39 research outputs found

    Modelling the two-way coupling of tidal sand waves and benthic organisms:a linear stability approach

    Get PDF
    We use a linear stability approach to develop a process-based morphodynamic model including a two-way coupling between tidal sand wave dynamics and benthic organisms. With this model we are able to study both the effect of benthic organisms on the hydro- and sediment dynamics, and the effect of spatial and temporal environmental variations on the distribution of these organisms. Specifically, we include two coupling processes: the effect of the biomass of the organisms on the bottom slip parameter, and the effect of shear stress variations on the biological carrying capacity. We discuss the differences and similarities between the methodology used in this work and that from ‘traditional’ (morphodynamics only) stability modelling studies. Here, we end up with a 2×2 linear eigenvalue problem, which leads to two distinct eigenmodes for each topographic wave number. These eigenmodes control the growth and migration properties of both sand waves and benthic organisms (biomass). Apart from hydrodynamic forcing, the biomass also grows autonomously, which results in a changing fastest growing mode (FGM, i.e. the preferred wavelength) over time. As a result, in contrast to ‘traditional’ stability modelling studies, the FGM for a certain model outcome does not necessarily have to be dominant in the field. Therefore, we also analysed the temporal evolution of an initial bed hump (without perturbing biomass) and of an initial biomass hump (without perturbing topography). It turns out that these local disturbances may trigger the combined growth of sand waves and spatially varying biomass patterns. Moreover, the results reveal that the autonomous benthic growth significantly influences the growth rate of sand waves. Finally, we show that biomass maxima tend to concentrate in the region around the trough and lee side slope of sand waves, which corresponds to observations in the field

    A parameterization of flow separation over subaqueous dunes

    Get PDF
    Flow separation plays a key role in the development of dunes, and modeling the complicated flow behavior inside the flow separation zone requires much computational effort. To make a first step toward modeling dune development at reasonable temporal and spatial scales, a parameterization of the shape of the flow separation zone over two-dimensional dunes is proposed herein, in order to avoid modeling the complex flow inside the flow separation zone. Flow separation behind dunes, with an angle-of-repose slip face, is characterized by a large circulating leeside eddy, where a separation streamline forms the upper boundary of the recirculating eddy. Experimental data of turbulent flow over two-dimensional subaqueous bed forms are used to parameterize this separation streamline. The bed forms have various heights and height to length ratios, and a wide range of flow conditions is analyzed. This paper shows that the shape of the flow separation zone can be approximated by a third-order polynomial as a function of the distance away from the flow separation point. The coefficients of the polynomial can be estimated, independent of flow conditions, on the basis of bed form shape at the flow separation point and a constant angle of the separation streamline at the flow reattachment point. \ud \u

    Twenty-first-century projections of shoreline change along inlet-interrupted coastlines

    Get PDF
    Sandy coastlines adjacent to tidal inlets are highly dynamic and widespread landforms, where large changes are expected due to climatic and anthropogenic influences. To adequately assess these important changes, both oceanic (e.g., sea-level rise) and terrestrial (e.g., fluvial sediment supply) processes that govern the local sediment budget must be considered. Here, we present novel projections of shoreline change adjacent to 41 tidal inlets around the world, using a probabilistic, reduced complexity, system-based model that considers catchment-estuary-coastal systems in a holistic way. Under the RCP 8.5 scenario, retreat dominates (90% of cases) over the twenty-first century, with projections exceeding 100 m of retreat in two-thirds of cases. However, the remaining systems are projected to accrete under the same scenario, reflecting fluvial influence. This diverse range of response compared to earlier methods implies that erosion hazards at inlet-interrupted coasts have been inadequately characterised to date. The methods used here need to be applied widely to support evidence-based coastal adaptation

    Impact of Solitary Involved Lymph Node on Outcome in Localized Cancer of the Esophagus and Esophagogastric Junction

    Get PDF
    Node-positive esophageal cancer is associated with a dismal prognosis. The impact of a solitary involved node, however, is unclear, and this study examined the implications of a solitary node compared with greater nodal involvement and node-negative disease. The clinical and pathologic details of 604 patients were entered prospectively into a database from1993 and 2005. Four pathologic groups were analyzed: node-negative, one lymph node positive, two or three lymph nodes positive, and greater than three lymph nodes positive. Three hundred and fifteen patients (52%) were node-positive and 289 were node-negative. The median survival was 26 months in the node-negative group. Patients (n = 84) who had one node positive had a median survival of 16 months (p = 0.03 vs node-negative). Eighty-four patients who had two or three nodes positive had a median survival of 11 months compared with a median survival of 8 months in the 146 patients who had greater than three nodes positive (p = 0.01). The survival of patients with one node positive [number of nodes (N) = 1] was also significantly greater than the survival of patients with 2–3 nodes positive (N = 2–3) (p = 0.049) and greater than three nodes positive (p < 0001). The presence of a solitary involved lymph node has a negative impact on survival compared with node-negative disease, but it is associated with significantly improved overall survival compared with all other nodal groups
    corecore