43 research outputs found

    The main ways to solve the problems of document management in higher education (the Ukrainian case)

    Get PDF
    The purpose of the research is to analyze the problem of document management in the sphere of higher education and to determine potential ways to solve them using the example of the Ukrainian experience. The content analysis of modern pedagogical literature showed the problems of the documentary support. On the basis of the system method, document management is considered as a dynamic system that changes according to modern conditions. Based on the prognostic method, possible prospects for the development of the latest documentation systems are highlighted. In results it is shown, that the modern documentary system completely deviates from the old principles of the formation of the administrative apparatus in several directions. Framework recommendations have been formed for determining the development vectors of document and communication support, and they can be extended to similar systems of formation, support, and storage of documents of the management (administrative) staff. The conclusions established that the current system of organizing documentary support in the educational sphere of Ukraine actually contains archaisms. It is proposed to integrate Blockchain-technologies into the implemented educational SEMDs, which will potentially ensure inter-level communication channels of the participants in the document creation process of higher education of Ukraine

    Розвиток критичного мислення учнів початкових класів на уроках математики

    Get PDF
    The article deals with the development of technology for the development of critical thinking in the process of teaching mathematics in primary school.У статті розглядається питання розроблення технології розвитку критичного мислення в процесі викладання математики в початковій школі

    Simulation of high-speed interaction between impactor and layered-spaced design involving explosive

    Get PDF
    In this paper we present calculating and experimental study of high-speed interaction between explosive content, protected by layered-spaced design, and the cermet impactor in wide speed range. An experimental technique and mathematical model of during the behavior of explosives, protected by layer-spaced design, by with high-speed impact. The process of the interaction between the cermet impactor and element of the protective design is customized and depends on the materials of the interacting bodies, the speed and angle of impact

    Calculation and experimental study on high-speed impact of heat-resistant coating materials with a meteoric particle

    Get PDF
    The given article presents the conducted calculation and experimental study on destruction of heat-resistant coating material of an aircraft in the process of high-speed interaction of the steel spherical projectile. The projectile is imitating a meteoric particle. The study was conducted in the wide range of velocities. The mathematical behavioral model of heat-resistant coating under high-speed impact was developed. The interaction of ameteoric particle with an element of the protective structure has especially individual character and depends on impact velocity and angle, materials of the interacting solids

    Experimental and theoretical research of the interaction between high-strength supercavitation impactors and monolithic barriers in water

    Get PDF
    The article describes experimental and theoretical research of the interaction between supercavitating impactors and underwater aluminum alloy and steel barriers. Strong alloys are used for making impactors. An experimental research technique based on a high-velocity hydro-ballistic complex was developed. Mathematical simulation of the collision the impactor and barrier is based on the continuum mechanics inclusive of the deformation and destruction of interacting bodies. Calculated and experimental data on the ultimate penetration thickness of barriers made of aluminum alloy D16T and steel for the developed supercavitating impactor are obtained

    Special features of high-speed interaction of supercavitating solids in water

    Get PDF
    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded

    Intrusion features of a high-speed striker of a porous tungsten-based alloy with a strengthening filler in a steel barrier

    Get PDF
    The complex problem of increasing the penetrating power of strikers based on highly porous tungsten composites is considered by improving their strengthening properties by alloying the hardening components under high-speed collision conditions. Using the method of liquid-phase sintering, we fabricated samples of strikers based on a porous WNiFeCo alloy (tungsten + nickel + iron + cobalt), alloyed with tungsten carbide with cobalt (WCCo8) and titanium-tungsten carbide (TiWC). Dynamic tests of the strikers from the developed alloys were carried out at the collision velocity with a steel barrier of the order of 2800 m/s. The penetration depth of the striker based on a porous WNiFeCo alloy doped with tungsten carbides is 30% higher than the penetration depth of a striker of a monolithic WNiFe-90 alloy (tungsten + nickel + iron with a tungsten content of 90%)

    High-speed impact of the metal projectile on the barrier containing porous corundum-based ceramics with chemically active filler

    Get PDF
    The paper presents a calculation-experimental study on high-speed interaction of the metal projectile with a combined barrier made of porous corundum-based ceramics filled with chemically active composition (sulfur, nitrate of potash) in the wide range of speeds. A mathematical behavior model of porous corundum-based ceramics with chemically active filler is developed within the scope of mechanics of continuous media taking into account the energy embedding from a possible chemical reaction between a projectile metal and filler at high-speed impact. Essential embedding of inlet heat is not observed in the considered range of impact speeds (2.5 … 8 km/s)
    corecore