert systems [17] and is now being used in geographic in’formation
processing [18]. This approach has some problems, which include ‘how to
give values to the basic probability aséignment and what decision ,1"ulev to
choose. These problems are highly application-specific in nature..

Fuzzy set theory deals with uncertainty, but in a different way, and has
not been used extensively in classification of rémotely sensbed data. Some
authors have examined clustering with fuzzy techniques [19,20]‘ and other
have-addressed combination of eVidénce using fuzzy sets as described in
section -2.4.v The problems with this approach are similar to the ones using
D‘empéter-Shafer theory. Here w‘é have to specify a membership function for

~ each set and it is not evident what is the best way to do that.

'_ r' It is interesting to noté here thé,t although Dempster-Shafer thebry_aLnd
fuizy set theory have more mechanisin to handle uncertainty than Béyeéian
deéisibn theory does, Bayesian statisticians do not think very highly of these
theories. Berger for exaniple views them either as unnecessary elaborations
on - robust probabilistic analysis or aé "ihsufﬁcien.tly complicated
répvre‘sentations of reality [21]. On the other hand we do have much more
" experience with Bayesian classification theory when processing remotely
sensed data. Statist‘ical methods such as the maximum likelihood method
haVe'been used for a long time in conventional one-source cl#ssiﬁcaﬁiqn.
The statistical multisource ‘method by Swain, Richafds'andeee is an
éktensidn of such methods. It is therefore a reasonable choice in our

| andljrsis‘. This method also does not have any of the problems associated
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with the two approaches above. However, the mei';hodv as presented by
Swain, Richards and Lee (ioes not provide a mechanism to account for
varying degrees of reliability of different sources as do Dempster-Shafer
theory‘ or fuzzy set theory. It is our belief that this problém can be
overcome if we ass1gn reliability factors to each source involved in the‘-
clasmﬁcatlon For these reasons we will lnvestlgate a modified version of the
statistical multisource analyms by Swain, Richards and Lee by means of

which reliability analysis is added to the classification process.
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- CHAPTER 3
THE APPROACH

31 General Concepts
From the Swain, Richards and Lee approach we have the. global

me;ig;beyship function [1):

Fi(X) = [p(u - el o)

i=1

[an m»w&» Cpek) (B
'. We want to é,ssociate, reliability factors with the soufées as d‘iscﬁssed .in
éhapter 2, i.e., to express quantitatively our confidence ‘i‘n ‘each> ':‘s‘(‘:)uv,l;ce,
and use vthem for classification purposes. This is very important béc:iﬁse"vwe
need to increase the influence of the "more reliaBle" sources,i i.e., the sources
We have more confidence in, on the global membership function and
qqnsékiuently decrease the influence of the "less reliabvle" sources in order to
improve the classification accuracy. The need for reliability facf:ors bbfevé-o‘mes
appa'rént if we look at equation (3.1) where the global membe_rshib-fuﬁction
:j,sc"a;pvrodﬁct of postei'ior probabilitieé related fo eachr sogfge»,: Ea,ch ’
probability has value in the interval from 0 to 1. If any one of them is near
vz'ero it will carry the value of the membershlp functlon close to zero and

therefore downgrade drastically the contribution of mformatlon from other
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sources, although the particular source involved may have little or no
reliability. | |

| Fbrom above it is clear that we have to putA Weights (reliability factors)
on the sources which w1ll influence their contrlbutlons to classification. .
V'Smce we have a product of posterior probablhtles this weight has to be -
involved in such a way that when the reliability of a source is low it must
discoﬁht the influence of that source and when the reliability of a source is
‘high it must girre the source relatively high influence. One pos}sib'le choice
~ for this kind of analysis is to put rehability factors as exponents‘on the
posvterior probabilities of each source. Then equation (3.1) would be

written in the following form::

Fi(X) = [p()] Fp(wha)™ - - - p(wie)™
= {P(wj)]l—nﬂp(wj )™ - (32)
i=1 v
Equation (3.2) can also be written in a logarithmic form as:

log Fy(X) = (1——n)1og p(w )+zalogp w ;) (3.22)
. i=1 . ’

rvhere the reliability factors are expressed as the coefficients in the sum.
These coefficients act like weights in the sum and control the mﬂuence of a
source on the global membership function. If a coefficient is high compared
~ to the other coefficients, the source it represents will have greater influence
on the global membership function. If on the other hand a coefficient is low
compared to other coefficients, it will decrease the 1nﬂuence of its source

Another way to see this is to look at the sens1t1v1ty of the global
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membershxp functlon to changes in one of the posterior probablhtles Whlch
can be expressed as [9]:

oFYX) _ &wm
FX) O plwh)

'. v..V.‘Ve select the a;’s (1 =1,. . .+ ,n) in the interval [0,1] because of the
followmg reasons. If source i has no reliability (a;=0) it will not have ‘any
influence on (3.2) because P(w, (wix)? = 1, and if source i has the ,hl-ghest
v rel‘iabilitythen it will give a full contribution to (3.2) because p(w, le)l =

(w; ;). It’is also worthwhile to note that this method of putting exooneuts
on the posterior probabilities does not change the decision for a single-source
classification because the exponential function p® is a monotonic fuliction of |

To illustrate the last point, consider a simple example, In thls example
assume that we have one source, that a 1s a number in the mterval (0,1],
and ‘that we have just two information classes w; and w2. We are observing
.0ne ground element x and the g]oha] membership functious F, and F, are of

the form in (3.1):

ﬂ—ﬂ%m . (3.3a)

Fz(x) = P(“’zlx) _ ; (3.3b) -
Assume now that p (wy Ix) > p(wyx). Using the maximum selection rule we

.._deelde x belongs to w;,. Now" applymg the exponent method above, the'

| : global membershlp functlons will be of the form in equation (3. 2)
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Fy'(x) = p(w; k)*  (34a)

CRE=pwkr )

Keeping in mind that p(w; k) and p(w,[x) are numbers in the interval [0,1], a

is a number in the interval (0,1] and p(w; ) > p(wy [x) we get:

p(u )* > p(webe)®
Therefore the deciéion is the same for this particular x, i.e., we cléssify x to
w,. This of course applies for all ground-elements x while a € (0,1]. If a =
.0 ‘we get no decision, but in case we are considering multisource data this
‘sour.,ce" will have no influence on (3.2) and the decision will depend on the
other ‘sources. When we combine two or more sources, the global
membership function becomes Iﬁore complex to Vanalyze because it consists of
a product of posterior probabilities with different reliability factors and this

product is normalized by the priori probabilities.

Thé problem is to determine the a;’s based on the reliability of the
sources. We think a of source as being reliable if its. contribution to the
combination of information from various sources is "good", i.e., if we increase
the . classification accuracy. substantially or extract moré information by
using’ ‘this particular source. Using this understanding of a reliable source
- 'we apply two measures to def,ermine the reliability of a source: Weighted
| #veraée sep#rability and overall classification ac_curacy. |

>It 'is our belief that we can call a source reliable if the Separability of
thé'information classes is high for the source. If on the othér hand the

“separability of the information classes is low, we can assume that the source
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is notv_ very reliable. Therefdre one possibility fdr reliability evaluation is to
use the average separability of the information classes in each source, e.g.,
average Jeffries-Matusita (JM) distance, é,verage transformed divergence or
¢ax_1[y voth’er separability function, What kind of average is used .depends on
what we are after in the multisource classification. For.instance if we ai'e
trying to improve the overall classiﬁcatibn acciiracy we use the weighted
ow‘rerall: Va.Ve'rage. If, _howe;'er, we are céncentf#ting just on speciﬁc classes,
1_;he Wéighted averagé separability of those information classes is used.

' Andther way to measure reliability of a data ‘sopirce is to use the
classification accuracy of the source. In this case we call a source reliable if
the "-classiﬁc#ti.on accuracy for tli»é» source is high, but if the éccuracy is low
we . call the source'unreliabie. This approach is related to the ‘Inet'hod of
uéi'ng:v'?Separability measures in that increased separability gives,'higher
accuracy. |

As said earlier we want the reliability factors to have valﬁes in the
intefval [0,1]. We also want to associate the réliaBility factors to iralueskof
some separability measure or to the classification accuracy. If we choose to
use tbhe‘vvalues of the separability measures to determine reliability factors,
we know that some separability functions have ‘safturating behavior as
functions of normed distance, e.g., the transformed divergence and JM-
di‘éta_nce; We know beforehand that they take valueé in some intervdl
[min,max] and we simply have to norm them by division and/or subtractign;

Thus for separability function f(x) we calculate:
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. = f(x - min)

max — min
' Qo a takes value in [0,1]. Some separability estimates, e.g., the divefgencé,
do not have this saturating behavior and increase with increased normed
distance. In that case we have to specify a cutoff point somewhere ‘on the
curve as our maximum. value to saturate the function. This means that
every .valu‘e higher than this cutoff will be mapped to the cutoff value. This
saturation is done to limit the influence or dominance of "very separable”
classes on the weighﬁed average of the separability. We choose a specific
cutoff value which reflects our belief that the information classes which haw}e '
sepa‘rdbility higher than this value are "separable enough.” We then use this

"saturated" curve in the same manner as described above.

It remains to be shown whether the siniple mapping described above is
sﬁfﬁcient to produce appropriate values for the reliability factor. That will
be discussed further in section 3.3. We shall now look more closely at

separability estimation.
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| 3.2 -Separability Estimates
' In this research we look at two separability estimates, the JM-distance

and the transformed divergence.

3.2.1 Jeffnes-Ma.tus:ta. Distance

(
The JM distance between two classes w; and wj is defined formally as:

. ""'i’Jij={;f;[\/f>(Xl )—‘\/p X[wy))? }1/2 ,‘ | o (38)

It is roughly speakmg a measure of the average dlﬁerence between the two

: class densﬂ',y functions [22 23]

In classiﬁcation of remotely sensed data we assume most often that the

classes have normal density functions, i.e.,

Xlw) = N(U, )

p(X|wy) = N(U;,%)
With this assumption (3.6) reduces to:

Jy=[2(1—e) R (3.7)

ij
where b;; is the Bhattacharyya distance:
1 Y4y 1
by; = 'g(Ui_Uj)T(%) (Ui—Uy)
IE i+ i
2

) (55)
BIETE

1.
+ EIOge[

~ And the average class separability is:
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1 MM ' 7
Jave = - & 3 S p(wy)p(w)Jj; (3.9)

i=1j=1

where:

M .
= Yp(w)’ (3.10)

i=1
The ‘Jave has the saturating behavior and has a maximum value of V.

Therefore we can normalize J, . to lie in the interval [0,1] by_divisioﬁ by

V.

3.2.2 The Transformed Divergence

The divergence of two classes and w, is defined formally as:
| Dy; = E[L;j(X) ] + E[L;(X) | - (3.11)
where L;; (X) is the logarithmic—iikelihood ratio: :
L;i(X) = logep(X|w;) — log.p(X |w;) » B .(3-:15)
If We assume as before that the classdensity is normal, Dj; reduces to:

' 1 | _ _
Dy = (S = BT =B+

% (S0 + STNU — U)(U = U] - (313)

Dy;

ij 1s not bounded as a function of normalized distance. i.e., it is

monotonically increasing with increasing distance. To use the d1vergence we

could specify some cutoff value and apply the approach descrlbed in section
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3.1. However a saturating function of divergence, called transformed

divergence, can also be used. This function is defined as:
o DTiJ- =2[1—exp(— -jsi)] ‘ - (3.14)

The average separability using DTij is:

 Dlaye = _ EEP(‘U;)P(WJ')D ij » ‘ (3.15)
. 1 K i21j=1 ‘ o
_wherei K is:
k=Tp@)? - (3ae)

: D»Ta-»ve has 2.0 as its maximum value. We can therefore normalize DTave

by 2.0 for use in our global membership function (3.2).

3;3‘ vThe Method

In the statistical multisource analysis, each sourcé is first classified
separately. When ﬁhe rel'iability‘ factor evaluation is added we use
the élassiﬁcation accuracy or calculate the average separability for each
éource by ‘any appropriate séparability estimate. One .thin:g which is
imp‘ortant here is that we are discounting the sources by pufting reliability
factors on each source-specific posterior probability‘ p in the vglobal
membggship function. - If we look at the family of curves p* as a fuuctig@ of
a, where a has value in [0,1] as shown in Fig. 3.1, we see that the ilfu'ncti_ons
are md;e discriminable as a incfeases. ‘This leads us to the poiﬁt that the

separability estimates and the classiﬁcatibn accuracy should only be used to
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measure reliability. The source that has the "highest reliability” should be
given the highest reliability factor and the others should be given reliability
factors relative to this value. One way to accomplish this is to scale the

values of the.reliability measure as described below.

Assume we have ﬁ soufces and we have vcalculated‘ the réliability for
each sburce i bjr some measure and its value ‘is R;. We give the soﬁrce with
the hlghest reliability the hlghest reliability factor amax If the smallest
possible reliability measure is min we can calculate the reliability factors for

the sources according to:

R, — min

(3.17)

- max{R — mln} dmax
j=1n

These values are then used as reliability factors in the global membersyhip

function (3.2). From there on we continue as described in section 2.2.
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' CHAPTER 4
EXPERIMENTAL RESULTS |

41 . ‘;.-G_eneral Remarks

e ur objective' is to apply the statistical 'multisource | analysis “with
’varyin'gr ilevels' of "reliabil‘ity”."v To explore the method wef Would“prefer a data
set whlch ‘contained several geometrlcally registered sources of data, e.g. -
‘Landsat Multlspectral Scanner or Thematic Mapper data, ,, alrcraft
-‘multlspectral scanner data, radar data, digital topographlc data and a{
dlgltal reference map . for the particular area involved. Unfortunately we
have not had a sultable data set of this kind avallable Therefore to getv ‘
prehmlnary results, the algorlthm was applied to 12 channel a1rcraft ,
_ multrspectral scanner data, treating different reglons of the electromagnetlc :
spectrum {visible, near IR, ) as different "sources.” The data set chosen for
experlment is a portlon of flight hne 210 from the 197 1 Corn Bhght Watch
: Experlment conducted by the Laboratory for Apphcatlons of Remote Sensrng ‘
(LARS) at Purdue Unwersrty, NASA and the U.S. Department of
»Agrlculture The portion of the data set used is 140 b'¢ 220 p1xels and covers
-an agrlcultural area in Tlppecanoe County, Indiana. A reference '

v photograph and a ground cover reference map were avallable for thls area. |
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The'ground'cover map was digitized and then geometrically registered to the
rnult_ispe’ctral scanner data.

N ?Frbm the 12 spectral bands three data “sources’ were defined. Tdhe data
set contalned 7 visible bands, three of them were selected as the: v1s1ble
source (band 1: 0.46 - 049 pm, band 4: 0.52 - 0.57 pm and band 7: 0.61 -
0.70 um). The data set has 3 bands in the near-infrared region (band 8: 0.72
- 0.92 pym, band 9: 1.00 - 1.40 ym and band 10: 1.50 - 1.80 pm) which were
all selected to represent the nea.r-lnfrared source. One band in the thermal
region (band 12: 9. 30 - 11. 70 ,um) was selected as the thermal source, "It is
known from a long history of experience w1th the data that the ground cover
types have s1gmﬁcantly different degrees of separablllty in these three

: spectral' regions.

Two approaches were applied to determine reliability factors' for the
three sources. One used the weighted average separability of fieirs of
iﬁforrnatiou classes in each source as a 'rrleasure of reliability;dthev other
measured the reliability by the overall classification accuracy 1n each source.
Since the separablhtles were calculated for the information classes as deﬁned
by the reference ‘map, they do not depend on the signatures used for
classiﬁcation of a data source. Therefore, in our experiments, different
tréiui_ng methods did not affect the values of the relia‘.bil’ity factors -
determined from the weighted average separability of the information
classes The separablhty could thus be calculated before the 1nd1v1dual
sources were class1ﬁed In this research two types of separablllty estimates
 were used: JM - dlstance and transformed divergence. The values of these

estimates for each data source are shown in Table 4.1. For the purpose of
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comparison the values in the table are normalized to be in the range from 0

to 1.

As pointed out in Chapter 2 various training methods can be applied in
 statistical multisource analysis. In our experiments we used "both
u’nsuperfrised and supervisedvtr;‘iining. In the first experimenf (unsupérvised
' tr»aining")»we used the data élasses‘in each soutce; in the second'eXperiment
(superviéed training) data classes were picked by selecﬁing.‘regiOns with
distinctly different color on an image display. When the statistics for each
sourée had been determined by applying the selected traiﬁing pt6Cedure,

each source was classified by maximum likelihood classification.

Tabie 4.1
Normalizedv Separability of Information Classes
Source JM - Distance vTra‘nsformed Divergence
Visible - 0.7595 0.7461
) Ne'ar-Infrared 0:.8291 N : 0.8166‘
Thermal 0‘.571‘5 0.4971

In order to apply equation (3.2), the source-specific probabilities were written

in the following form:
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p(wik) = [p(x)]7" ¥ p(xidw)p(diw;) o (44)
_‘ k=1 S S
, Here m; is the number of data classes for source i and p(x) is computed hy: :

p(x,)— S Sokluepdos) 42

j=1k=1

where M is the.number of information‘ classes. For each source, the Jomt
probablhtles p(dk, J) were tabulated in a joint occurrence matrlx by :
comparlng smgle-source data-class classifications to mformatwn classes ln
the reference map. To reduce consrderably the computatlon and memory
, requlrements, the class—condltlonal probabllltles ' were computed

1ndependently of information classes, i.e., we set:
(x;ldiw;) = p(xildy)  forall wj |

~Thls approxxmatlon is valid if the d1str1but10n of a data class is the same _
, regardless of information class. It is unlikely to hold exactly in the case of j
’unSuperv1sed _classification, but the approxrmatlon» 1s essentlal to the
fea31b111ty of carrying out the computatlons on a m1crocomputer (a PC /AT -
" based. system was used). Usmg the approx1matlon and equatlons (4 1) and

(4. 2) equatlon (3.2) can be wrltten in the following form

o | EP(Xi |dk)P(dk,wj)‘ | |
Vo , FJ(X) [ ( J)]l—n k=1 : exp a; o . (43)
L : i=1 Ekzp |dk)p(dk! J) o B
j=1k=1

All _'compu_ter processing was done on an ERDAS image proc'eS‘Sing» sy'stem, '

hased on an [BM PC/AT.
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4.21 »Eicperiment 1: Unsupervised Analysis

~In this experiment the classifier training for each source vwas performed
uSin'g an unsupervised approach. - For this purpose a one-pass cluStering
'algorithm called STATCL in the ERDAS software was used This algorlthm

works as follows [24]:

"A 3 x 3 window is moved over the multispectral image row by row and
»column by column. In each box the standard dev1at10n of each band and
the interband covariance matrix are calculated The standard deviations
are then compared to the user-specified upper and lower bounds-on standard
“deviation in a cluster. If all of the standard deviations are within these
bounds the covariances in the covariance matrix are compared to a fixed
upper bound on covariance as speciﬁed by the user. If every covariance in
the ‘cov'ariance matrix is less than this ﬁxed covariance, the window becomes
a. cluster, otherwise not. In experiment 1 the default values in the algorithm
_were used, i.e., the lower bound on standard deviation was always set to be

0.1, the upper bound 1.2 and the upper bound on covariance was 12.

After the image has been scanned by the 3 x 3 window and all the
clusters have been made they are merge.d according to a user—speciﬁed bound
on the Mahalanobis distance In the experiment this bound was always
selected to be 3 (default) The output from the STATCL algorlthm is the

mean vector and the covariance matrix for each data class in the i 1mage

~-When the STATCL algorithm had been run to define data classes for
each source, all sources were classified independently by maximum likelihood
clas51ﬁcat10n The clustering had identified 9 data classes in the v1s1ble

source, 10 in the near-infrared source and 5 in the thermal source. The test :
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area cOntains 9 ground cover classes ‘The co—occurrence 'matrices showing
the Jomt occurrences of - the information and data classes: for each source ,
were computed by considering the whole test area. In practlce we usually
have Just a small tralmng area, which should be representatlve of the whole
area, from whlch to calculate the joint occurrence matrlx At thls pomt in
testlng the algorlthm we want the Jomt occurrence matrlces to be as .

: accurate as posmble and we therefore used the whole area.

~“In this experiment we comblned two sources at a tlme ‘The separability |
of - the 1nf0rmat10n classes in the near-infrared source was the hlghest
therefore that source was comblned ﬁrst with the visible source ‘and then
W1th’”t'h‘e ‘thermal source. ‘Since the near-lnfrared source had the hlghest‘
_ separablllty according to both JM—dlstance and transformed divergence, its
rellablllty factor determmed from these separablhty measures was glven the
value 0 9. The reliability factors of the other sources were scaled relatlve to
N this- value by usmg equation (3.17) and the values in Table 4.1. We selected
) 0. 9 as the highest rellablllty factor (apmay) because the prior probabllltles can
be con31dered as a separate source in equatlon (3 2) w1th the rellablllty
factor 1.0 (smce the prior probabllltles are computed from the reference map
whlch is representatlve of the total area classﬂied) The values of the
rehablllt'y factors for both separablhty measures are shown 1n Table 4.2 and

-Table 4 3.

In order to get a baselme result and see how the values of the rellablllty ,
factors affect the classlﬁcatlon, the classification was also performed for a
;range of values of the rellablhty factor While one source was ‘given a

constant rehablhty factor of 0.9 the reliability factor of the other source was



39

Table 4.2

o Reliability Factors Determined from‘i;he Separability Measurés; .
. for Classification of the Near-Infrared and Visible Sources -

-Source

JM - Distance

‘Transformed Divergence

S ‘Near-Infrared

~ 0.9000

0.9000
| Visible - 0.8244 0.8222

Table 4.3

. Jﬁj':Reliability‘ Factors Determined from the ‘,Se'parability- Measures'_ '

~ for Classification of the Near-Infrared and Thermal Sources -

- Source -

JM ] Distance

Transformed Divergence

| Near-Infrared '

0.9000

1 0.9000

| Thermal

0.6203

0.5478




successively reduced from 0.9 in steps of 0.1. This was done for both sets of

“sourkces"involved in the classification. The results are shown in Tables 4.5

and 4.6.

B Tﬁble 4.5 shows the results of the classification of the visible and near-
infrared sourcés. If we look at the ilidividual classification of each data
souréé ‘we see that the clustering algorithm has isolated corn, soybeans,
noil_-fe_iljm and pasture in both data sources. The near-infrared source does a
much bbétter job of classifying the soybeans but the visible source isolates
additionally another information class which is sudex. The overall
classiﬁcation,‘accuracy is slightly higher in the near-infrared source (78.7%)
compai'ed to the visible soui'ce (73.1%). These accuracies were used to

calculate a set of reliability factors by applying equation (3.17). The
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reliability factors are shown in Table 4.4.

Reliability Factors Determined from Overall Classification Accuracy for
Classification of the Near-Infrared and Visible Sources in Experiment 1

Table 4.4

Source

Classification Accuracy

Reliability Factor

Near-Infrared

78.7%

0.9000

| Visible

73.1%

0.8360




Classification of the Near-Infrared and Visible Sources . . .
and Their Composite with Various Values of "Reliability""
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Table 4.5

Results of Experiment 1:

a7 Percent Agreement with Reference for Class .

NIR VS 1 2 3 4 5 6 7 8 9 OA
near-infrared  84.8 92.6 91.5 00 0.0 0.0 0.0 69.1 00 787
visible .. 81.4 88.2 73.4 00 0.0 0.0 0.0 49.0 86.1 .73.1 -
100 100 89.2 94.1 90.0 0.0 0.0 3.6 0.0 458 829 - 828
90 90 . 90.1 94.0 89.8 0.0 0.0 19.0 0.0 48.2 83.7 828
90 83.6 (C) 89.9 94.0 89.6 00 1.2 19.9 0.3 495 833 828
90 824 (J) 89.9 94.0 89.6 00 1.2 19.9 0.4 500 830 828
'90 822 (T) 899 93.9 89.6 00 16 19.9 0.4 50.0 ~ 83.0 828
90 80 89.9 93.9 89.6 00 21 20.2 0.4 51.0 82.8 827
90 - 70 89.8 93.9 89.2 0.0 38 220 1.5 57.9 812 827
90 60 89.5 93.7 89.0 0.0 4.0 22.0 3.2 63.9 80.7 826
90 50 88.6 93.5 88.4 0.0 6.9 22.6 9.8 65.2 783 824
80 90 90.6 94.0 89.5 00 0.0 23.2 0.2 484 838 828
70 - 90 91.2 93.6  89.4 00 0.0 443 0.3 482 846 . 83.0
60 90 92.1 93.3  88.0 00 26 47.0 - 0.3 479 847 824
50 90 92.9 92.7 86.3 163 2.3 57.1 1.1 479 848 82.0
# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR VS indicates the level of "reliability” assigned tothe near-infrared (NIR) and the
visible (VS) sources. (C) indicates weighting according to classification  accuracy; ()]
according to JM-distance; (T) according to transformed divergence. '

Names of information classes:

1 - Non-farm
2 - Corn -

3 - Soybeans -

4 - Hay

5 - Oats

6 - Woods
7 - Wheat
8 - Pasture
9 - Sudex
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When the sources are combined with full reliability (1.0) aesigned to
both of them we get a significant increase in overall classification accuracy
compa;i'ed to the classification of the individual sources. Assigning the
reliability factcrs s‘ho“vn in Ta.ble 4.2 and Table 4.4 does not 'increa,se the
overall accuracy very much. All these computed reliability factors give very
similar results, an overall accuracy of 82.8%. This is not the hlghest overall
accuracy in Table 4.5, however. The highest accuracy is, somewhat
surprisingly, accomplished by giving the nearr-infra.red source a lower value
» of reliability.than' the visible source (70,90). This result is surprising because
we estimated the near-infrared source to be more reliable than the visible
v’s‘,o:u'rce. |

" The increase in overall accuracy using different levels of reliability is so
' smellthat it is hard to draw conclusions from these results. But the niain
ree,soh for the small increase in overall accuracy is that we do not get much
incr.ease in accuracy contribution from the small classes. In the area there
are two dominating information classee, corn and soybeans, covering 76.2%
of the area. To get a substantial increase in overall accuracy l)y changing
the levels of reliability we have to get high accuracy for these classes and
also some increase in accuracy for the smaller classes. When we get the
highest accuracy (83.0%) we accomplish this but the difference in accuracy

contribution from the smaller classes other than sudex is very small.

However, we can see that changes in the reliability factors significantly
aﬂect the classification accuracy of the individual information classes. For
example the classification accuracy of pasture increases substantially when

the value of the reliability factor for the visible source is decreased. Sumlar
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fhings hdppen fdr woods and hay when the reliability factor for the near-
infrared source is decreased. This leads us to conclude that it is b’oSsible to
opt_imizé the classification accuracy of single information classes by é,djlisting
- the relia;bility factors. One possible way to determine the relia‘bility factors
inv'tvhlisrcase would be to base them on the weighted average separability of a
o Single“;lnformation class versus all other information classes in each source.

“ - Atiother point which is interesting ‘to note is hovlr wéll information
":(:lé,ssésv. are discriminated by a source. The "strength ‘_o‘f discrimination” of
iinfbrmat_ion classes is a possib‘le‘ reason why we get the peak in overall
accuréé&' when we discount the near-infrared source. Although classification
a.ccur_a.éy fdr corn and soybeans is higher in the near-in‘frared SOufce, the
classification accuracy of these classes decreases only sligh’tly when the
near—infrared source is discounted. We can therefore assume that these_
classes are iery well discriminated by the near-infrared source. We discuss
this fll‘i.rther below when we look at the results in Table 4.6 where wé have

combined the near-infrared and the thermal sources.

: In Table 4.6 we see that the clustering of the thermal source does not
isdlate one of the large classes (corn) but does isolate wheat which is not
isolated by the near-infrared source. Since corn is never classified .c‘orrectly
by the thermal source alone, the overall classification accuracy for the
| 'soilrce is only 49.2%. The reliability factors calculated from the ovefall

classification accuracy of the sources are shown in Table 4.7.

When the sources are combined with full reliability (1.0) assigned to
| both, we get a substantial increase in overall accuracy c‘ompared toﬂthe '

overall accuracy of the classification of the thermal source but no increase
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‘Table 4.6

Results of Experimeﬁt 1: o
Classification of the Near-Infrared and Thermal Sources.
and Their Composite with Various Values of "Reliability”

L Percent Agreement with Reference for Class L
NIR TH 1 2 3 4 5 8 7 '8 9 OA
» ‘near-infrared  84.8 92.6 91.5 0.0 00 0.0 00 69.1 00 - 787
thermal 58.1 00 975 00 00 00 776 00 00 49.2
100 100 - 817 934 887 00 00 00 404 474 00 787
90 90 799 930 886 0.0 03 00 526 615 00 790
90 - 80 - 790 928 886 00 03 00 550 618 0.0 790
190 70 780 927 885 05 00 00 563 636 02 789
'90 62.0(J) 778 927 84 07 00 00 566 086 0.3 789
90 60 778 927 884 07 00 00 566 686 03 789
90 56.3(C) 768 927 884 07 00 00 574 691 18 789
90 ‘548 (T) 768 927 883 07 00 00 579 694 18 789
‘90 52 7686 927 883 07 00 00 590 699 2.0 789
90 50 766 927 882 13 00 00 590 709 124 794
90" 40 739 927 697 1.8 00 0.0 590 788 557 736
80 90 777 927 886 00 09 00 600 6L5 00 790
|70 90 762 923 885 00 36 00 691 611 02 791
60~ 90 741 921 882 00 78 00 742 618 03 790
50 90 705 915 882 00 80 00 799 636 00 787
40 90 644 904 876 00 118 00 884 673 = 00 780
# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR TH indicates the level of "reliability” assigned to the near-infrared (NIR) and the
thermal (TH) sources. (C) indicates weighting according to classification accuracy; (J)
according to JM-distance; (T) according to transformed divergence. ' -

Names. of information classes:

1 - Non-farm
2 - Corn

3 - Soybeans
4 - Hay"

5 - Oats

~ 6.- Woods

7 - Wheat
8 - Pasture _
9 - Sudex
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compared to the overall accuracy of the classification of the nea.r—infrared
soﬁrce. When the reliability factors are assigned we get the overall':‘«l/ccunacy
‘as high as 79.4% This increase in overall accuracy is caused by an increase
in .'p_he’ 'v.accura;cy of source is discounted while the classiﬁcation‘accura_cy“of
corn and soybe#ns does not decrease by much. The ‘reliavbility factofs in
’I_‘avbl‘eA 4‘.3 and Table 4.7 all give an overall accuracy of‘ 78.9%. f These

relirabilityvfactors apparently do not discount the thermal source enough.

Table 4.7

Reliability Factors Determined from Overall Classification Accuracy for
- Classification of the Near-Infrared and Thermal Sources in Experiment 1

Source Classification Accuracy | Reliability Factor
Near-Infrared 78.7% 0.9000
Thermal 49.2% 0.5626

'Lboking at the results in Table 4.6 there are still other things which .fi_re
interesting. For example v§hen we decrease the reliability of the near-
infrared source iﬁ which the information classes are much'more ;sevpar'ab'le
than 1n the thermal source, the overall accuracy goes up t§ the hlgh of
79.1%. The accuracy of the large classes corn and soybeans goesvdvownv just
A bit. This is interesting because the élustefing of the thermal source does

not isolate corn. Therefore we can conclude that soybeans are so well
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discrimineted by the near-infrared source that we can reduce the reliabbi‘lit.y
factoi' to as little bas 0.4 without affecting the accuracy of the classification
by ,much. We can generalize this by saying that if in‘formétion classes are
‘well discriminated by a source, their classification accure.cy will be relatiw}ely
independent of the value of the reliability factor specified for the source._ :

The reliability factor can then be specified to maximize the classification

accuracy of other information classes.

- It-is also interesting to note in Table 4.8 that the classification accuracy
of sudex increases signiﬁcantly as we decfease the value of the ‘reliability
factor -of the thermal sourcei This is interesting because sudex is '.n(.)t
isolated by the clustering in eit}ier source. The experimental results 'indice.te.
t'houghf that the near—infrared source gives some support to this information
elass, - | |

) | Since we did not get ‘much improvement in the classiﬁcation, accuracy in
t}iis“ eXperiment by using our reliability measures, we wanted to do a;ne'tilei'
experirnent differently on the same data set. In this experiment some
inforrnation classes were not isolated by} the clustering and a high overall
classification accuracy was not accomplished. These results indieat_eci-that
the signatures used were not representative and we consequently questioned
the training of the data sources. We therefore chose to trein' the data
seurces diﬁ'erently. Since a supervised approach is likely to overcome .t_he
shqrtcomings described above, a supervised approach was defined to -.train

the data sources.
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4.3 Experiment 2: Supervised Analysis

" In this experiment we trained each source using a supervised approaéh.
For each source, data classes were picked by selecting regions with distixictly
' different color on a color monitor. The training samples wére claSsiﬁéd, a
“confusion matrix and the JM - d.istance were calculated and "non-séparable"
ttaining.samples were merged as shown in Fig. 4.1. This procedure identified
22 data classes in the visible source, 24 classes in the near-infrared source
but only 5 in the thermal source. A few of the information 'clav,sses wére not
: isol.a‘_tg:d; by this training approach bécause they were not separable f;om the
other "Vil’lforlrnation classes. This was especially the case for the smaller
infbrma.tion__ classes (woods, oaf,s and hay). Apart from the training the
experirﬁent was conducted in the same manner as Experiment 1. The
reliability factors calculated from classification accuracies are shéwn in
Tablés 4.8 and 4.11. The experimental results are shown in Tables 4.9 and

4.10.

Table 4.8

/

" Reliability Factors ;bétermined from Overall Classification Accuracy for
Classification of the Near-Infrared and Visible Sources in Experiment 2

Source Classification Accuracy | Reliability Factor

Near-Infrared | 79.3% o 0.9000

Visible 76.7% 08705
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‘Training samples are selected
from information classes.
If an information class has
regions with different colors,
samples are
selected from each color.

Classify training samples,
calculate confusion matrix e
and separability measures

‘Are the

training samples separable
?

-~ Merge
classes

Figure 4.1 The Supervised Training Procedure
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In Table 4.9 we see the classification results for the combination of the
near-infrared source and the visible source. In the near-infrared source 6
infbrma.ﬁbn classes are isolated and the overall classification aécurac& for
this source is 79.3%. The classification of most of these classes is more
éc_curaté in the near-infrared source than in the visible source but 2 more
infofxﬁé,tioﬁ classes are isolated in {;he visible source and the overall

classification accuracy for the visible source is 76.7%.

" ‘When the sources are combined the overall accufacy goes up." to 87.7%,
which is a signiﬁ_cant increasé. The accuracy in all classes but three goes up
c’ompavred_ to the classification accufacy in the individual sources. ~We get,
vfo‘r in‘_stanée, over 90% claésiﬁcation accuracy for the three largest ¢laSSés;
o édybeans, corn and non-farm. The increase ini classification aééu’rééy for
non-farm is 29.9% compared to f.he classification accuracy 6f the"’nea‘r-
infl'fared sburce and 43.0% compared to the classification accuracy 6f the
vis;.ibvle’soulb'ce. We do not ge£ higher accuracy after combination for oats in
the.ﬁsible source énd wheat and pasture in the thermal source. However, in
al'l'vth’oSe cases the classification accuracy is increased by the combination as

compared to the classification accuracy of the other source.

When reliability factors are assigned we get a further increase in overall
accuracy. Using the réliability factors in Tablé 4.2 and Table 4.8 wé get the
highes{; overall accuracy which is 88.1% Varying the reliability faétdrs has
fqr mos_t of the information classes the expected effect that 'Vw}hen we
discoﬁnt the visible source the vclassiﬁcation accuracy goes up for }the classes
which have higher éécuracy in the near-infrared source. In parﬁcular we see

that ﬁhe classification accuracies of pasture and wheat increase compared to
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Table 4.9

Results of Experiment 2:

of the Near-Infrared and Visible Sources

‘and Their Composite with Various Values of "R‘eliability"r B

' : Percent Agreement with Reference for Class o .
NIR VS_ 1 2 3 4 5 6 7 8 9 OA
near-infrared  61.6 86.4 87.2 0.0 0.0 00 795 976 694 793
wvisible 485 818 86.6 6.2 745 0.0 ' 482 817 762 767
100 100 - 915 918 925 17.2 385 5.4 755 937 843 8.7
90 90 91.5  91.2 91.9 28.4 438 193 775 958 84.6 878
90 87.1(C) 919 91.0 91.9 287 440 384 783 976 846 88.1
90 '82.4 (J) 92.0 910 91.6 29.2 433 432 783 995 847 88.1
90 82.2(T) 921 910 91.6 29.2 435 432 788 99.5 - 84.7 88.1
190 81 923 91.0 915 293 43.0 435 794 997 848 88.1
90 80 924 910 91.5 295 428 438 795 99.7 848 88.1
19078 92.7 910 91.4 29.8  43.0 438 79.7 997 848 88.1
190 70 ©92.2 903 90.7 31.1 425 435 803 997 846 875
90 60 914 889 8.5 321 41.1 467 793 99.7 845 865
90 50 904 875 88.1 334 407 470 781 99.7 - 845 853
80 90 90.6  90.5 91.2 36.6 504 482 770 97.1 84.8 878
(70 90 87.0  89.6 90.2 444 55.8 536 728 969 842 86.9
60 90 82.9  88.2 889 493 615 56.5. 680 958 83.3 855
50 90 . 796 86.7 87.6 543 63.3 592 63.2 950 82.2 84.0
# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR VS indicates the level of "reliability” assigned to the near-infrared (NIR) and the
visible (VS) sources. (C) indicates the according to classification accuracy; (J) according to
JM-distance; (T) according to transformed divergence. :

Names of information classes:

1 - Non-farm
2-Corn
3 - Soybeans
4- Hay

5 - Oats

6 - Woods

- 7 .- Wheat

8 - Pasture

9 - Sudex
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th}éAac‘cur‘aCy in classiﬁc#tion of either source. This is also true for:oa-ts-, ie.,
'W‘heﬂa*yAVe discount the near-infrared source the classiﬁcafion accﬁracy of oats ,
goes up. |

It is also interesting to note that although woods is isolated by néithér
source : in single ‘source -classification, its classification accuracy is much
b'etrterk“‘ than chance when the sources are combined and the‘bkvacc{‘il"ééy
in_cvre:.f‘.‘s‘ejsvwhen either of the two sources is discounted. This is eSpéci;lly true
when the near-infrared source is discounted; as shown in Table 4.9, tﬁe
classification accura;:y of woods iﬁcreasés to over 55%. Another inte‘restiﬁg '
bbs.‘éﬁ':ati'on is that the‘ classification é;ccuracy of hay goes up when we
discount the visible source even though this class is isolated in the":viéiblé
source but not in the near-infrared source. This shows that ‘the near-
infrared source gives some support to this class although it is not isolated in
thé ‘source. This also demonstrates the strength of ‘discrimination«“o'f "h'ay;iby '
the V,isible source. Furthermore, the classification accuracy of h‘ayr inéi‘é#Ses
still more when the near-infrared source is discounfed. These two éxé,mplés
of changes in classification accuracy for hay and woods éuggest. the
poésibility_ of deﬁning class-specific reliability factors to optimize
classification of specific ground cover types. Similar effects are seen whe‘nr we
corvnbiner. the near-infrared source and the thermal sburce, which we discﬁss

| - In Table 4.10 we have combined the near-infrared source and the
thermal source. The thermal source has lower accuracy in classification _‘fo_.r
"most of the information classes and two fewer classes are isolated than _for

the near-infrared source. The overall classification accuracy (67.7%) is
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Table 4.10

Results of Experiment 2:
Class1ﬁcat10n of the Near-Infrared and Thermal Sources
and Their Composite with Various Values of "Reliability"

R Percent Agreement with Reference for Class S
NIR TH 1 2 3 4 5 6 7 8 9 . OA
near-infrared 61.6  86.4 87.2 00 00 00 795 976 694 793
thermal 765 793 73.6 00 00 00 715 00 0.0 67.7
100 100 71.8  90.2 92.7 84 345 00 773 956 76.1 848
190 90 716 897 . 924 167 357 00 782 958 77.6 849
90 80 720  89.7 924 175 360 03 785 958 78.2 849
90 76.8(C) 738  89.7 923 177 360 04 800 958 783 85.1
90 70 75,5  89.8 920 180 362 06 814 958 785 852
90 620(J) 762 896 919 187 362 09 799 961 788 852
‘90 60 76.5 89.4 917 190 362 12 798 961 788 85.1
90 57 - 779  89.1 910 193 364 12 787 961 798 848
90 54.8(T) 783 889 906 193 366 12 781 96.1 80.5 84.6
90 50 789  88.3 888 197 373 09 781 961 '80.8 838
90 43 79.9 86.8 85.1 20.2 385 09 781 963 812 818
80 90 715 895 898 182 374 00 740 958 783 836
70. 90 68.5  89.1 884 193 380 00 738 956 78.6 826
60 90 67.5 885 866 200 383 00 736 956 807 817
50 90 640 874 85.1 202 383 00 740 877 80.8 80.3
# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR TH indicates the level of "reliability” assigned to the near-infrared (NIR) and the
_ thermal (TH) sources. (C) indicates weighting according to cla.sslﬁcatxon accuracy; (J)

accordlng to JM-distance; (T) according to transformed divergence.
Names of information classes:

1 - Non-farm
2 - Corn

3 - Soybeans
4 - Hay

5 - Oats

8 - Woods

7 - Wheat

8 - Pasture
9 - Sudex
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much higher using the supervised approach than in the cléséiﬁc_a,tipn of the
therm@l source in exf)eriment 1 (49.2%) because corn Was.n()t isolated by the
clustering there. ~The reliability faétbrs calculated from thé ove'l.'arll
, ‘cla.ssiﬂﬁéation accuracies of the near-infrared énd thermal sources _af_e shown

in Table 4.11.

Table 4.11

Reliability Factors Determined frbm Overall Classification Accuracy for -
Classification of the Near-Infrared and Thermal Sources in Experiment 2.

Source - Classification Accuracy | Reliability Factor |
’Near-Infrared 79.3% | 0.9000
Thermal 67.7% | 07683

~ When the sources are combined the oVeré,ll accuracy goes up
substantially. As in Table 4.9 there is an increase in accuracy for most. of
" the information classes. When reliability factors are included in the global
_ niembefship function the overall accuracy goes up to as much as 85.2%.
Using lthe reiiability factors from Table 4.3 we get this maximum with the
ygligﬁi!ify factors c#lculated from the .]M‘- distance. The reliability f.ac_t,gfs
calculated from the transformed divergence give only 84.8%__ éverall
accuracy, still quite close to the maximum. The reliability factorér."in' T;ab"l'e‘

4.11 give 85.1% overall accuracy. The trend in classification accﬁracy in
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Table 4.10 is similar to the trend in Table 4.9, i.e., when we discount the
"more reliable" source the overall accuracy goes down and when we discount

the "less reliable” source to a certain point the overall accuracy goes up. -

The most significant increase in accuracy is for hay and oats which are
not isolated by either source but, after the combination and changes ‘in
reliability factors, the accuracy in the classification of these classes increases

to over 20_% and 38%, respectively.

4.4 General Observations

: _Combination of data from various data éoufc,es using"-‘stétisti‘c‘al
fﬁﬁltiSOUrce analysi_s provides in most of our expefiments a significant
iﬁcféése in overall classification accuracy as compared to single-source
_ aﬁalyéis.' COmbining the near-infrared source and the visible ,sourc'e" gifres’, for
instance, 88.1% overall classification accuracy in experiment 2 when certziin
réliability factors are assigned to the sources. There were two
approximations made in oﬁr experiments which could have in‘troduced éome
error. Firsf, wé ignored dependence between daﬁa sourceé in the global
membership function. The advantages of this approach are that it reduces
the computational complexiﬁy of the classification procedure and provides
the opportunity to update the classification based on additional sources
without starting all over again. Secondly, we made the approximation that
thg distribution of the data in a data class is the same regardless of
information class. This approximation is unlikely to hold exactly for the
buvnsu'pervised case but it, 'too, reduces the complexity of the computations

“and memory requirements.



55

The results of the classification in experiment 2 are better tha'n in
experiment 1, consistent with the superiority of the supervised training over
, uneupervised training. Although there is not a large increase in overall
accilracy achieved by assigning reliability factors in either eicperiment, the
different levels of reliability often‘give. a substantial increase in classification
accuracy of individual classes, even for classes which are not isolated in the
cla;'ssiﬁcation based on any of the individual sources. In our view, this
juSl;iﬁesi-in part the usie of reliability‘ factors in equation (3.2) fo‘r"the ’pilrpose
- of weighting the influence of the various sources. |

Using separability analysis to estimate the reliability of a source see{ms'
to be a reasonable choice, especially when the assumption can be ‘rnade that
the information classes have normal distributions. In experiment 2 we had
some success assigning reliability factors using_‘the separability measures to
achieve’ the higheét overall accuracy. In experiment 1 we did not get the
hlghest overall accuracy by applylng this approach but that may be due to
the STATCL algorithm and the possibility it did not provide representatlve
statlstlcs._ But this also illustrates a shortcoming in this approach: we have

| to assumei a particular distribution for the information classes in order to be
able to calculate the separability. In these experiments we believe the
Gaussmn model was reasonable, but when handllng different kmds of data

the Gaussian assumption may be unsuitable for some of the sources.

Onv the other hand, using classification accuracy to measure the
reliability of a source is a straightforward approach which s
c_omputationally inexpensive and overcomes some of the shortcomings of the

eeparability approach. The reliability factors calculated from the
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classiiicatien accuracy depend on the training of the data sources in ce‘ntrast :
to the separabilitj approach applied in this report. This might | be an
advantage of the classification 'approach, because if a souree‘ is badly trained
it is 'like‘ly to have lower reliability. In our experiments the results using the |

reliability factors calculated from the classification accuracy were very

similar to the ones using the separability measures.

The main problem is how to associate reliability factore with the
reliebility measures. In this research we have aésigned the highest.reli'a.bility
factor to the "most reliable" source, assumed a linear relationship beti»veen |
the reliability of the different sources agd scaled them relative to the
maximum value. This linearization is almost certainly a'simpliﬁcationu of
reality ~and consequently introduces errors in the reliability' facfer_ _
‘calculations in some cases. In the next chapter we will discuss t‘hi‘s' problem

‘in conjunction with other ways of estimating the reliability of sources.
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CHAPTER 5
| CONCLUSIONS AND L
SUGGESTIONS FOR FUTURE RESEARCH

5.1vDi's”cussion '

L Tﬁe objective of this research is to iﬁ%restigate methods of‘-statistical
mﬁltiSource -analysis. The proposed method ﬁas several adv‘antageé as a
géﬁefé}_l“:rapproach in multisource classiﬁéation, viz., it ha.I,vldile'é varibﬁs
soﬁme‘sj— of data independently, has the potenfial to treat non-n‘.lime:ricéi.é.s ‘
well -Aasv’numelv'icalv data and, with certz;in Vapproximations, providesb a ﬁa'y to
updatvev'v the classification based on new data sources without havmg to
calculate everything all over again. We have investigated ways to éstima;té
the feliabi_lity of individual sources and to include reliability in the global
’ _memBétéhip function of the statistical 'multisource .a.nalysis.' iThe
expérin‘iental 1_'esults show that asvsigning reliability factors to the sources cén
éither_ | improve' or degrade the overall classification accuracy. vIn our
éxpefiments, assigning reliability - factors did‘ not increase the overall
.accﬁra‘cy very much. It was clear, however, that diﬁ'érent levels of reliability
'ca,'n.' aﬂ'ect _individual classes significantly, and we 'demOnIStré.ted the

possibility of assigning reliability factors to optimizé accuracy of individual



58

classes ‘This was especially interesting when; for instance, an informatibn
class' was 1solated by neither 1nd1v1dual source. In that case it was pos31ble
to ‘achleve a significant accuracy for this class by varying the‘ rellabllity,

-factors.'f

The problem of determining optlmal reliablllty factors can be spht into
two parts Flrst we have to use some measure to assess the reliability of a
'scurce,‘-and vthen we have to associate this measure with tl1e reliability
factors. In this report, two methods were proposed to determine "'re‘li'ability
fac_tvdrs.'  One used the Weighted average separability of the information
classes for a‘source as its measure of reliability; the other used,tlie"’eyerall
classiﬁcation accuracy for a source. Two separability measures were
‘cenSidered to explore the separability approach, the transformed divergence ‘.
and the JM - dlstance The separability measures and the classiﬁcaticn
accuracles ‘were assoclated with the’ rehablhty factors by ass1gn1ng the
hlg"'hest reliability factor to the source with the ' hlghest rehablhty and then
, scaling the measured reliablhty of the other sources accordlng to this value»
by using equation (3.17). Applying the calculated rehablhty factors in the
statistical multisource analy31s gave the * highest Qverall accuracy.
' leXperiment 2 (the reliability factors calculated from the JM - distance) but
the results were not as good in experiment 1. - The change in cverall
accuracy using the reliability factors was so small that it was hard to draw ’
firm conclusrons from the results It is clear, however, that the linearity
-relatlon in equation (3.17) has some limitations. We know, for 1nstance, that
the separablllty functlons are not linear and we have some dlfﬁculty in

Justlfying this hnearlty relation for the class1ﬁcation accuracy.
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Using the separability estimates to measure reliability has the
disadvvantage that we have to assume some probability distribution for the
inl'ormation classes. Although normal distributions can be 'assumed'v for
spectral classes of corn and soybeans, we would not be able to assume such
a :»p_robability distribution for elevation data. It may not in‘ all cases be
possible to calculate the separability measures even though they can ‘be
expressed in a nice closed form when normal distribution is assumed. Thus
separability measures will not be suitable to estimate reliability factors in all
cases. .- |

Using the classification accuracy to measure reliability does not require
any knowledge of the probability distribution of a source. This approach is
'cornputationally relatively inexpensive because each data source needs to be
classified iﬁdividually anyway in the statistical multisource analysis. We
dis’cuss below another method which could be investigated for reliability
factor estimation. This method also does not assume anything about the

probability distribution of information or data classes.

5.2 Directions for Further Research

One way to characterize reliability of a source would be to examine the
correspondence between the information classes and the data classes, i.e.,
the conditional probabilities that we observe a specific information class
given a data class. All these conditional probabilities can be computed by

comparing the reference map to a classified map from a data source.

Assuming we have r information classes {x,,...,x;} and s data classes,

{¥1,--+¥s} we can write all the conditional probabilities as the s x r
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- correspondence matrix R, where R is:

P(xlb'l) szb’l) - P("rb’l)7
p(x; l}’z) P(Xzb’z) . P(xrb'z)

p(x; b.) p(x; b - - - Bkl
We can now define reliability’ in the folloWing way: If a source is optimai in
reliabilitgy there would be a speciﬁé information class corresponding to each
data‘ alass. Therefore ideally one conditional probability in each row of R
:W‘ouldfbe‘ 1 and all the others Wduld be zero. If a source were very
uhfel-iable, there would be no éorrespondence between the data classes and
the information classes; in the worst case all the numbers in ‘th_e matrix

v‘éduld be the same.

Now we would like to assoclate a number with the matrix R to
charactenze the reliability. Usmg information theoretic measures [25] we
could think of the information classes as a transmitted signal and the data
classes as a received signal which must be used to estimate the transmitted
signal. Using this approach we can state that there is an uncertainty of
log|1 /p(xi Iy;)] aboilt the information class x; when we observe data class y; in

a data source.

We can calculate the average loss of mformatlon when we observe the

data class yj, which is given by [26,27]:

xly plyloe (x:ﬁj) | | (52)

Now we want to average the information loss over all observed data classes
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This is called the equlvocation of x Wlth respect toy and is denoted by =

H(xly) R
H(xly) Sp()H(xb)

1
p(x; ly;) }

ij

= YYp(y)p(x;ly;){log

- e w6

H(xly) represents the average uncertainty about an mformatlon class over
all the data classes. Evidently, H ly) is the average . loss of 1nformatlon per
'd»ata«class and therefore seems to be a reasonable term to associate w1th the
. rehablllty of a source. Since H(xly) measures uncertainty, the higher value
ﬁit has the more unrellable a source is. If we estimate this quantlty for all’ N

-the data sources, we could give the source with the lowest H(x |y) the hlghest
b rehablllty factor and then determine the rellabihty factors for the other

‘sources accordlngly.

| To calculate H(x ly) is relatively inexpensive because all the probabilities
neecledvcan be computed easily from the reference map and the classiﬁed '
maps l'rom the individual sources. This reliability measure also has the
adirantage that we do not need to know anything about the probability’
rdistributio.‘ns of the i.nformation classes in any source The on-ly §r§b1ém~’at.,
thls pomt is how to associate rehablllty factors with the uncertamty,

problem common to all the rellablhty measures discussed so far

The global membershlp function which we are trying to optlmlze is a

_ complex non-hnear functlon To lnclude reliability factors in that function
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is bjr noAlileans easy, but several different approachesyheve been diseussedvto
quantify the reliazbi‘lity. To associate the reliability factors with these
,ﬁ1easures is a complicated problem. We would prefer a linear relationship
between fhe reliability measures and the reliability factors or at least have
the reletionship ae a closed expression. In this resee‘rchv we used separability
measures and classification accuracy to estifnatev the reliability and
approximated the relation be{;ween these measures and the reliabi'l‘ity fac-tors A
by "a linear function. It is herd toi justify‘this’appreximation. Censeqﬁeﬁtly

~ this problem should be investigated further.
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