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ABSTRACT

Methods for classifying remotely sensed data from multiple data sources 

are considered. Special interest is in general methods for multisource 

classification and three such approaches are considered: Dempster-Shafer 

theory, fuzzy set theory and statistical multisource analysis. Statistical mul­

tisource analysis is investigated further. To apply this method successfully 

it is necessary to characterize the "reliability" of each data source. Separa­

bility measures and classification accuracy are used to measure the reliabil­

ity. These reliability measures are then associated with reliability factors 

included in the statistical multisource analysis. Experimental results are 

given for the application of statistical multisource analysis to multispectral 

scanner data where different segments of the electromagnetic spectrum are 

treated as "different" sources. Finally, a discussion is included concerning 

future directions for investigating reliability measures.
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CHAPTER 1 

INTRODUCTION

Computerized information extraction from remotely sensed imagery has 

been applied successfully over the last two decades. The data used in the 

processing has mostly been multispectral data and the statistical 

pattern recognition (multivariate classification) methods are now 

widely known. Within the last decade advances in space and computer 

technologies have made it possible to amass large amounts of data about 

the Earth and its environment. The data are now more and more 

typically not only spectral data but include, for example, forest maps, 

ground cover maps, radar data and topographic information such as 

elevation and slope data. We may therefore have many kinds of data from 

different sources regarding the same scene. These are called multisource 

data.

We are interested in using all these data to extract more information 

and get more accuracy in classification. However the conventional 

multivariate classification methods cannot be used satisfactorily in 

processing multisource data. This is due to several reasons. One is that the 

multisource data need not be just spectral; they can for example be 

elevation ranges or even non-numerical data such as ground cover classes or
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soil types. The data are also not necessarily in common units and therefore 

scaling problems may arise. It is also desirable to determine the reliability of 

each source, because all the sources are in general not equally reliable. This 

all implies that other methods than the conventional multivariate 

classification have to be used to classify multisource data.

Various ad hoc methods have been proposed to classify 

multisource data. However, we are interested in developing more general 

methods which can be applied to classify any type of data. In particular, 

our attention is focused on statistical multisource analysis by means of a 

method based on Bayesian classification theory which was proposed recently 

by Swain, Richards and Lee [l]. An extension of this method will be 

developed in this report.

Opr objective is to modify the method to take into account the relative 

reliabilities of the sources of data involved in the classification. This requires 

a way to quantify the reliability of a data source. Its importance becomes 

apparent when we look at the combination of information. The foundation 

of the method for combination from various sources consists essentially of 

multiplication of source-specific posterior probabilities from all the sources 

involved in the classification. If any of the sources are unreliable they can 

affect the outcome of the multiplication disproportionately and consequently 

increase classification error.

The goal of this report is to investigate methods to determine the 

reliability and define a corresponding reliability factor for each data source. 

The reliability factors are then included in the classification process. 

Experimental results will be given.
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CHAPTER 2

PREVIOUS WORK

2.1 A Few Early Methods

Several methods have been used in the past to classify 

multisource data. One method is the "ambiguity reduction" where the data 

are classified based on one or more of the data sources, the results from the 

classification are assessed, and other sources are then resorted to in order to 

resolve the remaining ambiguities. The ambiguity reduction can be achieved 

by logical sorting methods. Hutchinson has used this method successfully

;2!- '

A second method is supervised relaxation labeling derived by Richards 

et al. [3] in order to merge data from multiple sources. This method, like 

other relaxation methods, tries to develop consistency among a collection of 

observations by means of an iterative numerical "diffusion" process. So far 

this method has not been fully investigated on multiple sources and its 

iterative nature makes it computationally very expensive.

A third method is to subdivide the data based on a subset of the data 

sources and then analyze each subdivision based on the remaining sources. 

In this method the data are subdivided in such a way that variation within



4

each Subdivision is minimized or eliminated, due to some of the subdividing 

variables. An example of this method can be found in Strahler et al. [4],

None of the methods described above is a general approach in 

multisource classification and all of them depend heavily on the user. They 

all deal with the various sources of data independently. In contrast the 

fourth method mentioned here is a general approach which does not deal 

with the data sources independently. This method is the stacked-vector 

approach, i.e., formation of an extended vector with components from all of 

the data sources and handling the compound vector in the same manner as 

data from a single source. This method is the most straightforward and the 

simplest of the methods. It works very well if the data sources are similar 

and the relations between the variables are easily modeled [5]. However, the 

method is not applicable when the various sources cannot be described by a 

common model, e.g., the multivariate Gaussian model. Another drawback is 

that when the multivariate Gaussian model is used, the computational cost 

grows as the square of the number of dimensions. This makes the 

computational cost severe if the number of sources is large.

All the methods discussed up to this point have significant limitations 

as general approaches for multisource classification. Our goal is to develop a 

general method which can be used to classify complex data sets, 

containing both multispectral, topographic and other forms of geographic 

data. Three such methods are discussed below. First we discuss statistical 

multisource analysis, a probabilistic method which is based on Bayesian 

decision theory and was developed recently by Swain, Richards and Lee [l]. 

Then we address two non-probabilistic approaches for combining sources,



methods based on Dempster-Shafer theory and fuzzy set theory. We will 

review the main concepts of these three approaches and then pursue the one 

we think is most applicable in multisource classification of remotely sensed 

data.

2.2 Statistical Multisource Analysis

As noted previously, this method was proposed recently by Swain, 

Richards and Lee [1]. It is a general method which extends well-known 

concepts used for classification of multispectral images when only one data 

source is involved. In this method the various data sources are handled 

independently and each data source can be modeled by any appropriate 

model. The main concepts in the theory are addressed below.

Assume there are n separate data sources, each providing a 

measurement Xg (s = 1, . . . ,n) for each of the pixels of interest; If any 

of the sources is multidimensional, the corresponding xs will be a 

measurement vector. Let there be M user-specified information classes in 

the scene (not necessarily a property of the data) denoted Wj (j = 

1, . . . ,M). The pixels are to be classified into these classes.

Each data source is at first considered separately. For a given source, 

an appropriate training procedure can be used to segment or classify the 

data into a set of classes that will characterize that source. We could for 

g^ppple use clustering for this purpose. The data types are assumed to be 

very general, e.g., both topographic and multispectral data. We 

therefore refer to the source-specific classes or clusters as data classes, 

since they are defined from relationships in a particular data space.

5
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The data classes are for instance spectral classes in the case of 

spectral data while for topographic data they may for example be 

elevation ranges. In general there may not be a simple one-to-one 

relation between the user-desired information classes and the set of 

data classes available. It is one of the requirements of a multisource 

analytical procedure to devise a method by which inferences about 

information classes can be drawn from the collection of data classes.

The i-th data class from the s-th source is denoted by dsj (i — 1,2, . . . , 

mg)) where nig is the number of data classes for source s. The 

measurement vectors are associated with data classes according to a set of 

data-specific membership functions, f(dsi|xs). This means that for a given 

measurement from the s-th source, f(dsj |xs) gives the strength of association 

of xs with data class dsj defined for that source.

The information classes Wj are related to the data classes from a single 

source by means of a set of source-specific membership functions f(wj |dsj (Xs))) 

for all i, j, s, where f(a>j |dsi(xs)) is the strength of association of data class 

dsi with information class Wj, possibly influenced by the value of xs. This 

expression is different from previous approaches for single source 

classification, where it is often assumed in the analysis that there is a 

unique correspondence between spectral and information classes, once 

prior probabilities have been determined.

hjqw a set of global membership functions is defined, that collect 

together the inferences concerning a single information class from all of 

the data sources (as represented by their data classes). The membership 

function Fj for class Wj is of the general form:
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Fj = Fj[f(a;j|dsi(xs)),rs] (i-1,2, ... ,11^ s=l,2, . . . ,n) (2.1)

where rs is the quality or reliability factor of the s-th source and is defined 

to weight the various sources, reflecting the perceived or measured 

reliabilities of the various sources of data. This is very important 

because it may be known that all the sources are not equally reliable and 

therefore the analyst is allowed to take into account his confidence in the 

recommendation of each of the individual sources of data available.

Finally a pixel X == [x1# . . . ,xn]T is classified according to the usual 

maximum selection rule, i.e., it is decided that X is in class to for which

F* = max Fj (2.2)

Now the membership functions are defined specifically. From experience 

with Bayesian classification theory a natural choice for the global 

membership function is the joint-source posterior probabilities.

Fj(X) = p(Wj|X) = p(wj|x1,X2, . . . ,xn) (2.3)

If we make the assumption that the data sources are statistically 

independent, the global membership function may be written [l]:

F (X) = >(:.));1 «•<)
S—1

It may be argued that independence between two unrelated sources is 

unlikely and the independence assumption may therefore introduce errors. 

On the other hand there are mainly two reasons why use of the 

independence assumption is desirable in this case. First, it is clear that 

interactions between two data sources can be very complex and consequently
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hard to model. To make use of dependence between Sources these 

interactions have to be modeled, but we are either unable or unwilling to do 

that. Secondly, taking dependence into account will increase the 

cpmputational complexity of the classification procedure and may impose 

considerable burden on the computer resources available. Using this 

reasoning, independence between data sources is justified in the global 

membership function.

Now consider the individual source-specific membership functions 

which appear here explicitly as source-specific posterior probabilities. 

These can be expressed as:

ms

p(wjk) = Ep(wjldsi»xs)p(dsik) (2.5)
i=l

where the source-specific membership functions appear explicitly as 

p(cjj |dsj,Xg) and the data-specific membership functions as p(dsi k)* 

Another way to write (2.5) is:

ms
p(wjk) = £p(xsb dsi)p(dsi b)p(wj)/p(xs) (2.6)

i=l

Implementation of the classification technique involves using (2.5) or (2.6) 

to determine the posterior probabilities in (2.4) and then (2.2) is used for 

the decision. In turn the quantities in (2.5) or (2.6) as appropriate have 

to be estimated. It is now interesting to look at equations (2.5) and (2.4) 

taken together. In (2.5) we are just looking at one source at a time. There 

we see explicitly the relation between the data vectors and the data classes 

and the information classes, demonstrating the role of data classes as 

intermediaries. Equation (2.4) then aggregates the information from all the



sources of data for each specific information class.

As seen above, statistical multisource analysis is an extension of one 

source Bayesian classification. We now turn away from the Bayesian 

framework and look at combination of sources using Dempster-Shafer theory 

and fuzzy set theory.

2.3 Dempster-Shafer Theory

Several approaches for dealing with the problem of quantifying 

uncertainty have been proposed in the literature. One approach comes 

from the works of Dempster and Shafer in connection with a mathematical 

theory of evidence. The theory as described in Shafer [6] is a departure 

from the traditional Bayesian approach in that mass is assigned to some 

subsets, whereas uncertainty is spread over all subsets.

In this respect the traditional Bayes approach has been rejected by 

many authors because [7,8]:

1) Knowledge is conditional on the past and this requires large 

amounts of statistical data.

2) It is difficult to ensure and maintain consistency in a collection of 

interrelated propositions. This also stems from the need to assign 

point probability values even when the underlying models from 

which these values are derived are incapable of supplying such 

precise data.

9
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Uncertainty about a proposition implies near certainty about the 

negation of that proposition, i.e., Bayesian theory cannot 

distinguish between the lack of belief and disbelief.

2.3.1 Fundamentals in Dempster-Shafer Theory

The idea is to use a number between zero and one to indicate the 

degree of support a body of evidence provides for a proposition. The 

fundamental concept in Dempster-Shafer theory is the basic probability 

assignment m. For a set A, m(A) measures the belief that is committed 

exactly to A alone. It can be defined in the following way:

Definition: Assume m is a set mapping from subsets of the finite set X 

into the unit interval, i.e.,

m : 2X —► [0,1]

such that:

1) m(<f>) — 0 (where <}> is empty)

2) V m(A) 1
AGX

in is then called a basic probability assignment. It is worthwhile to note 

that:
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1) m(X) is not necessarily one.

2) A C B does not necessarily imply m(A) < m(B)

3) It is allowed that belief not be committed to either A or Ac.

This quantity m(A) measures the belief that one commits exactly to A, not 

the total belief that one commits to A. To obtain the measure of the total 

belief committed to A, one must add to m(A) the quantities m(B) for all 

proper subsets B of A. Then a belief function can be defined in the following 

way:

Definition: Given a basic probability assignment m, define the belief

function;

Bel : 2*-> [0,1]

such that for any A C X:

Bel(A) = £ m(B) (2.7)
BCA

The evidence for a proposition A is described by a subinterval 

[s(A),p(A)] of the unit interval [0,1], where

s(A) ^ Bel(A) (2.8)

p(A) = 1 — s(Ac) (2.9)

The lower value, s(A), represents the "support" for the proposition 

and sets a minimum value for its likelihood. The upper value, p(A), 

denotes the "plausibility" of that proposition and establishes a maximum
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likelihood. Support may be interpreted as the total positive effect that a 

body of evidence has on a proposition, while plausibility represents the 

total extent to which a body of evidence fails to refute a proposition. 

The degree of uncertainty about the actual probability value for a 

proposition corresponds to the width of its evidential interval; i.e., p(A) - 

s(A). If this difference is zero for all propositions, the system is 

Bayesian [8].

For example if we represent a proposition A using the notation 

A[s(a))P(a)]> then [8]:

There is no knowledge at all about A.

A is false.

A is true.

Evidence provides partial support for A.

Evidence provides partial support for Ac.

Probability of A is between .20 and .80. Evidence provides 

simultaneously support for both A and Ac.

An important part of Shafer’s theory involves the combination of belief 

functions to form a composite belief function, i.e., combining various 

sources of evidence. Shafer accomplishes this by use of Dempster’s rule 

of combination, sometimes called Dempster’s orthogonal sum. This gives 

the aggregated mass that can be assigned to the labeling proposition X.

A[°,l]

A[o,o]

A[M]

a[,2o,i]

A[0,80] 

A[.20, .80]
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S rn1(A)m2(B)
yy\(TC\ Af)B=X

W 1- E mi(A)m2(B) (2.10)

AflB—^

We may call Bel^Beljg the orthogonal sum of Belr and Bel2.

the commutativity and associativity of the belief functions:

Because of

Beli0Bel2 = Bel20Belj (2.11a)

(Bel10Bel2)0Bel3 = Bel10(Bel20Bel3) (2.11b)

we form pairwise sums and combine two functions at a time to

accomplish the combination.

To illustrate use of Dempster-Shafer theory further we give a simple 

example using two sources of evidence. In this example the sets A and Ac 

are subsets of the set 0 which is usually referred to as the "frame of 

discernment."

For source # 1 we have:

A = {a} Ac ={b,c} 0 — {a,b,c}

We assign the basic probability assignments in the following way:

m(A) = 0.6 m(Ac) = 0.3 m(0) .== 0.1

Then we can calculate the support and plausibility for each set by using 

equations (2.8) and (2.9). This calculation gives:

s(A) = 0.6 s(Ac) = 0.3 s(0) = 0.6 + 0.3 + 0.1 = 1

p(A) = 1 -0.3 = 0.7 p(Ac) = 1 - 0.6 = 0.4 p(0) = 1 - 0 = 1
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We can therefore write:

A[.6,.7] AC[.M1 e[l,l]

Now for source # 2 we have the same sets:

A = {a} Ac = {b,c} 0={a,b,c}

However, the basic probability assignments are different:

m(A) = 0.3 m(Ac) = 0.7 m(©) = 0.0

Using these data we now get:

• s(A) = 0.3 s(Ac) = 0.7 s(0) = 0.3 + 0.7 = 1

p(A) = 1 - 0.7 = 0.3 p(Ac) = 1 - 0.7 = 0.3 p(0) = 1

We can now write:

A[.3,3] AC[.7,.7] ^[M]

To calculate the aggregated mass from these two sources we can now use 

Dempster’s rule (equation (2.10)). That calculation gives:

0.60.3 + 0.30.1m(A) = 1 - (0.6-0.7 + 0.3-0.3) = 0.43

mi(Ac) = 0.3-Q.7 + 0.7-0.1 
1 - (0.6-0.7 + 0.3-0.3) = 0.57

2.3.2 Decision Rules

In statistical pattern recognition methods there is usually a 

straightforward way to select a decision rule to use in deciding the 

preferred label among a range of options. For maximum likelihood



15

algorithms the rule is usually expressed in terms of the most favored 

label. This is also the case for the multisource statistical technique 

described above in which class membership is decided on the basis of 

maximizing the global membership function.

This is not the case, though, with evidential methods, where an 

evidential interval bounded by support and plausibility rather than a 

single value is attached to candidate class labels. In that case one has 

a number of options potentially to choose among for a decision rule [9],

Some of the candidates are:

1)

3)

A maximum support rule, where the labeling proposition with the 

highest support is chosen.

A maximum plausibility rule, where the proposition with the 

highest plausibility is chosen.

An absolute rule, where the proposition whose support exceeds all 

other plausibilities is chosen. If the width of the evidential interval 

is larger than the difference between the two highest supports, 

this rule will not give a decision.

A maximum support and plausibility rule, where the label chosen 

has both the highest support and plausibility.

2.3.4 Example of Multisource Classification Using Dempster- 

Shafer Theory

Kim et al. [10] have applied Dempster-Shafer theory to multisource 

data. They use a distance measure as the weight of evidence for data



classification to determine the degrees of support based on the multispectral, 

digital elevation and digital slope data. In their work the Mahalanobis 

distance is used to take into account correlation and dispersion of samples.

They define the measure of support for a certain class ca, as:

Bi(.) = 1 — P,(Z<zO = 1 — (2.12)

where z’ denotes the distance from the mean vector of u\ to a given 

observation vector X. Pj (Z < z’) is the probability of the event (Z < z’) for 

samples in wj and Fz(z’) is the cumulative distribution function of Z.

It is easy to see that the function Bj( ) has the properties:

1) Bj: [0,oo] — [0,1]

2) Bj is nonincreasing.

3) B;(0) = 1 and Bi(oo) = 0

Properties (2) and (3) correspond to the human intuition that the 

disbelief in the hypothesis X belonging to class increases as the distance 

between the mean and X increases. Thus 1-Fz(z’) may be considered as the 

measure of support for the hypothesis.

Kim et al. use Bj to find the support for the proposition that pixel X in 

source s belongs to class cu-r They calculate this for each source and then use 

Dempster’s rule to combine the evidence from all the sources, so the pixel 

can be classified using any appropriate decision rule.
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2.4 Fuzzy Reasoning

Aside from Dempster-Shafer theory another way to deal with 

uncertainty is to apply the notion of fuzzy or monotonic measures which 

initially comes from the work of Zadeh [11]. In fuzzy theory a fuzzy set is 

a class of objects with a continuum of grades of membership. Such a set is 

characterized by a membership function which assigns to each object a 

grade of membership ranging between zero and one. Therefore for a fuzzy 

subset A of the universe set Aq, with membership function ^a(x)> we have:

S^A(ai) < 1 for all aj (2.13)

This is very different from conventional ("crisp") set theory where we have 

an "on/off" membership function that takes only values 0 or 1 , i.e., we place 

our full confidence in an element being a member of particular set or not 

[12]. To illustrate this concept further, we know for conventional sets that 

the Bayesian probability of the subset A is:

P(A)=EP(ai) (2.14a)
ai£A

On the other hand in fuzzy set theory the corresponding probability is:

P(A) = E Mai)p(ai) (2.1.4b)
a-.GA .

where p( ) is the probability density and Ma( ) is the membership function.

Tn combining evidence from multiple sources, fuzzy theory has bee11 

used in combination with Dempster-Shafer theory. Ishizuka [13] and 

Ishizuka et al. [14] have extended Dempster-Shafer theory to include fuzzy 

sets. They define the degree that a fuzzy subset Ax is included in another
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fuzzy subset A2 of the same universe set Aq as:

i(Ai£a2) =
min(l,l - (iAl(a) + /iAJa))

a _____ ■ _________ _
max(^Ai(a))

a

(2.15)

where /^Ai and jUAa are the membership functions of A1 and A2 respectively. 

The; denominator is called the height of the fuzzy subset and equation (2.15) 

takes the value 1 if Ax is completely included in A2 and 0 if //A^( ) = 0 at 

the point where yuAi( ) takes its peak value.

They also define the degree of intersection of two fuzzy subsets Aj and 

A.2 as:

J(Ai,A2)
max(MAinA2(a))

•______ a___________________
min(max()UAi(a)),max(/iA2(a))

(2.16)

where the membership function of the intersection A1RA2 is defined in fuzzy 

set theory as:

/^A]fiA2(a) = min(^Ai(a),MA2(a)) (2.17)

The denominator of (2.16) is 1 if the fuzzy subsets Ax and A2 are 

normalized, i.e., iff for all a € A:

Ma) = MA2(a) = 1

The degree that the intersection of Ax and A2 is </> (empty) is defined as:

1 — J(A1,A2)

If now an extended Dempster-Shafer probability assignment m(A) is 

defined for each fuzzy subset A characterized by /xA(a) then equations (2.15) 

and (2.16) can be used to define a belief function and a combination rule
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which are direct extensions of the ones in Dempster-Shafer theory. The 

belief function is then:

Bel(Ai) = ^(AjCAiMAj)
Aj

(2.18)

The combination rule is an extension of Dempster’s rule:

m(Ak) =

E J(Aii,A2j)mi(Ali)m2(A2j)
A iiflA^j=
E (! - J(Aii,A2j))mi(A1i)m2(A2j)

Aii,A2j

(2.19)

This extension of Dempster-Shafer theory makes it possible to use the 

decision rules described in 2.3.2.

Several other methods of combining fuzzy sets have been addressed in 

the literature. Two of them are listed below but will not be discussed any 

further here.

1)

2)

Taking minimum and maximum of the membership functions [15]. 

Using linguistic probability [16].

2.5 Comparison of Multisource Classification Methods for Use in 

Processing of Remotely Sensed Data

We have now described methods used for classification of multisource 

data. As said earlier, we are only interested in general methods, pot in ad 

hoc methods. There were three general approaches discussed in this 

chapter. .
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Dempster-Shafer theory deals with uncertainty in the data 

measurements and is widely recognized and studied. It has been examined 

in expert systems [17] and is now being used in geographic information 

processing [18]. This approach has some problems, which include how to 

give values to the basic probability assignment and what decision rule to 

choose. These problems are highly application-specific in nature.

Fuzzy set theory deals with uncertainty, but in a different way, and has 

not been used extensively in classification of remotely sensed data. Some 

authors have examined clustering with fuzzy techniques [19,20] and other 

have addressed combination of evidence using fuzzy sets as described in 

section 2.4. The problems with this approach are similar to the ones using 

Dempster-Shafer theory. Here we have to specify a membership function for 

each set and it is not evident what is the best way to do that.

It is interesting to note here that although Dempster-Shafer theory and 

fuzzy set theory have more mechanism to handle uncertainty than Bayesian 

decision theory does, Bayesian statisticians do not think very highly of these 

theories. Berger for example views them either as unnecessary elaborations 

on robust probabilistic analysis or as insufficiently complicated 

representations of reality [21]. On the other hand we do have much more 

experience with Bayesian classification theory when processing remotely 

sensed data. Statistical methods such as the maximum likelihood method 

have been used for a long time in conventional one-source classification. 

The statistical multisource method by Swain, Richards and Lee is an 

extension of such methods. It is therefore a reasonable choice in our 

analysis. This method also does not have any of the problems associated
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with the two approaches above. However, the method as presented by 

Swain, Richards and Lee does not provide a mechanism to account for 

varying degrees of reliability of different sources as do Dempster-Shafer 

theory or fuzzy set theory. It is our belief that this problem can be 

Overcome if we assign reliability factors to each source involved in the 

classification. For these reasons we will investigate a modified version of the 

statistical multisource analysis by Swain, Richards and Lee by means of

which reliability analysis is added to the classification process.
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CHAPTER 3 

THE APPROACH

3.1 General Concepts

From the Swain, Richards and Lee approach we have the, global 

membership function [1]:

F,(X) = ip(M)|‘
i=l

= • • • pl^jk) (3.1)

We want to associate reliability factors with the sources as discussed in 

chapter 2, i.e., to express quantitatively our confidence in each source, 

and use them for classification purposes. This is very important because we 

need to increase the influence of the "more reliable" sources, i.e., the sources 

we have more confidence in, on the global membership function and 

consequently decrease the influence of the "less reliable" sources in order to 

improve the classification accuracy. The need for reliability factors becomes 

apparent if we look at equation (3.1) where the global membership function 

is a product of posterior probabilities related to each source. Each 

probability has value in the interval from 0 to 1. If any one of them is near 

zero it will carry the value of the membership function close to zero and 

therefore downgrade drastically the contribution of information from other
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sources, although the particular source involved may have little or no 

reliability.

From above it is clear that we have to put weights (reliability factors) 

on the sources which will influence their contributions to classification. 

Since we have a product of posterior probabilities this weight has to be 

involved in such a way that when the reliability of a source is low it must 

discount the influence of that source and when the reliability of a source is 

high it must give the source relatively high influence. One possible choice 

for this kind of analysis is to put reliability factors as exponents on the 

posterior probabilities of each source. Then equation (3.1) would be

written in the following form:
_ ' .

Fj(x) -■tp^-phk)*1 • • • p(sk)a"

VN- = [ph)]1_"np("ikr (3-2)
i=l

Equation (3.2) can also be written in a logarithmic form as:

log Fj(X) = (1 - n)log p(wj) + 5>ilog p(wj|xi) (3.2a)
i=l ’

where the reliability factors are expressed as the coefficients in the sum. 

These coefficients act like weights in the sum and control the influence of a 

source on the global membership function. If a coefficient is high compared 

to the other coefficients, the source it represents will have greater influence 

on the global membership function. If on the other hand a coefficient is low 

compared to other coefficients, it will decrease the influence of its source. 

Another way to see this is to look at the sensitivity of the global
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membership function to changes in one of the posterior probabilities which 

can be expressed as [9]:

Fj(X) a‘ p(wj|xi)

We select the aj’s (i — 1, . . . ,n) in the interval [0,1] because of the 

following reasons. If source i has no reliability (aj=0) it will not have any 

influence on (3.2) because p(a)j jx,)0 = 1, and if source i has the highest 

reliability then it will give a full contribution to (3.2) because p^Jx;)1 = 

p(wj |xj). It is also worthwhile to note that this method of putting exponents 

on the posterior probabilities does not change the decision for a single-source 

classification because the exponential function pa is a monotonic function of

4 illustrate'the last point, consider a simple example. In this e*hm|>le

assume that we have one source, that a is a number in the interval (0,1], 

and that we have just two information classes u\ and cu2. We are observing 

one ground element x and the global membership functions Fj and F2 are of

(3.3a) 

(3.3b)

Assume now that p(ct;1|x) > p(cu2|x). Using the maximum selection rule we 

decide x belongs to u)v Now applying the exponent method above, the 

global membership functions will be of the form in equation (3.2):

the form in (3.1):

Fi(x) = P(wi|x)

F2(x) = P(w2|x)
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Fx'(x) = (3.4a)

(3.4b)

Keeping in mind that p(w1 \x) and p(w2|x) are numbers in the interval [0,1], a 

is a number in the interval (0,1] and p(o»1|x) > p(w2 |x) we get:

p(wi[x)a >p(c^|x)a

Therefore the decision is the same for this particular x, i.e., we classify x to 

Wj. This of course applies for all ground-elements x while a £ (0,1]. If a — 

0 we get no decision, but in case we are considering multisource data this 

source will have no influence on (3.2) and the decision will depend on the 

other sources. When we combine two or more sources, the global 

membership function becomes more complex to analyze because it consists of 

a product of posterior probabilities with different reliability factors and this 

product is normalized by the priori probabilities.

The problem is to determine the aj’s based on the reliability of the 

sources. We think a of source as being reliable if its contribution to the 

Combination of information from various sources is "good", i.e., if we increase 

the classification accuracy substantially or extract more information by 

using this particular source. Using this understanding of a reliable source 

we apply two measures to determine the reliability of a source: weighted 

average separability and overall classification accuracy.

It is our belief that we can call a source reliable if the separability of 

the information classes is high for the source. If on the other hand the 

separability of the information classes is low, we can assume that the source



is not very reliable. Therefore one possibility for reliability evaluation is to 

use the average separability of the information classes in each source, e.g., 

average Jeffries-Matusita (JM) distance, average transformed divergence or 

any other separability function. What kind of average is used depends on 

what we are after in the multisource classification. For instance if we are 

trying to improve the overall classification accuracy we use the weighted 

overall average. If, however, we are concentrating just on specific classes, 

the weighted average separability of those information classes is used.

Another way to measure reliability of a data source is to use the 

classification accuracy of the source. In this case we call a source reliable if 

the classification accuracy for the source is high, but if the accuracy is low 

we call the source unreliable. This approach is related to the method of 

using separability measures in that increased separability gives higher 

accuracy.

As said earlier we want the reliability factors to have values in the 

interval '[0,1]. We also want to associate the reliability factors to values of 

some separability measure or to the classification accuracy. If we choose to 

use the values of the separability measures to determine reliability factors, 

we know that some separability functions have saturating behavior as 

functions of normed distance, e.g., the transformed divergence and JM- 

distance. We know beforehand that they take values in some interval 

[min,max] and we simply have to norm them by division and/or subtraction. 

Thus for separability function f(x) we calculate:

26
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a = f(x - min) 
max — min

so a takes value in [0,1]. Some separability estimates, e.g., the divergence, 

do not have this saturating behavior and increase with increased normed 

distance. In that case we have to specify a cutoff point somewhere on the 

curve as our maximum value to saturate the function. This means that 

every value higher than this cutoff will be mapped to the cutoff value. This 

saturation is done to limit the influence or dominance of "very separable" 

classes on the weighted average of the separability. We choose a specific 

cutoff value which reflects our belief that the information classes which have 

separability higher than this value are "separable enough." We then use this 

"saturated" curve in the same manner as described above.

It remains to be shown whether the simple mapping described above is 

sufficient to produce appropriate values for the reliability factor. That will 

be discussed further in section 3.3. We shall now look more closely at 

separability estimation.
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3.2 Separability Estimates

In this research we look at two separability estimates, the JM-distance 

and the transformed divergence.

3.2.1 Jeffries-Matusita Distance

The JM distance between two classes o>, and Wj is defined formally as: 

( \
/[VppcR)-V^xFi)]2 dx
X

1/2 (3.6)

It is roughly speaking a measure of the average difference between the two 

class density functions [22,23].

In classification of remotely sensed data we assume most often that the 

classes have normal density functions, i.e.,

p(X|w.) = N(U„I1)

pfxk) 'j)

With this assumption (3.6) reduces to:

Ju = [2(l-e-b»)]1/2

where by is the Bhattacharyya distance:

1 rp Si+S: ^

>>,j a (ll-V" ■> W-Uj)

|M|
1 2

+ IIOgel fcp/*fcp/»

And the average class separability is:

(3.7)

(3.8)
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^.“T^tSSpNpNWj <3-9)
1 — K i=lj=l

where:

K = SP(^i)2 (3-10)
i=l

The Jave has the saturating behavior and has a maximum value of Vi. 
Therefore we can normalize Jave to lie in the interval [0,1] by division by

Vi.

3.2.2 The Transformed Divergence

The divergence of two classes u>, and (jJ} is defined formally as:

Dij=E[Lij(X)|W,i+ElLji(X)|Wj] (3.11)

where Ljj (X) is the logarithmic-likelihood ratio:

Lij(X) = logep(X|o>1) - logep(X|wj) (3.12)

If we assume as before that the classdensity is normal, reduces to:

Dij = ^ trlK “ Ej)(Sj_1 _ Si_1)l +

J tr[(Sj-1 + Xj-'XU, - Uj)(U; - Uj)T] (3.13)

Djj is not bounded as a function of normalized distance, i.e., it is 

monotonically increasing with increasing distance. To use the divergence we 

could specify some cutoff value and apply the approach described in section
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3.1. However a saturating function of divergence, called transformed 

divergence, can also be used. This function is defined as:

DTli =21 - cxp( - (3.14)

The average separability using DTjj is:

i M M '
DT.r. = T—-SSP(o<)p(«(iPTij (3-15)

1 K i=lj=l

where k is:

M „
*=SpM (3.16)

i=l

rp rn

D ave has 2.0 as its maximum value. We can therefore normalize D ave 

by 2.0 for use in our global membership function (3.2).

3.3 The Method

In the statistical multisource analysis, each source is first classified 

separately. When the reliability factor evaluation is added we use 

the classification accuracy or calculate the average separability for each 

source by any appropriate separability estimate. One thing which is 

important here is that we are discounting the sources by putting reliability 

factors on each source-specific posterior probability p in the global 

membership function. If we look at the family of curves pa as a ftmetion of 

a, where a has value in [0,1] as shown in Fig. 3.1, we see that the functions 

are more discriminable as a increases. This leads us to the point that the 

separability estimates and the classification accuracy should only be used to
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measure reliability. The source that has the "highest reliability" should be 

given the highest reliability factor and the others should be given reliability 

factors relative to this value. One way to accomplish this is to scale the 

values of the reliability measure as described below.

Assume we have n sources and we have calculated the reliability for 

each Source i by some measure and its value is Rj. We give the source with 

the highest reliability the highest reliability factor amax. If the smallest 

possible reliability measure is min we can calculate the reliability factors for 

the sources according to:

R: — min
a; =1 max{R: — min}

j=l.n
*max (3.17)

These values are then used as reliability factors in the global membership 

function (3.2). From there on we continue as described in section 2.2.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 General Remarks

objective is to apply the statistical multisource analysis with 

varying levels of "reliability." To explore the method we would prefer a data 

set "Which contained several geometrically registered sources of data, e.g., 

Landsat Multispectral Scanner or Thematic Mapper data, aircraft 

multispectral scanner data, radar data, digital topographic data and a 

digital reference map for the particular area involved. Unfortunately we 

have not had a suitable data set of this kind available. Therefore to get 

preliminary results, the algorithm was applied to 12 channel aircraft 

multispectral scanner data, treating different regions of the electromagnetic 

spectrum (visible, near IR, ...) as different "sources." The data set chosen for 

experiment is a portion of flight line 210 from the 1971 Corn Blight Watch 

Experiment conducted by the Laboratory for Applications of Remote Sensing 

(LARS) at Purdue University, NASA and the U.S. Department of 

Agriculture. The portion of the data set used is 140 x 220 pixels and covers 

an agricultural area in Tippecanoe County, Indiana. A reference 

photograph and a ground cover reference map were available for this area.
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The ground cover map was digitized and then geometrically registered to the 

multispectral scanner data.

From the 12 spectral bands three data "sources" were defined. The data 

set contained 7 visible bands; three of them were selected as the visible 

source (band 1: 0.46 - 0.49 /£m, band 4: 0.52 - 0.57 fim and band 7: 0.61 - 

0.70 /im). The data set has 3 bands in the near-infrared region (band 8: 0.72 

- 0.92 pm, band 9: 1.00 - 1.40 /urn and band 10: 1.50 - 1.80 fim) which were 

all selected to represent the near-infrared source. One band in the thermal 

region (band 12: 9.30 - 11.70 /rm) was selected as the thermal source. It is 

known from a long history of experience with the data that the ground cover 

types have significantly different degrees of separability in these three 

spectral regions.

Two approaches were applied to determine reliability factors for the 

three sources. One used the weighted average separability of pairs of 

information classes in each source as a measure of reliability; the other 

measured the reliability by the overall classification accuracy in each source. 

Since the separabilities were calculated for the information classes as defined 

by the reference map, they do not depend on the signatures used for 

classification of a data source. Therefore, in our experiments, different 

training methods did not affect the values of the reliability factors 

determined from the weighted average separability of the information 

classes. The separability could thus be calculated before the individual 

sources were classified. In this research two types of separability estimates 

were used: JM - distance and transformed divergence. The values of these 

estimates for each data source are shown in Table 4.1. For the purpose of
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comparison the values in the table are normalized to be in the range from 0 

to 1.

As pointed out in Chapter 2 various training methods can be applied in 

statistical multisource analysis. In our experiments we used both 

unsupervised and supervised training. In the first experiment (unsupervised 

training) we used the data classes in each source; in the second experiment 

(supervised training) data classes were picked by selecting regions with 

distinctly different color on an image display. When the statistics for each 

source had been determined by applying the selected training procedure, 

each source was classified by maximum likelihood classification.

Table 4.1

Normalized Separability of Information Classes

Source JM - Distance Transformed Divergence

Visible 0.7595 0.7461

Near-Infrared 0.8291 0.8166

Thermal 0.5715 0.4971

In order to apply equation (3.2), the source-specific probabilities were written 

in the following form:
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m-,
P(^jk) = b(xi)] 1 EP(xildk»wj)p(dk>wj)

k=l
(4.1)

Here nij is the number of data classes for source i and p(xj) is computed by:

M mi
p(Xi) = V EP(XiK."j)p(dk.wj) (4-2>

j=lk=l

where M is the number of information classes. For each source, the joint 

probabilities p(dk,a;j) were tabulated in a joint occurrence matrix by 

comparing single-source data-class classifications to information classes in 

the reference map. To reduce considerably the computation and memory 

requirements, the class-conditional probabilities were computed 

independently of information classes, i.e., we set:

p(xi|dk,wj) = p(xi|dk) for all wj

This approximation is valid if the distribution of a data class is the same 

regardless of information class. It is unlikely to hold exactly in the case of 

unsupervised classification, but the approximation is essential to the 

feasibility of carrying out the computations on a microcomputer (a PC/AT - 

based system was used). Using the approximation and equations (4.1) and 

(4.2), equation (3.2) can be written in the following form:

Fj(X) = [p("j)rnn
i=l

m;
E p(xi ldk)p(dk,a;j)
k=l______ .

M mi
E £p(xildk)p(dk.^j)
j=lk=l

exp aj (4.3)

All computer processing was done on an ERDAS image processing system 

based on an IBM PC/AT.
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4.2 Experiment 1: Unsupervised Analysis

In this experiment the classifier training for each source was performed 

using an unsupervised approach. For this purpose a one-pass clustering 

algorithm called STATCL in the ERDAS software was used. This algorithm 

works as follows [24]:

A 3.x 3 window is moved over the multispectral image row by row and 

column by column. In each box the standard deviation of each band and 

the interband covariance matrix are calculated. The standard deviations 

are then compared to the user-specified upper and lower bounds on standard 

deviation in a cluster. If all of the standard deviations are within these 

bounds the covariances in the covariance matrix are compared to a fixed 

Upper bound on covariance as specified by the user. If every covariance in 

the covariance matrix is less than this fixed covariance, the window becomes 

a cluster, otherwise not. In experiment 1 the default values in the algorithm 

were used, i.e., the lower bound on standard deviation was always set to be 

0.1, the upper bound 1.2 and the upper bound on covariance was 12.

After the image has been scanned by the 3x3 window and all the 

clusters have been made they are merged according to a user-specified bound 

on the Mahalanobis distance. In the experiment this bound waS always 

Selected to be 3 (default). The output from the STATCL algorithm is the 

mean vector and the covariance matrix for each data class in the image.

When the STATCL algorithm had been run to define data classes for 

each source, all sources were classified independently by maximum likelihood 

classification. The clustering had identified 9 data classes in the visible 

source, 10 in the near-infrared source and 5 in the thermal source. The test



area contains 9 ground cover classes. The co-occurrence matrices showing 

the joint occurrences of the information and data classes for each source 

were computed by considering the whole test area. In practice we usually 

have just a small training area, which should be representative of the whole 

area, from which to calculate the joint occurrence matrix. At this point in 

testing the algorithm we want the joint occurrence matrices to be as y 

accurate as possible and we therefore used the whole area.

In this experiment we combined two sources at a time. The Separability 

of the information classes in the near-infrared source was the highest; 

therefore that source was combined first with the visible source and then 

with the thermal source. Since the near-infrared source had the highest 

separability according to both JM-distance and transformed divergence, its 

reliability factor determined from these separability measures was given the 

value 0.9. The reliability factors of the other sources were scaled relative to 

this value by using equation (3.17) and the values in Table 4.1. We selected 

0.9 as the highest reliability factor (amax) because the prior probabilities can 

be considered as a separate source in equation (3.2) with the reliability 

factor 1,0 (since the prior probabilities are computed from the reference map 

which is representative of the total area classified). The values of the 

reliability factors for both separability measures are shown in Table 4.2 and 

Table 4.3.

In order to get a baseline result and see how the values of the reliability 

factors affect the classification, the classification was also performed for a 

range of values of the reliability factor. While one source was given a 

constant reliability factor of 0.9 the reliability factor of the other source was

38
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Table 4.2

Reliability Factors Determined from the Separability Measures 
for Classification of the Near-Infrared and Visible Sources

Source JM - Distance Transformed Divergence

Near-Infrared 0.9000 0.9000

Visible 0.8244 0.8222

Table 4.3

Reliability Factors Determined from the Separability Measures 
for Classification of the Near-Infrared and Thermal Sources

Source JM - Distance Transformed Divergence

Near-Infrared 0.9000 0.9000

Thermal 0.6203 0.5478
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successively reduced from 0.9 in steps of 0.1. This was done for both sets of 

sources involved in the classification. The results are shown in Tables 4.5 

and 4.6.

Table 4.5 shows the results of the classification of the visible and near- 

infrared sources. If we look at the individual classification of each data 

source we see that the clustering algorithm has isolated corn, soybeans, 

non-farm and pasture in both data sources. The near-infrared source does a 

much better job of classifying the soybeans but the visible source isolates 

additionally another information class which is sudex. The overall 

classification accuracy is slightly higher in the near-infrared source (78.7%) 

compared to the visible source (73.1%). These accuracies were used to 

calculate a set of reliability factors by applying equation (3.17). The 

reliability factors are shown in Table 4.4.

Table 4.4

Reliability Factors Determined from Overall Classification Accuracy for 
Classification of the Near-Infrared and Visible Sources in Experiment 1

Source Classification Accuracy Reliability Factor

Near-Infrared 78.7% 0.9000

Visible 73.1% 0.8360
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Table 4.5

Results of Experiment 1:
Classification of the Near-Infrared and Visible Sources 

and Their Composite with Various Values of "Reliability"

Percent Agreement with Reference for Class
NIR VS 1 2 3 4 5 6 7 8 9 OA

neardnfrared 84.8 92.6 91.5 0.0 0.0 0.0 0.0 69.1 0.0 78.7
visible 81.4 88.2 73.4 0.0 0.0 0.0 0.0 49.0 86.1 73.1

100 100 89.2 94.1 90.0 0.0 0.0 3.6 0.0 45.8 82.9 82.6

90 90 90.1 94.0 89.8 0.0 0.0 19.0 0.0 48.2 83.7 82.8

90 83.6 (C) 89.9 94.0 89.6 0.0 1.2 19.9 0.3 49.5 83.3 82.8

90 82.4 (J) 89.9 94.0 89.6 0.0 1.2 19.9 0.4 50.0 83.0 82.8

90 82.2 (T) 89.9 93.9 89.6 0.0 1.6 19.9 0.4 50.0 83.0 82.8

90 80 89.9 93.9 89.6 0.0 2.1 20.2 0.4 51.0 82.8 82.7

90 70 89.8 93.9 89.2 0.0 3.8 22.0 1.5 57.9 81.2 82.7

90 60 89.5 93.7 89.0 0.0 4.0 22.0 3.2 63.9 80.7 82.6

90 50 88.6 93.5 88.4 0.0 6.9 22.6 9.8 65.2 78.3 82.4

80 90 90.6 94.0 89.5 0.0 0.0 23.2 0.2 48.4 83.8 82.8

70 90 91.2 93.6 89.4 0.0 0.0 44.3 0.3 48.2 84.6 83.0

60 90 92.1 93.3 88.0 0.0 2.6 47.0 0.3 47.9 84.7 82.4

50 90 92.9 92.7 86.3 16.3 2.3 57.1 1.1 47.9 84.8 82.0

# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR VS indicates the level of "reliability” assigned to the near-infrared (NIR) and the 
visible (VS) sources. (C) indicates weighting according to classification accuracy; (J) 
according to JM-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm
2 - Corn
3 - Soybeans
4 - Hay
5 - Oats
6 - Woods
7 - Wheat
8 - Pasture
9 - Sudex
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When the sources are combined with full reliability (1.0) assigned to 

both of them we get a significant increase in overall classification accuracy 

compa-red to the classification of the individual sources. Assigning the 

reliability factors shown in Table 4.2 and Table 4.4 does not increase the 

overall accuracy very much. All these computed reliability factors give very 

similar results, an overall accuracy of 82.8%. This is not the highest overall 

accuracy in Table 4.5, however. The highest accuracy is, somewhat 

surprisingly, accomplished by giving the near-infrared source a lower value 

of reliability than the visible source (70,90). This result is surprising because 

we estimated the near-infrared source to be more reliable than the visible 

source.

The increase in overall accuracy using different levels of reliability is so 

small that it is hard to draw conclusions from these results. But the main 

reason for the small increase in overall accuracy is that we do not get much 

increase in accuracy contribution from the small classes. In the area there 

are two dominating information classes, corn and soybeans, covering 76.2% 

of the area. To get a substantial increase in overall accuracy by changing 

the levels of reliability we have to get high accuracy for these classes and 

also some increase in accuracy for the smaller classes. When we get the 

highest accuracy (83.0%) we accomplish this but the difference in accuracy 

contribution from the smaller classes other than sudex is very small.

However, we can see that changes in the reliability factors significantly 

affect the classification accuracy of the individual information classes. For 

example the classification accuracy of pasture increases substantially when 

the value of the reliability factor for the visible source is decreased. Similar
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things happen for woods and hay when the reliability factor for the near- 

infrared source is decreased. This leads us to conclude that it is possible to 

optimize the classification accuracy of single information classes by adjusting 

the reliability factors. One possible way to determine the reliability factors 

in this case would be to base them on the weighted average separability of a 

single information class versus all other information classes in each source.

Another point which is interesting to note is how well information 

classes are discriminated by a source. The "strength of discrimination" of 

information classes is a possible reason why we get the peak in overall 

accuracy when we discount the near-infrared source. Although classification 

accuracy for com and soybeans is higher in the near-infrared source, the 

classification accuracy of these classes decreases only slightly when the 

near-infrared source is discounted. We can therefore assume that these 

classes are very well discriminated by the near-infrared source. We discuss 

this further below when we look at the results in Table 4.6 where we have 

combined the near-infrared and the thermal sources.

In Table 4.6 we see that the clustering of the thermal source does not 

isolate one of the large classes (corn) but does isolate wheat which is not 

isolated by the near-infrared source. Since corn is never classified correctly 

by the thermal source alone, the overall classification accuracy for the 

source is only 49.2%. The reliability factors calculated from the overall 

classification accuracy of the sources are shown in Table 4.7.

When the sources are combined with full reliability (1.0) assigned to 

both, we get a substantial increase in overall accuracy compared to the 

overall accuracy of the classification of the thermal source but no increase
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Table 4.6

Results of Experiment 1:
Classification of the Near-Infrared and Thermal Sources 

and Their Composite with Various Values of "Reliability"

NIR TH 1
Percent Agreement with Reference for Class

2 3 4 5 6 7 8 9 OA

near-infrared 84.8 92.6 91.5 0.0 0.0 0.0 0.0 69.1 0.0 78.7

thermal 58.1 0.0 97.5 0.0 0.0 0.0 77.6 0.0 0.0 49.2

100 100 81.7 93.4 88.7 0.0 0.0 0.0 40.4 47.4 0.0 78.7

90 90 79.9 93.0 88.6 0.0 0.3 0.0 52.6 61.5 0.0 79.0

90 80 79.0 92.8 88.6 0.0 0.3 0.0 55.0 61.8 0.0 79.0

90 70 78.0 92.7 88.5 0.5 0.0 0.0 56.3 63.6 0.2 78.9

90 62.0 (J) 77.8 92.7 88.4 0.7 0.0 0.0 56.6 68.6 0.3 78.9

90 60 77.8 92.7 88.4 0.7 0.0 0.0 56.6 68.6 0.3 78.9

90 56.3 (C) 76.8 92.7 88.4 0.7 0.0 0.0 57.4 69.1 1.8 78.9

90

00 76.8 92.7 88.3 0.7 0.0 0.0 57.9 69.4 1.8 78.9

90 52 76.6 92.7 88.3 0.7 0.0 0.0 59.0 69.9 2.0 78.9

90 50 76.6 92.7 88.2 1.3 0.0 0.0 59.0 70.9 12.4 79.4

90 40 73.9 92.7 69.7 1.8 0.0 0.0 59.0 78.8 55.7 73.6

80 90 77.7 92.7 88.6 0.0 0.9 0.0 60.0 61.5 0.0 79.0

70 90 76.2 92.3 88.5 0.0 3.6 0.0 69.1 61.1 0.2 79.1

60 90 74.1 92.1 88.2 0.0 7.8 0.0 74.2 61.8 0.3 79.0

50 90 70.5 91.5 88.2 0.0 8.0 0.0 79.9 63.6 0.0 78.7

40 90 64.4 90.4 87.6 0.0 11.8 0.0 88.4 67.3 0.0 78.0

# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR TH indicates the level of "reliability" assigned to the near-infrared (NIR) and the 
thermal (TH) sources. (C) indicates weighting according to classification accuracy; (J) 
according to JM-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm
2 - Corn
3 - Soybeans
4 - Hay
5 - Oats
6 -Woods
7 - Wheat
8 ? Pasture
9 - Sudex
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compared to the overall accuracy of the classification of the near-infrared 

source. When the reliability factors are assigned we get the Overall accuracy 

as high as 79.4% This increase in overall accuracy is caused by an increase 

in the accuracy of source is discounted while the classification accuracy of 

corn and soybeans does not decrease by much. The reliability factors in 

Table 4.3 and Table 4.7 all give an overall accuracy of 78.9%. These 

reliability factors apparently do not discount the thermal source enough.

Table 4.7

Reliability Factors Determined from Overall Classification Accuracy for 
Classification of the Near-Infrared and Thermal Sources in Experiment 1

Source Classification Accuracy Reliability Factor

Near-Infrared 78.7% 0.9000

Thermal 49.2% 0.5626

Looking at the results in Table 4.6 there are still other things which are 

interesting. For example when we decrease the reliability of the near- 

infrared source in which the information classes are much more separable 

than in the thermal source, the overall accuracy goes up to the high pf 

79.1%. The accuracy of the large classes corn and soybeans goes down just 

a bit. This is interesting because the clustering of the thermal source does 

not isolate corn. Therefore we can conclude that soybeans are so well
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discriminated by the near-infrared source that we can reduce the reliability
. i ■

factor to as little as 0.4 without affecting the accuracy of the classification 

by much. We can generalize this by saying that if information classes are 

Well discriminated by a source, their classification accuracy will be relatively 

independent of the value of the reliability factor specified for the source. 

The reliability factor can then be specified to maximize the classification 

accuracy of other information classes.

It is also interesting to note in Table 4.6 that the classification accuracy 

of sudex increases significantly as we decrease the value of the reliability 

factor of the thermal source. This is interesting because sudex is not 

isolated by the clustering in either source. The experimentail results indicate 

though that the near-infrared source gives some support to this information 

class.

Since we did not get much improvement in the classification accuracy in 

this experiment by using our reliability measures, we wanted to do another 

experiment differently on the same data set. In this experiment some 

information classes were not isolated by the clustering and a high overall 

classification accuracy was not accomplished. These results indicated that 

the signatures used were not representative and we consequently questioned 

the training of the data sources. We therefore chose to train the data 

sources differently. Since a supervised approach is likely to overcome the 

shortcomings described above, a supervised approach was defined to train 

the data sources.
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4.3 Experiment 2: Supervised Analysis

In this experiment we trained each source using a supervised approach. 

For each source, data classes were picked by selecting regions with distinctly 

different color on a color monitor. The training samples were classified, a 

confusion matrix and the JM - distance were calculated and "non-separable" 

training samples were merged as shown in Fig. 4.1. This procedure identified 

22 data classes in the visible source, 24 classes in the near-infrared source 

but only 5 in the thermal source. A few of the information classes were not 

isolated by this training approach because they were not separable from the 

other information classes. This was especially the case for the smaller 

information classes (woods, oats and hay). Apart from the training the 

experiment was conducted in the same manner as Experiment 1. The 

reliability factors calculated from classification accuracies are shown in 

Tables 4.8 and 4.11. The experimental results are shown in Tables 4.9 and 

4.10.

Table 4.8 /

Reliability Factors! Determined from Overall Classification Accuracy for 
Classification of the Near-Infrared and Visible Sources in Experiment 2

Source Classification Accuracy Reliability Factor

Near-Infrared 79.3% 0.9000

Visible 76.7% 0.8705
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■ Are the
training samples separable

STOP

classes

Olassify training samples, 
calculate confusion matrix 
and separability measures

Training samples are selected 
from information classes.

If an information class has 
regions with different colors, 

samples are
selected from each color.

Figure 4.1 The Supervised Training Procedure
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In Table 4.9 we see the classification results for the combination of the 

near-infrared source and the visible source. In the near-infrared source 6 

information classes are isolated and the overall classification accuracy for 

this source is 79.3%. The classification of most of these classes is more 

accurate in the near-infrared source than in the visible source but 2 more 

information classes are isolated in the visible source and the overall 

classification accuracy for the visible source is 76.7%.

When the sources are combined the overall accuracy goes up to 87.7%, 

which is a significant increase. The accuracy in all classes but three goes up 

compared to the classification accuracy in the individual sources. We get, 

for instance, over 90% classification accuracy for the three largest classes; 

soybeans, corn and non-farm. The increase in classification accuracy for 

non-farm is 29.9% compared to the classification accuracy of the near- 

infrared source and 43.0% compared to the classification accuracy of the 

visible source. We do not get higher accuracy after combination for oats in 

the visible source and wheat and pasture in the thermal source. However, in 

all those cases the classification accuracy is increased by the combination as 

compared to the classification accuracy of the other source.

When reliability factors are assigned we get a further increase in overall 

accuracy. Using the reliability factors in Table 4.2 and Table 4.8 we get the 

highest overall accuracy which is 88.1% Varying the reliability factors has 

fpr most of the information classes the expected effect that when we 

discount the visible source the classification accuracy goes up for the classes 

which have higher accuracy in the near-infrared source. In particular we see 

that the classification accuracies of pasture and wheat increase compared to
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Table 4.9

Results of Experiment 2:
Classification of the Near-Infrared and Visible Sources 

and Their Composite with Various Values of "Reliability"

Percent Agreement with Reference for Class
NIR VS 1 2 3 4 5 6 7 8 9 GA

near-infrared 61.6 86.4 87.2 0.0 0.0 0.0 79.5 97.6 69.4 79.3
visible 48.5 81.8 86.6 6.2 74.5 0.0 48.2 81.7 76.2 76.7

100 100 91.5 91.8 92.5 17.2 38.5 5.4 75.5 93.7 84.3 87.7
90 90 91.5 91.2 91.9 28.4 43.8 19.3 77.5 95.8 84.6 87.8

90 87.1 (C) 91.9 91.0 91.9 28.7 44.0 38.4 78.3 97.6 84.6 88.1
90 82.4 (J) 92.0 91.0 91.6 29.2 43.3 43.2 78.3 99.5 84.7 88.1
90 82.2 (T) 92.1 91.0 91.6 29.2 43.5 43.2 78.8 99.5 84.7 88.1
90 81 92.3 91.0 91.5 29.3 43.0 43.5 79.4 99.7 84.8 88.1
90 80 92.4 91.0 91.5 29.5 42.8 43.8 79.5 99.7 84.8 88.1
90 78 92.7 91.0 91.4 29.8 43.0 43.8 79.7 99.7 84.8 88.1
90 70 92.2 90.3 90.7 31.1 42.5 43.5 80.3 99.7 84.6 87.5
90 60 91.4 88.9 89.5 32.1 41.1 46.7 79.3 99.7 84.5 86.5
90 50 90.4 87.5 88.1 33.4 40.7 47.0 78.1 99.7 84.5 85.3

80 90 90.6 90.5 91.2 36.6 50.4 48.2 77.0 97.1 84.6 87.8
70 90 87.0 89.6 90.2 44.4 55.8 53.6 72.8 96.9 84.2 86.9
60 90 82.9 88.2 88.9 49.3 61.5 56.5 68.0 95.8 83.3 85.5
50 90 79.6 86.7 87.6 54.3 63.3 59.2 63.2 95.0 82.2 84.0

# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR VS indicates the level of "reliability" assigned to the near-infrared (NIR) and the 
visible (VS) sources. (C) indicates the according to classification accuracy; (J) according to 
JM-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm
2 - Corn
3 - Soybeans
4 - Hay
5 - Gats
6 - Woods 
7- Wheat
8 rv Pasture
9 t Sudex
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the accuracy in classification of either source. This is also true for oats, i.e., 

when we discount the near-infrared source the classification accuracy of oats 

goes up.

It is also interesting to note that although woods is isolated by neither 

source in single source classification, its classification accuracy is much 

better than chance when the sources are combined and the accuracy 

increases when either of the two sources is discounted. This is especially true 

■when the near-infrared source is discounted; as shown in Table 4.9, the 

classification accuracy of woods increases to over 55%. Another interesting 

observation is that the classification accuracy of hay goes up when we 

discount the visible source even though this class is isolated in the visible 

source but not in the near-infrared source. This shows that the near- 

infrared source gives some support to this class although it is not isolated in 

the source. This also demonstrates the strength of discrimination of hay by 

the visible source. Furthermore, the classification accuracy of hay increases 

still more when the near-infrared source is discounted. These two examples 

of changes in classification accuracy for hay and woods suggest the 

possibility of defining class-specific reliability factors to optimize 

classification of specific ground cover types. Similar effects are seen when we 

combine the near-infrared source and the thermal source, which we discuss 

below.

In Table 4.10 we have combined the near-infrared source and the 

thermal source. The thermal source has lower accuracy in classification for 

most of the information classes and two fewer classes are isolated than for 

the near-infrared source. The overall classification accuracy (67.7%) is
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Table 4.10
Results of Experiment 2:

Classification of the Near-Infrared and Thermal Sources 
and Their Composite with Various Values of "Reliability"

Percent Agreement with Reference for Class
NIRTH 1 2 3 4 5 6 7 8 9 OA
near-infrared 61.6 86.4 87.2 0.0 0.0 0.0 79.5 97.6 69.4 79.3
thermal 76.5 79.3 73.6 0.0 0.0 0.0 71.5 0.0 0.0 67.7
100 100 71.8 90.2 92.7 8.4 34.5 0.0 77.3 95.6 76.1 84.8
90 90 71.6 89.7 92.4 16.7 35.7 0.0 78.2 95.8 77.6 84.9
90 80 72.0 89.7 92.4 17.5 36.0 0.3 78.5 95.8 78.2 84.9
90 76.8 (C) 73.8 89.7 92.3 17.7 36.0 0.4 80.0 95.8 78.3 85.1
90 70 75.5 89.6 92.0 18.0 36.2 0.6 81.4 95.8 78.5 85.2
90 62.0 (J) 76.2 89.6 91.9 18.7 36.2 0.9 79.9 96.1 78.8 85.2
90 60 76.5 89.4 91.7 19.0 36.2 1.2 79.8 96.1 78.8 85.1
90 57 77.9 89.1 91.0 19.3 36.4 1.2 78.7 96,1 79.8 84.8
90 54.8 (T) 78.3 88.9 90.6 19.3 36.6 1.2 78.1 96.1 80.5 84.6
90 50 78.9 88.3 88.8 19.7 37.3 0.9 78.1 96.1 80.8 83.8
90 43 79.9 86.8 85.1 20.2 38.5 0.9 78.1 96.3 81.2 81.8
80 90 71.5 89.5 89.8 18.2 37.4 0.0 74.0 95.8 78.3 83.6
70 90 68.5 89.1 88.4 19.3 38.0 0.0 73.8 95.6 78.6 82.6
60 90 67.5 88.5 86.6 20.0 38.3 0.0 73.6 95.6 80.7 81.7
50 90 64.0 87.4 85.1 20.2 38.3 0.0 74.0 87.7 80.8 80.3
# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR TH indicates the level of "reliability” assigned to the near-infrared (NIR) and the 
thermal (TH) sources. (C) indicates weighting according to classification accuracy; (J) 
according to JM-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm
2 - Corn
3 - Soybeans
4 - Hay
5 - Oats
6 - Woods
7 - Wheat
8 - Pasture
9 * Sudiex
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much higher using the supervised approach than in the classification of the 

thermal source in experiment 1 (49.2%) because corn was not isolated by the 

clustering there. The reliability factors calculated from the overall 

classification accuracies of the near-infrared and thermal sources are shown 

in Table 4.11.

Table 4.11

Reliability Factors Determined from Overall Classification Accuracy for 
Classification of the Near-Infrared and Thermal Sources in Experiment 2

Source Classification Accuracy Reliability Factor

Near-Infrared 79.3% 0.9000

Thermal 67.7% 0.7683

When the sources are combined the overall accuracy goes up 

substantially. As in Table 4.9 there is an increase in accuracy for most of 

the information classes. When reliability factors are included in the global 

membership function the overall accuracy goes up to as much as 85.2%. 

Using the reliability factors from Table 4.3 we get this maximum with the 

reliability factors calculated from the JM - distance. The reliability factors 

calculated from the transformed divergence give only 84.8% overall 

accuracy, still quite close to the maximum. The reliability factors in Table

4.11 give 85.1% overall accuracy. The trend in classification accuracy in
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Table 4.10 is similar to the trend in Table 4.9, i.e., when we discount the 

"more reliable" source the overall accuracy goes down and when we discount 

the "less reliable" source to a certain point the overall accuracy goes up.

The most significant increase in accuracy is for hay and oats which are 

not isolated by either source but, after the combination and changes in 

reliability factors, the accuracy in the classification of these classes increases 

to over 20% and 38%, respectively.

4.4 General Observations

Combination of data from various data sources using statistical 

iimltisource analysis provides in most of our experiments a significant 

increase in overall classification accuracy as compared to single-source 

analysis. Combining the near-infrared source and the visible source gives, for 

instance, 88.1% overall classification accuracy in experiment 2 when certain 

reliability factors are assigned to the sources. There were two 

approximations made in our experiments which could have introduced some 

error. First, we ignored dependence between data sources in the global 

membership function. The advantages of this approach are that it reduces 

the computational complexity of the classification procedure and provides 

the opportunity to update the classification based on additional sources 

without starting all over again. Secondly, we made the approximation that 

the distribution of the data in a data class is the same regardless of 

information class. This approximation is unlikely to hold exactly for the 

unsupervised case but it, too, reduces the complexity of the computations 

and memory requirements.
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The results of the classification in experiment 2 are better than in 

experiment 1, consistent with the superiority of the supervised training over 

unsupervised training. Although there is not a large increase in overall 

accuracy achieved by assigning reliability factors in either experiment, the 

different levels of reliability often give a substantial increase in classification 

accuracy of individual classes, even for classes which are not isolated in the 

classification based on any of the individual sources. In our view, this 

justifies in part the use of reliability factors in equation (3.2) for the purpose 

of weighting the influence of the various sources.

Using separability analysis to estimate the reliability of a source seems 

to be a reasonable choice, especially when the assumption can be made that 

the information classes have normal distributions. In experiment 2 we had 

some success assigning reliability factors using the separability measures to 

achieve the highest overall accuracy. In experiment 1 we did not get the 

highest overall accuracy by applying this approach but that may be due to 

the STATCL algorithm and the possibility it did not provide representative 

statistics. But this also illustrates a shortcoming in this approach: we have 

to assume a particular distribution for the information classes in order to be 

able to calculate the separability. In these experiments we believe the 

Gaussian model was reasonable, but when handling different kinds of data 

the Gaussian assumption may be unsuitable for some of the sources.

On the other hand, using classification accuracy to measure the 

reliability of a source is a straightforward approach which is 

computationally inexpensive and overcomes some of the shortcomings of the 

separability approach. The reliability factors calculated from the
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classification accuracy depend on the training of the data sources in contrast 

to the separability approach applied in this report. This might be an 

advantage of the classification approach, because if a source is badly trained 

it is likely to have lower reliability. In our experiments the results using the 

reliability factors calculated from the classification accuracy were very 

similar to the ones using the separability measures.

The main problem is how to associate reliability factors with the 

reliability measures. In this research we have assigned the highest reliability 

factor to the "most reliable" source, assumed a linear relationship between 

the reliability of the different sources and scaled them relative to the 

maximum value. This linearization is almost certainly a simplification of 

reality and consequently introduces errors in the reliability factor 

calculations in some cases. In the next chapter we will discuss this problem 

in conjunction with other ways of estimating the reliability of sources.
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CHAPTER 6 

CONCLUSIONS AND

SUGGESTIONS FOR FUTURE RESEARCH

5.1 Discussion

The objective of this research is to investigate methods of statistical 

multisource analysis. The proposed method has several advantages as a 

general approach in multisource classification, viz., it handles various 

sources of data independently, has the potential to treat non-numierical as 

well as numerical data and, with certain approximations, provides a Way to 

update the classification based on new data sources without having to 

calculate everything all over again. We have investigated ways to estimate 

the reliability of individual sources and to include reliability in the global 

membership function of the statistical multisource analysis. The 

experimental results show that assigning reliability factors to the sources can 

either improve or degrade the overall classification accuracy. In our 

experiments, assigning reliability factors did not increase the overall 

accuracy very much. It was clear, however, that different levels of reliability 

can affect individual classes significantly, and we demonstrated the 

possibility of assigning reliability factors to optimize accuracy of individual
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classes. This was especially interesting when, for instance, an information 

class Was isolated by neither individual source. In that case it was possible 

to achieve a significant accuracy for this class by varying the reliability 

factors;

The problem of determining optimal reliability factors can be split into 

two parts. First we have to use some measure to assess the reliability of a 

source, and then we have to associate this measure with the reliability 

factors. In this report, two methods were proposed to determine reliability 

factors. One used the weighted average separability of the information 

classes for a source as its measure of reliability; the other used the overall 

classification accuracy for a source. Two separability measures were 

considered to explore the separability approach, the transformed divergence 

and the JM - distance. The separability measures and the classification 

accuracies were associated with the reliability factors by assigning the 

highest reliability factor to the source with the "highest reliability" and then 

scaling the measured reliability of the other sources according to this value 

by using equation (3.17). Applying the calculated reliability factors in the 

statistical multisource analysis gave the highest overall accuracy in 

experiment 2 (the reliability factors calculated from the JM - distance) but 

the results were not as good in experiment 1. The change in overall 

accuracy using the reliability factors was so small that it was hard to draw 

firm conclusions from the results. It is clear, however, that the linearity 

relation in equation (3.17) has some limitations. We know, for instance, that 

the separability functions are not linear and we have some difficulty in 

justifying this linearity relation for the classification accuracy.
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Using the separability estimates to measure reliability has the 

disadvantage that we have to assume some probability distribution for the 

information classes. Although normal distributions can be assumed for 

spectral classes of corn and soybeans, we would not be able to assume such 

a probability distribution for elevation data. It may not in all cases be 

possible to calculate the separability measures even though they can be 

expressed in a nice closed form when normal distribution is assumed. Thus 

separability measures will not be suitable to estimate reliability factors in all 

cases..’:

Using the classification accuracy to measure reliability does not require 

any knowledge of the probability distribution of a source. This approach is 

Computationally relatively inexpensive because each data source needs to be 

classified individually anyway in the statistical multisource analysis. We 

discuss below another method which could be investigated for reliability 

factor estimation. This method also does not assume anything about the 

probability distribution of information or data classes.

5.2 Directions for Further Research

One way to characterize reliability of a source would be to examine the 

correspondence between the information classes and the data classes, i.e., 

the conditional probabilities that we observe a specific information class 

given a data class. All these conditional probabilities can be computed by 

comparing the reference map to a classified map from a data source.

Assuming we have r information classes {xj,...^} and s data classes 

{yi,...,yj we can write all the conditional probabilities as the s x r
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correspondence matrix R, where R is:
pfota) p(x2 bi) pfoM
pfaitai) pfota) .

• • •

! p(xrh)

• ■ • •
• * •

p(*i ta) pfok) • • p(xrk)_

(5.1)

We can now define reliability in the following way: If a source is optimal in 

reliability there would be a specific information class corresponding to each 

data class. Therefore ideally one conditional probability in each row of R 

would be 1 and all the others would be zero. If a source were very 

unreliable, there would be no correspondence between the data classes and 

the information classes; in the worst case all the numbers in the matrix 

would be the same.

Now we would like to associate a number with the matrix R to 

characterize the reliability. Using information theoretic measures [25] we 

could think of the information classes as a transmitted signal and the data 

classes as a received signal which must be used to estimate the transmitted 

signal. Using this approach we can state that there is an uncertainty of 

log[l/p(xj |yj)] about the information class Xj when we observe data class yj in 

a data source.

We can calculate the average loss of information when we observe the 

data class yj, which is given by [26,27]:

H(xjyj) = £p(xi bj)loS p(x^|y.) (5-2)

Now we want to average the information loss over all observed data classes



yj. This is called the equivocation of x with respect to y and is denoted by 

H(x|y):

H(x|y) = SPtyjM^lyj)

= ^Pfrj)l>(x,b;!ilogp(s|-ly-l

•p>(xi..v;)iloKp(x^j! (5-3>

H(x|y) represents the average uncertainty about an information class over 

all the data classes. Evidently, H(x|y) is the average loss of information per 

data class and therefore seems to be a reasonable term to associate with the 

reliability of a source. Since H(x|y) measures uncertainty, the higher value 

it has the more unreliable a source is. If we estimate this quantity for all 

the data sources, we could give the source with the lowest H(x|y) the highest 

reliability factor and then determine the reliability factors for the other 

sources accordingly.

To calculate H(x|y) is relatively inexpensive because all the probabilities 

needed can be computed easily from the reference map and the classified 

maps from the individual sources. This reliability measure also has the 

advantage that we do not need to know anything about the probability 

distributions of the information classes in any source. The only problem at 

this point is how to associate reliability factors with the uncertainty, a 

problem common to all the reliability measures discussed so far.

The global membership function which we are trying to optimize is a 

complex non-linear function. To include reliability factors in that function
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is by no means easy, but several different approaches have been discussed to 

quantify the reliability. To associate the reliability factors with these 

measures is a complicated problem. We would prefer a linear relationship 

between the reliability measures and the reliability factors or at least have 

the relationship as a closed expression. In this research we used separability 

measures and classification accuracy to estimate the reliability and 

approximated the relation between these measures and the reliability factors 

by a linear function. It is hard to justify this approximation. Consequently 

this problem should be investigated further.
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