445 research outputs found

    Information-Derived Mechanistic Hypotheses for Structural Cardiotoxicity

    Get PDF
    Adverse events resulting from drug therapy can be a cause of drug withdrawal, reduced and or restricted clinical use, as well as a major economic burden for society. To increase the safety of new drugs, there is a need to better understand the mechanisms causing the adverse events. One way to derive new mechanistic hypotheses is by linking data on drug adverse events with the drugs’ biological targets. In this study, we have used data mining techniques and mutual information statistical approaches to find associations between reported adverse events collected from the FDA Adverse Event Reporting System and assay outcomes from ToxCast, with the aim to generate mechanistic hypotheses related to structural cardiotoxicity (morphological damage to cardiomyocytes and/or loss of viability). Our workflow identified 22 adverse event-assay outcome associations. From these associations, 10 implicated targets could be substantiated with evidence from previous studies reported in the literature. For two of the identified targets, we also describe a more detailed mechanism, forming putative adverse outcome pathways associated with structural cardiotoxicity. Our study also highlights the difficulties deriving these type of associations from the very limited amount of data available

    Selective Breeding for a Behavioral Trait Changes Digit Ratio

    Get PDF
    The ratio of the length of the second digit (index finger) divided by the fourth digit (ring finger) tends to be lower in men than in women. This 2D∶4D digit ratio is often used as a proxy for prenatal androgen exposure in studies of human health and behavior. For example, 2D∶4D ratio is lower (i.e. more “masculinized”) in both men and women of greater physical fitness and/or sporting ability. Lab mice have also shown variation in 2D∶4D as a function of uterine environment, and mouse digit ratios seem also to correlate with behavioral traits, including daily activity levels. Selective breeding for increased rates of voluntary exercise (wheel running) in four lines of mice has caused correlated increases in aerobic exercise capacity, circulating corticosterone level, and predatory aggression. Here, we show that this selection regime has also increased 2D∶4D. This apparent “feminization” in mice is opposite to the relationship seen between 2D∶4D and physical fitness in human beings. The present results are difficult to reconcile with the notion that 2D∶4D is an effective proxy for prenatal androgen exposure; instead, it may more accurately reflect effects of glucocorticoids, or other factors that regulate any of many genes

    An atlas of mouse CD4(+) T cell transcriptomes.

    Get PDF
    BACKGROUND: CD4(+) T cells are key regulators of the adaptive immune system and can be divided into T helper (Th) cells and regulatory T (Treg) cells. During an immune response Th cells mature from a naive state into one of several effector subtypes that exhibit distinct functions. The transcriptional mechanisms that underlie the specific functional identity of CD4(+) T cells are not fully understood. RESULTS: To assist investigations into the transcriptional identity and regulatory processes of these cells we performed mRNA-sequencing on three murine T helper subtypes (Th1, Th2 and Th17) as well as on splenic Treg cells and induced Treg (iTreg) cells. Our integrated analysis of this dataset revealed the gene expression changes associated with these related but distinct cellular identities. Each cell subtype differentially expresses a wealth of 'subtype upregulated' genes, some of which are well known whilst others promise new insights into signalling processes and transcriptional regulation. We show that hundreds of genes are regulated purely by alternative splicing to extend our knowledge of the role of post-transcriptional regulation in cell differentiation. CONCLUSIONS: This CD4(+) transcriptome atlas provides a valuable resource for the study of CD4(+) T cell populations. To facilitate its use by others, we have made the data available in an easily accessible online resource at www.th-express.org

    Effects of the noradrenergic agonist clonidine on temporal and spatial attention

    Get PDF
    Rationale: Recent theories posit an important role for the noradrenergic system in attentional selection in the temporal domain. In contrast, the spatially diffuse topographical projections of the noradrenergic system are inconsistent with a direct role in spatial selection. Objectives: To test the hypotheses that pharmacological attenuation of central noradrenergic activity should (1) impair performance on the attentional blink task, a task requiring the selection of targets in a rapid serial visual stream of stimuli; and (2) leave intact the efficiency of the search for a target in a two-dimensional visuospatial stimulus array. Materials and methods: Thirty-two healthy adult human subjects performed an attentional blink task and a visual search task in a double-blind, placebo-controlled, between-subject study investigating the effects of the α2 adrenoceptor agonist clonidine (150 μg, oral dose). Results: No differential effects of clonidine vs placebo were found on the attentional blink performance. Clonidine slowed overall reaction times in the visual search task but did not impair the efficiency of the visual search. Conclusions: The attentional blink results are inconsistent with recent theories about the role of the noradrenergic system in temporal filtering and in mediating the attentional blink. This discrepancy between theory and data is discussed in detail. The visual search results, in combination with previous findings, suggest that the noradrenergic system is not directly involved in spatial attention processes but instead can modulate these processes in an indirect fashion. © 2007 Springer-Verlag

    Phenotypic Plasticity in Response to the Social Environment: Effects of Density and Sex Ratio on Mating Behaviour Following Ecotype Divergence

    Get PDF
    The ability to express phenotypically plastic responses to environmental cues might be adaptive in changing environments. We studied phenotypic plasticity in mating behaviour as a response to population density and adult sex ratio in a freshwater isopod (Asellus aquaticus). A. aquaticus has recently diverged into two distinct ecotypes, inhabiting different lake habitats (reed Phragmites australis and stonewort Chara tomentosa, respectively). In field surveys, we found that these habitats differ markedly in isopod population densities and adult sex ratios. These spatially and temporally demographic differences are likely to affect mating behaviour. We performed behavioural experiments using animals from both the ancestral ecotype (“reed” isopods) and from the novel ecotype (“stonewort” isopods) population. We found that neither ecotype adjusted their behaviour in response to population density. However, the reed ecotype had a higher intrinsic mating propensity across densities. In contrast to the effects of density, we found ecotype differences in plasticity in response to sex ratio. The stonewort ecotype show pronounced phenotypic plasticity in mating propensity to adult sex ratio, whereas the reed ecotype showed a more canalised behaviour with respect to this demographic factor. We suggest that the lower overall mating propensity and the phenotypic plasticity in response to sex ratio have evolved in the novel stonewort ecotype following invasion of the novel habitat. Plasticity in mating behaviour may in turn have effects on the direction and intensity of sexual selection in the stonewort habitat, which may fuel further ecotype divergence

    Postoperative peri-axillary seroma following axillary artery cannulation for surgical treatment of acute type A aortic dissection

    Get PDF
    The arterial cannulation site for optimal tissue perfusion and cerebral protection during cardiopulmonary bypass (CPB) for surgical treatment of acute type A aortic dissection remains controversial. Right axillary artery cannulation confers significant advantages, because it provides antegrade arterial perfusion during cardiopulmonary bypass, and allows continuous antegrade cerebral perfusion during hypothermic circulatory arrest, thereby minimizing global cerebral ischemia. However, right axillary artery cannulation has been associated with serious complications, including problems with systemic perfusion during cardiopulmonary bypass, problems with postoperative patency of the artery due to stenosis, thrombosis or dissection, and brachial plexus injury. We herein present the case of a 36-year-old Caucasian man with known Marfan syndrome and acute type A aortic dissection, who had direct right axillary artery cannulation for surgery of the ascending aorta. Postoperatively, the patient developed an axillary perigraft seroma. As this complication has, not, to our knowledge, been reported before in cardiothoracic surgery, we describe this unusual complication and discuss conservative and surgical treatment options

    Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed

    Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Get PDF
    Differentiation of naïve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36
    corecore