12 research outputs found

    Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury

    No full text
    Oligodendrocyte-myelin glycoprotein (OMgp) is a myelin component that has been shown in vitro to inhibit neurite outgrowth by binding to the Nogo-66 receptor (NgR1)/Lingo-1/Taj (TROY)/p75 receptor complex to activate the RhoA pathway. To investigate the effects of OMgp on axon regeneration in vivo, OMgp-/- mice on a mixed 129/Sv/C57BL/6 (129BL6) or a C57BL/6 (BL6) genetic background were tested in two spinal cord injury (SCI) models - a severe complete transection or a milder dorsal hemisection. OMgp-/- mice on the mixed 129BL6 genetic background showed greater functional improvement compared to OMgp+/+ littermates, with increased numbers of cholera toxin B-labeled ascending sensory axons and 5-HT+ descending axons and less RhoA activation after spinal cord injury. Myelin isolated from OMgp-/- mice (129BL6) was significantly less inhibitory to neurite outgrowth than wild-type (wt) myelin in vitro. However, OMgp-/- mice on a BL/6 genetic background showed neither statistically significant functional recovery nor axonal sprouting following dorsal hemisection

    RNA Interference-Mediated Silencing of the Respiratory Syncytial Virus Nucleocapsid Defines a Potent Antiviral Strategy▿

    No full text
    We describe the design and characterization of a potent human respiratory syncytial virus (RSV) nucleocapsid gene-specific small interfering RNA (siRNA), ALN-RSV01. In in vitro RSV plaque assays, ALN-RSV01 showed a 50% inhibitory concentration of 0.7 nM. Sequence analysis of primary isolates of RSV showed that the siRNA target site was absolutely conserved in 89/95 isolates, and ALN-RSV01 demonstrated activity against all isolates, including those with single-mismatch mutations. In vivo, intranasal dosing of ALN-RSV01 in a BALB/c mouse model resulted in potent antiviral efficacy, with 2.5- to 3.0-log-unit reductions in RSV lung concentrations being achieved when ALN-RSV01 was administered prophylactically or therapeutically in both single-dose and multidose regimens. The specificity of ALN-RSV01 was demonstrated in vivo by using mismatch controls; and the absence of an immune stimulatory mechanism was demonstrated by showing that nonspecific siRNAs that induce alpha interferon and tumor necrosis factor alpha lack antiviral efficacy, while a chemically modified form of ALN-RSV01 lacking measurable immunostimulatory capacity retained full activity in vivo. Furthermore, an RNA interference mechanism of action was demonstrated by the capture of the site-specific cleavage product of the RSV mRNA via rapid amplification of cDNA ends both in vitro and in vivo. These studies lay a solid foundation for the further investigation of ALN-RSV01 as a novel therapeutic antiviral agent for clinical use by humans

    RNAi-mediated rheostat for dynamic control of AAV-delivered transgenes

    No full text
    Here the authors propose an RNA interference-based switch for dynamic control of AAV transgene expression. In this approach, transgene expression may be silenced by RNAi and subsequently recovered using REVERSIR oligonucleotides

    Drug Delivery–mediated Control of RNA Immunostimulation

    No full text
    RNA interference (RNAi) has generated significant interest as a strategy to suppress viral infection, but in some cases antiviral activity of unmodified short-interfering RNA (siRNA) has been attributed to activation of innate immune responses. We hypothesized that immunostimulation by unmodified siRNA could mediate both RNAi as well as innate immune stimulation depending on the mode of drug delivery. We investigated the potential of immunostimulatory RNAs (isRNAs) to suppress influenza A virus in vivo in the mouse lung. Lipidoid 98N12-5(1) formulated with unmodified siRNA targeting the influenza nucleoprotein gene exhibited antiviral activity. Formulations were optimized to increase antiviral activity, but the antiviral activity of lipidoid-delivered siRNA did not depend on sequence homology to the influenza genome as siRNA directed against unrelated targets also suppressed influenza replication in vivo. This activity was primarily attributed to enhancement of innate immune stimulation by lipidoid-mediated delivery, which indicates increased toll-like receptor (TLR) activation by siRNA. Certain chemical modifications to the siRNA backbone, which block TLR7/8 activation but retain in vitro RNAi activity, prevented siRNA-mediated antiviral activity despite enhanced lipidoid-mediated delivery. Here, we demonstrate that innate immune activation caused by unmodified siRNA can have therapeutically relevant effects, and that these non-RNAi effects can be controlled through chemical modifications and drug delivery
    corecore