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Abstract
We use a linear stability approach to develop a process-based morphodynamic model 
including a two-way coupling between tidal sand wave dynamics and benthic organisms. 
With this model we are able to study both the effect of benthic organisms on the hydro- and 
sediment dynamics, and the effect of spatial and temporal environmental variations on the 
distribution of these organisms. Specifically, we include two coupling processes: the effect 
of the biomass of the organisms on the bottom slip parameter, and the effect of shear stress 
variations on the biological carrying capacity. We discuss the differences and similarities 
between the methodology used in this work and that from ‘traditional’ (morphodynamics 
only) stability modelling studies. Here, we end up with a 2 × 2 linear eigenvalue problem, 
which leads to two distinct eigenmodes for each topographic wave number. These eigen-
modes control the growth and migration properties of both sand waves and benthic organ-
isms (biomass). Apart from hydrodynamic forcing, the biomass also grows autonomously, 
which results in a changing fastest growing mode (FGM, i.e. the preferred wavelength) 
over time. As a result, in contrast to ‘traditional’ stability modelling studies, the FGM for a 
certain model outcome does not necessarily have to be dominant in the field. Therefore, we 
also analysed the temporal evolution of an initial bed hump (without perturbing biomass) 
and of an initial biomass hump (without perturbing topography). It turns out that these 
local disturbances may trigger the combined growth of sand waves and spatially varying 
biomass patterns. Moreover, the results reveal that the autonomous benthic growth signifi-
cantly influences the growth rate of sand waves. Finally, we show that biomass maxima 
tend to concentrate in the region around the trough and lee side slope of sand waves, which 
corresponds to observations in the field.
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1  Introduction

In large parts of tide-dominated sandy shelf seas, such as the North Sea, rhythmic bed 
patterns can be observed [53]. Amongst the various types of marine bed forms, tidal sand 
waves (Fig. 1a) are often the most relevant type to investigate from an engineering point 
of view, due to their dimensions and dynamic behaviour. Typical heights are on the order 
of several meters, with wavelengths of 100–1000 m. Migration rates can be up to 10 m per 
year [45], and they form on a time scale of decades [26]. Moreover, these shallow coastal 
seas form the habitat for numerous different benthic communities, within which large spa-
tial and temporal variations are observed. These variations are often related to geomorpho-
logical patterns of various dimensions [1, 42, 44, 46]. In particular, Damveld et  al.  [17] 
found that benthic organisms (benthos) occurred in much higher densities in sand wave 
troughs compared to the crests. Additionally, previous studies have shown that benthos in 
turn may significantly affect the local hydro- and sediment dynamics, and thereby the mor-
phological development [29, 55].

Knowledge of tidal sand waves is of practical interest, as they tend to endanger a broad 
range of applications for coastal shelf seas [26, 28, 32, 39]. For instance, migrating sand 
waves may form obstacles for shipping and infrastructure (e.g. oil and gas platforms, cables 
and wind farms). Also, due to an increased pressure on the coastal environment [54], as 
well as the increased awareness towards ecological sustainability, knowledge about the 
interaction of morphological processes with benthic species is gaining importance [2].

The presence of benthic species in coastal areas has been extensively studied [30, and 
references therein]. Although benthic species may influence the sediment dynamics in 
many ways, they are commonly classified in two functional groups, namely stabilisers and 
destabilisers [55]. For example, the sea urchin Echinocardium cordatum (see Fig. 1b) is 
able to stabilise the bed by reworking the top sediment layer [27]. In addition, benthic spe-
cies that protrude from the bed into the water column (e.g. the tube-building worm Lan-
ice conchilega [19, 37]) may affect water motion as well [22]. Nevertheless, this general 

-23

-22

-21

-20

-19

-18
(a) (b)

Fig. 1   a Sand wave field in the North Sea (data from Royal Dutch Navy), where the colours denote the bed 
level relative to the mean sea level (m). b Example of a biostabiliser: adult sea urchin (E. cordatum). Photo-
graph from first author
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classification makes it possible to capture the complex interactions among biology and 
hydro- and sediment dynamics in mathematical models [8, 34].

Various aspects regarding sand wave formation have been studied for over 2 decades 
using process-based morphodynamic models [4]. Many of these model studies involve a 
method called linear stability analysis [20], where the stability of a sandy seabed, subject 
to tidal motion, is analysed. For a symmetrical tide, while only incorporating bed load 
sediment transport, Hulscher [24] used this method to explain the formation of tidal sand 
waves. She showed that small bed perturbations distort the tidal flow in such a way that 
small tide-averaged vertical recirculation cells appear in the water column. The presence 
of these cells results in a near-bed flow from trough to crest, which in turn induces a net 
transport of sediments in the same direction. On the other hand, gravitational effects favour 
sediment transport in a down-slope direction. It is the competition between these two pro-
cesses that eventually leads to sand wave growth or decay. The typical result of this method 
is a set of modes with either a positive or a negative growth rate, where the mode with the 
largest positive growth rate is termed the fastest growing mode (FGM). The FGM is char-
acterised by a wavelength, an orientation and a growth and migration rate (the latter being 
zero in case of symmetrical forcing). Other studies have shown that the properties of the 
FGM are comparable to those of sand waves observed in the field [25, 52].

Other model studies have extended the approach of Hulscher [24] and identified addi-
tional processes affecting the initial growth of sand waves. For instance, migration due 
to wind [14, 31] and tidal asymmetry [5], suspended sediment transport and turbulence 
formulation [6, 7], varying grain sizes [49] and sand scarcity [36]. Moreover, it has been 
shown that the presence of benthic organisms can influence the initial growth of sand 
waves [10]. In addition, other researchers used non-linear models to investigate equilib-
rium sand wave shapes [33, 43, 47], storm effects [13], the role of turbulence [11] and 
suspended sediment [12].

Whereas the majority of the idealised model studies into morphological features only 
consider the morphological evolution of the bed, some studies included a coupling between 
bed topography and multiple grain size fractions in order to explain observed phase dif-
ferences between them [21, 41, 50, 51]. Moreover, for riverine environments a similar 
approach has been used, here focussing on the coupling between vegetation and morphody-
namics [3, 16]. In these latter studies, a coupled model has been successfully employed to 
explain bar formation patterns in rivers.

Although previous research has provided evidence of two-way interactions between 
benthos and coastal morphology, present modelling tools are lacking the ability to inves-
tigate these effects. In this paper we use a linear stability approach to develop a fully two-
way coupled model to study the feedbacks between sand waves and benthic organisms. In 
particular, we include the effects of benthos on the bottom roughness; and benthic habitat 
variations are represented through the biological carrying capacity. The main purpose of 
this work is to determine whether disturbances in the spatial distribution of benthic organ-
isms may trigger the development of phase-related bed patterns, and vice versa. To this 
end, we show that the outcome of the two-way coupled methodology is essentially differ-
ent from that of ‘traditional’ (uncoupled) stability methods. Moreover, we zoom in on the 
effect of the interaction among three different time scales (hydrodynamical, morphological 
and biological) within the coupled system.

This paper is organised as follows. The coupled biogeomorphological model is pre-
sented in Sect.  2. Next, the solution method, involving a scaling procedure and a linear 
stability analysis, is given in Sect. 3. In Sect. 4 the results are given, followed by the discus-
sion and conclusions, presented in Sects. 5 and 6, respectively.
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2 � Model formulation

2.1 � Geometry

We consider a tidal wave of angular frequency �∗ and horizontal velocity amplitude U∗ in a 
shallow sea of average depth H∗ , propagating over a sandy bottom with small undulations 
(see Fig. 2). Additionally, the bed is the habitat of various benthic organisms, described by 
the benthic biomass �∗

(x∗, t∗) . To represent the coupled biogeomorphological system, we 
define a Cartesian coordinate system (x∗, z∗) with the x∗ coordinate pointing horizontally 
and the z∗ coordinate pointing upward. The free surface level is denoted by z∗ = �∗(x∗, t∗) , 
with z∗ = 0 as the undisturbed water level. The sea bed is located at z∗ = −H∗

+ h∗(x∗, t∗) , 
with bottom topography h∗ . The spatial average of h∗ equals zero. Furthermore, u∗(x∗, z∗, t∗) 
and w∗

(x∗, z∗, t∗) denote the flow velocities in horizontal and vertical direction, respectively. 
Finally, the asterisk * denotes unscaled variables.

2.2 � Hydrodynamics

Flow and bottom development are described by the shallow water equations, flow and sedi-
ment continuity equations, supplemented with appropriate boundary conditions. Turbulence 
is represented by a constant vertical eddy viscosity with regard to time and space and a par-
tial slip condition at the bottom. Following the 2DV approach, we choose to ignore Coriolis 
forces, which have been shown to be negligible on the spatial scale of sand waves [24]. The 
model equations read

Here, u∗ and w∗ represent the fluid velocity in horizontal and vertical dimension, respec-
tively, g∗ the gravitational acceleration and A∗

v
 the vertical eddy viscosity. Following Camp-

mans et al. [14], we express the water level gradient term as a superposition of a (spatially 
uniform) tidal forcing F∗ and the water level gradient due to variations in topography only 
(g∗𝜕𝜁∗∕𝜕x∗).

The boundary conditions at the free surface and bottom read

(1)
�u∗

�x∗
+

�w∗

�z∗
= 0,

(2)𝜕u∗

𝜕t∗
+ u∗

𝜕u∗

𝜕x∗
+ w∗ 𝜕u

∗

𝜕z∗
= −F∗

− g∗
𝜕𝜁∗

𝜕x∗
+ A∗

v

𝜕2u∗

𝜕z∗2
.

(3)w∗
=

��∗

�t∗
+ u∗

��∗

�x∗
,

�u∗

�z∗
= 0 at z∗ = �∗,

Fig. 2   Side view of the bed and 
water column in the direction of 
the tidal current, illustrating the 
coordinate system, free surface 
level �∗ , average depth H∗ , bed 
topography h∗ and biomass 
density �∗ (symbolically denoted 
by the green dots)
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respectively. Here, �∗ is the bed shear stress, �∗ the water density, S∗ a slip parameter and 
fslip a dimensionless coupling coefficient which expresses the effect of biomass on the slip 
parameter, to be further specified in Sect. 2.6.

2.3 � Sediment transport

In this model we limit ourselves to bed load transport, since it is assumed to be the prevail-
ing transport in tide-dominated sandy seas where sand waves occur. The transport of bed 
load sediment is described by the following general equation:

Here, q∗ is the bed load transport, �∗ a bed load coefficient, �∗
c
 the critical bed shear stress 

according to Shields (depending on the sediment diameter d∗ ), �∗ a slope correction factor 
and ℋ(⋅) the Heaviside function, equating one for a positive argument and zero otherwise.

2.4 � Bottom evolution

The bed evolution is governed by the sediment continuity equation (Exner equation), which 
reads

with p = 0.4 the volume fraction of voids in the bed. This equation simply states that con-
verging (diverging) sediment transport will lead to a rising (falling) bed profile.

2.5 � Biomass evolution

Analogous to Bärenbold et al. [3], we describe benthic biomass by a combination of logis-
tic growth (see Fig. 3) and biological dispersal, according to

Here, �g∗ is the logistic growth parameter, �∗

eq
 the undisturbed (in case of a flat bed) car-

rying capacity and D∗ the biological dispersal parameter (note that this is a diffusion coef-
ficient from a mathematical perspective) which controls the spatial spreading of biomass. 
Furthermore, the actual carrying capacity is modelled as the undisturbed carrying capacity 
multiplied by a dimensionless coupling coefficient feq (see Sect. 2.6).

2.6 � Coupling coefficients

The two-way coupling between benthic biomass and sand wave morphology is represented 
through the coefficients influencing the slip parameter 

(
fslip

)
 and carrying capacity 

(
feq
)
 , 

(4)w∗
=

�h∗

�t∗
+ u∗

�h∗

�x∗
,

�∗

�∗
≡ A∗

v

�u∗

�z∗
= fslipS

∗u∗ at z∗ = −H∗
+ h∗,

(5)q∗ = �∗
(|�∗| − �∗

c

)3∕2

(
�∗

|�∗| − �∗
�h∗

�x∗

)
ℋ

(|�∗| − �∗
c

)
.

(6)(1 − p)
�h∗

�t∗
= −

�q∗

�x∗
,

(7)
��∗

�t∗
= �∗

g
�∗

(
feq�

∗

eq
− �∗

)
+ D∗

�2�∗

�x∗2
.
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which are specified in more detail below. In general, fslip represents the effect of benthic 
organisms on morphological processes, whereas the opposite holds for feq . 

fslip	� In this work we focus on species that protrude out of the bed (e.g. L. conchilega). 
They influence the water motion by increasing the bottom roughness through their 
tubes [22, 35] or created mounds [23]. As defined in Eq.  (4), bottom roughness is 
represented by the bottom slip parameter. To describe the behaviour of these species, 
we define fslip (see Fig. 4a) by an exponentially decreasing function of biomass 

 �with S∗
bio

 as the actual slip parameter, �slip = S∗
bio,max

∕S∗ as the ratio between the high-
est possible bottom slip parameter due to benthic biomass S∗

bio,max
 and the abiotic bot-

tom slip parameter S∗ , and �∗

slip
 as the rate of increase due to an increasing biomass 

density.

(8)fslip =
S∗
bio

S∗
=

(
1 − �slip

)
exp

(
−�∗

slip
�∗

)
+ �slip,

Fig. 3   Evolution of benthic biomass, described by a logistic growth profile (solid lines) and a carrying 
capacity (dashed lines). The black lines denote the flat bottom case, where the grey lines represent an arbi-
trary response to local variations in shear stress. The black dot indicates the inflection point of the black 
line, representing the transition point between increasing and reducing growth. Parameters values according 
to Table 1, and the initial biomass is �∗|

t∗=0 = 0.05�∗

eq

Fig. 4   Example relations for the 
coupling coefficients for a slip 
parameter as in Eq. (8) and b 
carrying capacity as in Eq. (9). 
Parameter values are as indicated 
as in Table 1

(a) (b)
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feq	� In order to represent the influence of morphological processes on the benthic bio-
mass, we let the carrying capacity be a function of the bottom shear stress. It is 
widely accepted that the bottom shear stress is a suitable predictor for the distribu-
tion of benthic organisms (e.g., de Jong et al. [18]). Therefore, the correction factor 
for the carrying capacity in Eq. (7) is written as 

	� where �∗

eq,bio
 is the actual carrying capacity, �∗

eq
 is the rate of change due to an increas-

ing density of biomass and �∗
ref

 is a reference value for the critical shear stress. Our 
choice for this linear function (see Fig. 4c) is justified by the fact that only the deriva-
tive of feq in �∗

ref
 matters in the linear stability analysis.

3 � Solution method

3.1 � Outline

First we will present a scaling procedure, after which we describe the forcing. Next, we 
introduce the linear stability analysis, in which the basic and perturbed state solutions are 
given. Finally, we describe the individual process contributions.

3.2 � Scaling procedure

In order to scale the model equations, we introduce the dimensionless coordinates (x, z, t) 
and quantities (u,w, h, � , �, q,�) according to

in which l∗
sw

 is the topographic length scale, which is in the order of the wavelength of sand 
waves. Furthermore, we use two different time coordinates t and tlong , such that two time 
scales are identified, i.e. the tidal time scale 1∕�∗ and a yet to be determined biogeomor-
phological time scale T∗

long
 . The biogeomorphological time scale is given by

which equals the shortest of the time scales T∗

m
 and T∗

b
 , associated with morphology and 

biomass, respectively.

(9)feq =
�∗

eq,bio

�∗

eq

=

(
�∗
ref

− |�∗|)�∗

eq
+ 1,

(10)

x∗ = l∗
sw
x, z∗ = H∗z

t∗ =
t

𝜎∗
= tlongT

∗

long

h∗ = H∗h, 𝜁∗ = U∗2

g∗
𝜁

u∗ = U∗u, w∗
=

U∗H∗

l∗
sw

w

𝜏∗ = 𝜌∗U∗H∗𝜎∗𝜏, q∗ = 𝛼∗
(𝜌∗U∗H∗𝜎∗

)
3∕2q

𝜙∗
= 𝜙∗

eq
𝜙

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

(11)T∗

long
= min

(
T∗

m
, T∗

b

)
,
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As a result of the chosen scaling, the non-dimensional version of the hydrodynamic 
model equations [Eqs. (1), (2)] are as follows:

where r = U∗
∕

(
l∗
sw
�∗

)
 is the Keulegan–Carpenter number, F = F∗

∕(U∗�∗
) is the non-

dimensional forcing term and Av = A∗

v
∕(H∗2�∗

) is the non-dimensional eddy viscosity 
term.

The scaled, non-dimensional counterparts of the boundary conditions at the free surface 
[Eq. (3)] read

where we have used that Fr2 ≪ 1 and Fr2∕r ≪ 1 , with the Froude number Fr = U∗
∕

√
g∗H∗ . 

Hence, the vertical velocity becomes zero at the top boundary and the free surface bound-
ary condition is evaluated at z = 0 , i.e. the rigid lid approximation. At the bottom bound-
ary, the scaled, non-dimensional version of the boundary conditions [Eq. (4)] are

Here, S = S∗∕(�∗H∗
) is the non-dimensional slip parameter and we assume the biogeomor-

phological time scale to be long, such that �h∕�t is negligible. The bed load transport equa-
tion [Eq. (5)] in scaled, non-dimensional form reads

where � = �∗H∗
∕l∗

sw
 is the scaled bed slope coefficient. The scaled, non-dimensional ver-

sion of the bed evolution equation [Eq. (6)] reads

Here we identify the non-dimensional parameter �m = T∗

long
∕T∗

m
 . Moreover, we have used 

that the tidal time scale is much smaller than the biogeomorphological time scale, so that 
only the tide-averaged bed load transport, denoted by ⟨⋅⟩tide , effectively contributes to the 
bed evolution. The resulting morphological time scale, using parameters from Table 1, is 
given by

Next, the biomass evolution equation [Eq.  (7)] is cast in scaled, non-dimensional form, 
leading to

(12)
�u

�x
+

�w

�z
= 0,

(13)�u

�t
+ ru

�u

�x
+ w

�u

�z
= −F − r

��

�x
+ Av

�2u

�z2
,

(14)w = 0,
�u

�z
= 0 at z = 0,

(15)w = u
�h

�x
, � ≡ Av

�u

�z
= fslipSu at z = −1 + h.

(16)q =

(|�| − �c
)3∕2

(
�

|�| − �
�h

�x

)
ℋ

(|�| − �c
)
,

(17)
�h

�tlong
= −�m

�⟨q⟩tide
�x

.

(18)T∗

m
=

(1 − p)H∗l∗
sw

�∗
(�∗U∗H∗�∗

)
3∕2

≈ 6 year.

(19)
��

�tlong
=

⟨
�b,g�

(
feq − �

)
+ �b,D

�2�

�x2

⟩

tide

,
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where we have introduced the non-dimensional parameters �b,g = T∗

long
∕T∗

b,g
 and 

�b,D = T∗

long
∕T∗

b,D
 . As a result, we identify two biological time scales, the biological-growth 

time scale T∗

b,g
 and the biological-dispersal time scale T∗

b,D

The actual biological time scale is defined as the shortest of the two, i.e.

Typical values for �∗

eq
 and �∗

g
 are on the order of 1 kg m−1 and 0.5 m kg−1 year−1 , respec-

tively (see Table 1), and so the biological(-growth) time scale becomes T∗

b,g
≈ 2 year. The 

resulting biological time scale is thus much larger than the hydrodynamic (tidal) time scale. 
Similar to morphodynamics, it is therefore appropriate to calculate the evolution of bio-
mass on a tide-averaged scale.

Finally, we repeat the coefficients which control the two-way coupling between sand 
waves and benthic organisms [Eqs.  (8), (9)], now expressed in terms of dimensionless 
quantities:

(20)T∗

b,g
=

1

�∗

g
�∗

eq

, T∗

b,D
=

1

D∗k∗2
.

(21)T∗

b
= min

(
T∗

b,g
, T∗

b,D

)
.

Table 1   Overview of the model parameters and their values used in this work

Parameter Symbol Values Unit

Tidal frequency (M2) �∗ 1.41 × 10−4 s−1

Tidal velocity amplitude (M2) U∗ 0.5 m s−1

Average depth H∗ 30 m
Gravitational acceleration g∗ 9.81 m s−2

Vertical eddy viscosity A∗

v
0.04 m2 s−1

Water density �∗ 1020 kg m−3

Slip parameter S∗ 0.01 m s−1

Bed load coefficient �∗ 1.56 × 10−5 m7∕2s2 kg−3∕2

Slope correction factor �∗ 1.5 –
Sediment diameter d∗ 350 μm
Logistic growth rate �∗

g
0.1, 0.5, 1 m kg−1 year−1

Undisturbed carrying capacity �∗

eq
1 kg m−1

Biological dispersal rate D∗ 100 m2 year−1

Highest possible slip parameter S∗
bio,max

2 ⋅ S∗ m s−1

Rate of increase (slip parameter) �∗

slip
0.5 m kg−1

Rate of change (carrying capacity) �∗

eq
0.5 m s2 kg−1

Topographic wave number k∗ 0–0.04 m−1

Residual current velocity (M0) U∗

M0
0.1–1 m s−1

Domain length D∗ 10,000 m
Initial height bed hump h∗

gaus
0.05 m

Half-width initial hump �∗ 50, 100 m
Initial height biomass hump �∗

gaus
0.03, 0.05 kg m−1
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with �eq = �∗

eq
�∗U∗H∗�∗ and �slip = �∗

slip
�∗

eq
 as the scaled coupling parameters.

3.3 � Forcing

In our model we recognise two different length scales: (1) the topographic length scale 
(l∗
sw

≈ 0.5 km) and (2) the length scale of the tidal wave (l∗
tw

≈ 400 km) . Since the tidal 
length scale is much larger than the topographic length scale, we consider the tidal wave to 
be spatially uniform. Hence, we describe the forcing in Eq. (13) by the following truncated 
temporal Fourier series:

Here, M is the number of tidal constituents, which in turn are represented by the com-
plex amplitudes of the Fourier components F̂m = F̂

−m . The actual forcing is hence real-
valued and chosen such that—in the case of a flat bed—a prescribed depth-averaged flow is 
attained. In the results shown in this paper, M = 8 and has been chosen based on numerical 
experiments, such that the contribution of harmonics ±(M + 1) to the solution are negli-
gible. This value is determined by the inclusion of the critical shear stress in the sediment 
transport formulation.

3.4 � Linear stability analysis

We will evaluate the coupled system using a linear stability approach, where we investigate 
the stability of a flat bed and a spatially uniform distribution of biomass, subject to tidal 
motion and biological growth. To this end, we analyse the response of the so called basic 
state to small-amplitude sinusoidal perturbations (perturbed state), where the initial state of 
the system is defined as

Here, h̃∗init and 𝜙̃∗init are the initial real-valued perturbation amplitudes for topography and 
biomass, respectively, � a possible phase shift between topography and biomass, and h∗

0
 and 

�∗

0
 are the initial bed profile and biomass distribution in the basic state, respectively. Since 

the basic state always represents a uniform flat bed—opposed to the biomass distribution 
which is uniform, but non-zero—we write h∗

0
= 0 . Moreover, it is required that 𝜙̃∗init < 𝜙∗

0
 

to ensure that �∗ does not become negative, which would physically not be valid.
In scaled, non-dimensional form, Eqs. (25) and (26) read

(22)fslip =
(
1 − �slip

)
exp

(
−�slip�

)
+ �slip,

(23)feq =
�
�ref − ⟨���⟩tide

�
�eq + 1,

(24)F(t) =

M∑
m=−M

F̂me
imt.

(25)h∗|t∗=0 = h∗
0
||t∗=0 + h̃∗init cos (k∗x∗),

(26)𝜙∗|t∗=0 = 𝜙∗

0
||t∗=0 + 𝜙̃∗init cos (k∗x∗ + 𝜃).

(27)h|tlong=0 = 𝜖h1
||tlong=0 = 𝜖h̃init

1
cos (kx),

(28)𝜙|tlong=0 = 𝜙0
||tlong=0 + 𝜖𝜙1

||tlong=0 = 𝜙0
||tlong=0 + 𝜖𝜙̃init

1
cos (kx + 𝜃),
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with k = l∗
sw
k∗ as the scaled, dimensionless wave number, �0 as the basic benthic biomass, 

h1 and �1 , and h̃init
1

= 𝜖m∕𝜖 and 𝜙̃init
1

= 𝜖b∕𝜖 , as the perturbed bed level and benthic biomass 
with their initial amplitudes, respectively. Furthermore, � is the largest of two small expan-
sion parameters �m and �b , defined as

Given that � is small, the unknowns of the coupled system � =

(
h,�, u,w, �, q, fslip, feq

)
 are 

expanded in a power series of the form

where �0 and �1 denote the basic and perturbed state, respectively. Furthermore, the per-
turbed unknown is written as a spatial Fourier mode

with a possible complex amplitude 𝜓̆1 and the complex conjugate c.c. . Here we further 
distinguish between contributions proportional to the complex amplitudes h̆1 and 𝜙̆1 , 
respectively.

3.5 � Basic state

The basic state describes the solution of the system obtained over a flat bed. For the sake 
of brevity, the solution to the basic flow problem is given in "Flow solution" of “Appen-
dix 1”. Furthermore, the basic bed load sediment transport solution is given in “Sediment 
transport" of “Appendix 1”, and the basic coupling coefficients are described in “Coupling 
coefficients" of “Appendix 1”.

Finally, in the basic state there are no spatial variations in sediment transport, hence 
the bed evolution equals zero and the flat bed remains flat. However, as can be seen in 
“Biomass evolution" of “Appendix 1”, the basic benthic biomass does increase (spatially 
uniform) due to autonomous logistic growth.

3.6 � Perturbed state

The solution to the perturbed flow problem, bed load sediment transport and coupling coef-
ficients at order �1 are described in “Appendix 2”, respectively. Finally, the evolution of the 
perturbed bed, as well as biomass, are given by

Given the dependencies due to the two-way coupling, we write (in terms of complex ampli-
tudes) Eqs. (32) and (33) in matrix form

(29)𝜖 = max
(
𝜖m, 𝜖b

)
≪ 1, 𝜖m =

h̃∗init

H∗
, 𝜖b =

𝜙̃∗init

𝜙∗

eq

.

(30)� = �0 + ��1 + �
(
�2
)
,

(31)𝜓1 =
1

2
𝜓̆1 exp (ikx) + c.c., 𝜓̆1 = 𝜓̆h

1
h̆1 + 𝜓̆

𝜙

1
𝜙̆1,

(32)
�h1
�tlong

= −�m
�⟨q1⟩tide

�x
,

(33)
��1

�tlong
=

⟨
�b,g

[
�1

(
1 − 2�0

)
+ feq,1�0

]
+ �b,D

�2�1

�x2

⟩

tide

.
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Here, �h
h1
, �

�

h1
, �h

�1
and �

�

�1
 denote the topographic and biological contributions to bed 

and biomass perturbations, respectively, based on the (second) definition in Eq. (31). These 
contributions will be further specified in Sect. 4.1.

4 � Results

First, we present and analyse the obtained linear eigenvalue problem and its properties, which 
consists of two distinct eigenmodes. Then we will describe a reference case, where no cou-
pling is present. The results of the coupled system follows after that, for both symmetrical 
and asymmetrical forcing. Finally, we show bed and biomass evolution in case of an initial 
hump of either topography (without perturbing biomass), or biomass (without perturbing 
topography).

An important note for the following results is that we differentiate between fixed and vari-
able values for the benthic basic state. As an evolving benthic basic state complicates the inter-
pretation of the results, in Sects. 4.1–4.4 we first describe the results for a fixed basic biomass. 
Second, in Sect. 4.5 we focus on the effect of the temporal evolution of the benthic basic state.

4.1 � Linear eigenvalue problem

From Eq. (34), the solution is obtained by looking for complex eigenvalues �  according to

to be further analysed in Sect. 4.2. Consequently, the system of equations is given by the 
following linear eigenvalue problem for the (complex) amplitudes of the sand wave profile 
h̆1 and benthic biomass 𝜙̆1:

Here we have further specified the contributions �h
h1
, �

�

h1
, �h

�1
and �

�

�1
 , as presented in 

Eq. (34). These specified contributions are given in “Appendix 3”.

4.2 � Solution properties

Assuming fixed �-values (due to a fixed benthic basic state), it turns out that the (complex) 
amplitudes of bed and biomass perturbations in Eq. (36) are given by

where C1,C2 are constants which are found through the initial perturbation amplitudes as 
defined in Eqs. (27) and (28). Furthermore, 𝜒1,𝜒2 and �1,�2 are the associated eigenvectors 

(34)
𝜕

𝜕tlong

[
h̆1
𝜙̆1

]
=

[
𝜔h
h1

𝜔
𝜙

h1

𝜔h
𝜙1

𝜔
𝜙

𝜙1

][
h̆1
𝜙̆1

]
.

(35)
𝜕

𝜕tlong

[
h̆1
𝜙̆1

]
= 𝛤

[
h̆1
𝜙̆1

]
,

(36)
[
𝜔flow,abiotic + 𝜔slope 𝜔flow,biotic

𝜔eq,abiotic 𝜔eq,biotic + 𝜔logistic + 𝜔dispersal

] [
h̆1
𝜙̆1

]
= 𝛤

[
h̆1
𝜙̆1

]
,

(37)
[
h̆1
𝜙̆1

]
= C1

[
𝜒h
1

𝜒
𝜙

1

]
exp

(
𝛤1tlong

)
+ C2

[
𝜒h
2

𝜒
𝜙

2

]
exp

(
𝛤2tlong

)
,
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and eigenvalues of the solution, respectively. From Eq. (37), it follows that the real part of 
�  controls the growth rate � of the perturbations in bottom topography and benthic bio-
mass, while the imaginary part is associated to the migration rate cmig , according to

The eigenmode with the largest growth rate will eventually dominate the linear dynamics 
(again given fixed � -values), similar to the FGM as used in uncoupled systems (e.g., Huls-
cher [24]).

In order to determine the relative contribution of each eigenmode to either morphology 
or biology, we define ��

j
 as the the complex amplitude ratio of the biomass perturbations 

�
�

j
 with respect to the bed perturbations �h

j
 and reads

It follows that the moduli ||��

j
|| describe the relative amplitude ratio of the biomass pertur-

bations with respect to the bed topography perturbations, and ||�h
j
|| its inverse. In the follow-

ing results, we use both definitions such that their ratio falls within the range 0 ⩽ ||�|| ⩽ 1.
Next, the phase difference between biomass and bed topography perturbations ��

j
 is 

given by

where the additional subscripts im and re denote the imaginary and real parts, respectively.
From now on, the model results for a mode (with the wave number k∗ ) are given in 

dimensional output, furthermore characterised by a wavelength L∗ , growth rate �∗ and 
migration rate c∗

mig
 according to

4.3 � Reference case: no coupling

In order to better interpret the outcome of this methodology, we first present a reference 
case with a fixed benthic basic state of �∗

0
= 0.25 kg m−1 (Fig. 5a) and �∗

0
= 0.75 kg m−1 

(Fig.  5b), corresponding to the increasing and reducing growth regions of the logistic 
growth profile (Fig. 3), respectively. Here the coupling coefficients feq and fslip are set to 1, 
such that �flow,biotic and �eq,abiotic turn out to be zero. The resulting evolution equations [see 
Eq. (36)] are thus characterised by a diagonal matrix, and hence, no coupling.

This is plotted in Fig. 5, where for the two resulting eigenvalues �1,�2 the growth rate 
is given as a function of the wave number. As can be seen from the corresponding eigen-
vectors 𝜒1,𝜒2 , the solid line corresponds to topography, while the dashed-dotted line cor-
responds to biomass. From now on—whenever applicable—we will therefore refer to these 
eigenmodes as the ‘morphological’ and ‘biological’ eigenmode, respectively. However, as 
we will see further on, this distinction is not always justified.

Interestingly, around k∗ = 0 m−1 we observe non-zero growth rates for the ‘biological’ 
eigenmode, unlike the ‘morphological’ eigenmode, which has a tendency towards zero 

(38)� = � − ikcmig.

(39)�
�

j
= 1∕�h

j
=

�
�

j

�h
j

(j = 1, 2).

(40)�
�

j
= −�h

j
= atan2

(
�

�

j,im
,�

�

j,re

)
(j = 1, 2),

(41)L∗ =
2�

k∗
, �∗ =

�

T∗

long

, c∗
mig

=

cmig

T∗

long
k∗

.
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growth. Indeed, we see in Eq. (77) that the logistic growth contribution does not depend on 
the wave number, such that there is no damping effect.

For larger values of the benthic basic state, the growth rate of the ‘biological’ eigen-
mode uniformly decreases, which again can be ascribed to the logistic growth contribution. 
Moreover, for the ‘biological’ eigenmode we see a tendency towards lower growth rates for 
larger wave numbers (smaller wavelengths) due to the biological dispersal effect.

4.4 � Interpretation of the two‑way coupled system

4.4.1 � Symmetrical forcing

To facilitate interpretation of the solution of the fully two-way coupled model, we first 
focus on a symmetrical forcing, with a (fixed) benthic basic state of �∗

0
= 0.75 kg m−1.

The result for this case is plotted in Fig. 6, where the (real-valued) eigenvalues and asso-
ciated eigenvectors, moduli and phase shifts are presented. Figure 6a shows the growth rate 
of the two eigenmodes. The FGM for this case is denoted by the black dots, which corre-
sponds to the highest growth rate of �1.

Also, in Fig. 6a the eigenvectors 𝜒1,𝜒2 associated to the FGM are shown, which cor-
respond to the result illustrated in Fig. 6b. Here, the solid lines, related to �1 , clearly show 
that this eigenvalue influences both bed topography as well as benthic biomass. Unlike 
the first eigenvector, 𝜒2 has only a minor influence on the topographic perturbations. This 
becomes more clear in Fig. 6c, where the moduli are given. Here, an amplitude ratio of 
value one indicates that the contribution of the eigenvector to the amplitude is equal for 
both topography as well as biomass, and that an amplitude ratio close to zero indicates 
that either bed or biomass is dominant. Based on these results �2 can thus be referred to 
as the eigenvalue of the ‘biological’ eigenmode, whereas �1 can be ascribed to the ‘mixed’ 
eigenmode.

Finally, Fig. 6d shows the phase shift between the amplitudes of topography and bio-
mass. Here we see that for both the dominant ‘mixed’ eigenmode and the ‘biological’ 

(a) (b)

Fig. 5   Reference case (no coupling, symmetrical forcing) for a benthic basic state of a �∗

0
= 0.25 kg m−1 

and b �∗

0
= 0.75 kg m−1 . The solid and dashed-dotted lines denote growth rates for the (real-valued) ‘mor-

phological’ and ‘biological’ eigenmodes, respectively. Both (real-valued) eigenvectors are given for the 
FGM (black dots), but are valid for all k∗
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eigenmode the crests are shifted 180◦ . Thus, the resulting perturbations turn out to grow in 
anti-phase.

Next, we will focus again on a symmetrical forcing, but now for �∗

0
= 0.25 kg m−1 . The 

corresponding model results are plotted in Fig. 7, where panel (b) now shows the imagi-
nary part of the eigenvalues, presented as the migration rate. Furthermore, the modulus �h

2
 

(Fig. 7c) shows that the relative topography amplitude is larger in this case, such that it is 
not justified any more to refer to this eigenmode as the ‘biological’ eigenmode.

A striking difference between this case and the previous one is that in Fig. 7 three dis-
tinct ranges for the wave number k∗ can be observed. 

𝛤1 < 𝛤2	� The first is for small wave numbers where �2 is dominant. Here it stands out that 
the 180◦ phase shift, which was present in Fig. 6d, is not visible any more. It 
turns out that for the range of modes where the eigenvalue of the ‘mixed’ eigen-
mode dominates the ‘biological’, no phase shift occurs. However, this behav-
iour can only be observed when the morphological amplitude of the ‘biological’ 
eigenmode is small compared to the amplitude of the biomass, i.e. when the 
modulus �h

2
 is close to zero.

𝛤1 > 𝛤2	� Second, in the part where �1 is dominant, both eigenmodes show a phase shift 
of 180◦ , similar to what was observed in Fig. 6d.

(a) (b)

(c) (d)

Fig. 6   Model outcome in case of a two-way coupling with a the eigenvalues and their associated, b eigen-
vectors (both real-valued), c moduli and d phase shifts. This case uses a symmetrical tidal forcing and a 
benthic basic state of �∗

0
= 0.75 kg m−1 , other parameters are as indicated in Table 1. The black dots in a 

denote both eigenvectors for the FGM. Note that in c the solid black and grey lines are each others inverse (
�

�

1
= 1∕�h

1

)
 , such that the modulus �1 does not exceed 1
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�1 = �2	� The third range we observe is where both eigenmodes show the exact same 
growth rates, while their imaginary parts are non-zero. The latter results in 
migration rates for this range of modes, which might seem counter-intuitive 
for a symmetrical forcing. Moreover, from the moduli we see that the ampli-
tude ratio for both eigenvalues is equal as well. It turns out that the eigenvectors 
for this situation (not shown here) are each other’s complex conjugate. Conse-
quently, it follows that in this particular region of wave numbers, the perturba-
tions can be interpreted as two identical travelling waves migrating in opposite 
direction, such that both topography and biomass behave like a standing wave. 
Furthermore, the phase difference between the two standing waves (bed and 
biomass) ranges between 0◦ and 180◦ . As pointed out in Sect. 4.3, these results 
only hold for a specific moment in time, since the benthic basic state is fixed. 
It is thus possible that this standing wave will not fully develop in the field, 
as this behaviour can only be observed in case of increasing biological growth 
(𝜙∗

0
< 0.5 kg m−1 , see Fig. 3). This type of behaviour is also observed in other 

morphodynamic stability studies, as will be further discussed in Sect. 5.

(a) (b)

(c) (d)

Fig. 7   Model result for a symmetrical forcing and a benthic basic state of �∗

0
= 0.25 kg m−1 with the a real 

and b imaginary parts of the eigenvalues and their associated c moduli and d phase shifts. The imaginary 
part of the eigenvalue is associated to the migration rate c∗

mig
 . Note the difference in y-axis in a compared to 

Fig. 6



Environmental Fluid Mechanics	

1 3

4.4.2 � Asymmetrical forcing

We will now focus on the effects of an asymmetrical forcing, specifically due to the 
presence of a residual current. In the results below, an M0 residual current of 0.01 m s−1 
has been superimposed upon the M2 tidal forcing. Compared to the symmetrical refer-
ence case (Fig. 5a) the growth rates of both sand waves and biomass are hardly influ-
enced by the residual current (not shown here). Furthermore, the ‘morphological’ 
eigenmode shows an increasing positive migration rate for an increasing wave number 
(whereas the ‘biological’ eigenmode shows no migration at all, also not shown here).

Figure  8 shows the results for the full two-way coupling and a benthic basic state 
of �∗

0
= 0.25 kg m−1 . Compared to the uncoupled result described above, the migration 

rates show an overall increase for the first eigenmode, while a small migration in oppo-
site direction can be observed for the second. In addition, we see that, compared to the 
reference case, for the first eigenmode the growth rate increases and the FGM shifts 
towards a shorter wavelength, in opposition to �2 , which is hardly influenced.

Moreover, we see that in the region where �1 is almost equal to �2 , both eigenmodes 
tend to show the same behaviour as in the symmetrical case (Fig. 7). However, due to 
the asymmetrical forcing, no pure standing wave can be observed. This is best visible in 
Fig. 8b, c, where for this region of modes the migration rates are not each others inverse 

(a) (b)

(c) (d)

Fig. 8   Results for the two-way coupled model, with an M0 residual current strength of 0.01 m s−1 and a ben-
thic basic state of �∗

0
= 0.25 kg m−1 , other parameters are as indicated as in Table 1. In a the real parts of 

the eigenvalues (with the black dot denoting the FGM) which correspond to the growth rate, in b the imagi-
nary parts which correspond to the migration rate, and their associated c moduli and d phase shifts
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and the moduli are not equal. It appears that for an increasing residual current strength 
(not shown here), this behaviour is becoming increasingly less apparent.

When looking at the phase shifts between the amplitudes of the eigenmodes (Fig. 8d), 
we see that in particular in the region where �1 is dominant, the phase shifts change com-
pared to symmetrical case (Fig. 7d). For the dominant (‘mixed’) eigenmode, it thus follows 
that the crests of the biomass perturbations are concentrated on the stoss side of the topog-
raphy perturbations. If we increase the residual current even further (not shown here) we 
observe that this eigenmode has a tendency towards a phase shift of around − 90◦.

4.5 � Hump evolution: initial value problem

As already pointed out, the autonomous evolution of the benthic basic state has been 
neglected in the previous results. However, we have seen that the resulting eigenmodes 
vary for different stages of the biomass evolution. In order to study this behaviour, here 
we will consider, after Roos and Hulscher [40], the evolution of an initial hump over time, 
while allowing for autonomous biomass growth. This hump can either be a topography 
or biomass perturbation, without perturbing the other. The initial state of the system is 
represented by a Gaussian hump centered around the middle of a domain with length D∗ , 
according to either one of the two following initial profiles for �∗ and h∗

Here, h∗
gaus

 and �∗

gaus
 are the height of the initial topography and biomass hump, respec-

tively and �∗ is the half-width of the initial hump. Furthermore, both the topography and 
biomass hump are written as truncated Fourier series in space, with h∗

n
 and �∗

n
 as their com-

plex amplitudes, respectively and k∗
min

=
2�

D∗
 as the smallest wave number which fits in the 

domain. In the cases presented below, N = 128 is found to be sufficient to obtain an accu-
rate representation.

In the following cases, we use a discrete time step of �t∗ = 0.1 year to determine the 
temporal evolution of the perturbations according to Eq. (37). To account for the evolving 
benthic basic state, on each time step we (i) update the eigenmodes �1,�2 (and associated 
eigenvectors), and (ii) update the eigenmode decomposition according to the definitions in 
Eqs. (42) and (43).

4.5.1 � Topography versus biomass hump

Figure 9 presents the time evolution of the seabed and biomass given an initial hump on a 
domain of D∗

= 10 km , where each line indicates a time step of 1 year. In (a, b) we see the 
results for an initial biomass hump with �∗

gaus
= 0.05 kg m−1 and �∗ = 100 m , without an 

initial bed perturbation. The lower panels (c, d) show the results in case of an initial topog-
raphy hump with h∗

gaus
= 0.05 m and �∗ = 100 m , without an initial biomass perturbation. 

(42)�∗
= �∗

0
& h∗ = h∗

gaus
exp

⎛⎜⎜⎝
−

�
x∗ −

D∗

2

�∗

�2⎞⎟⎟⎠
=

N�
n=0

h∗
n
exp

�
ink∗

min
x∗
�
,

(43)

h∗ = 0 & �∗
= �∗

0
+ �∗

gaus
exp

⎛⎜⎜⎝
−

�
x∗ −

D∗

2

�∗

�2⎞⎟⎟⎠
= �∗

0
+

N�
n=0

�∗

n
exp

�
ink∗

min
x∗
�
.



Environmental Fluid Mechanics	

1 3

It is clearly visible that a biomass disturbance triggers sand wave growth, and vice versa. 
Moreover, in case of an initial bed perturbation, we see an anti-phase between topography 
and biomass developing, which becomes more distinct over time. However, for an initial 
biomass perturbation, both profiles develop in phase. This corresponds with the ‘small’ 
wave number range in Fig. 7, where the ‘biological’ eigenmode is dominant. It turns out 
that this behaviour always occurs when the benthic basic state is below the inflection point 
(see Fig. 3), regardless of the dimensions of the initial biomass hump.

4.5.2 � Logistic growth rate

Up till now, we have presented our cases for a single value of the logistic benthic growth 
�∗

g
 . In Fig. 10 the effect of a varying �∗

g
 is shown in case of an initial biomass hump. For 

a large logistic growth rate (Fig. 10a, b), we see indeed that the benthic basic state devel-
ops more quickly than in the previous case (Fig. 9b). The transition from an in phase to 
an in anti-phase development after the inflection point has passed also clearly stands out. 
The opposite holds for a slow logistic growth (Fig. 10d), where the biomass hump hardly 
evolves over time. Moreover, we see that the growth rate of the topography is significantly 

Fig. 9   Temporal evolution of topography and biomass in case of a local disturbance, represented by a 
Gaussian hump [Eqs. (42), (43)]. The upper panels a, b show the result for an initial biomass hump with 
�∗

gaus
= 0.05 kg m−1 and �∗ = 100 m , and an initially flat bed. The lower panels c, d show the results for an 

initial topography hump with h∗
gaus

= 0.05 m and �∗ = 100 m , and an initially spatially uniform biomass (
�∗

0

|||t∗=0 = 0.1 kg m−1
)
 . The dashed dotted lines indicate the initial humps, and each shade of grey indi-

cates a time step of 1 year
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affected by a changing logistic growth. Also the preferred wavelength of the coupled sys-
tem is slightly affected (not shown here), albeit much less than the growth rate.

4.5.3 � Residual current

Here we show the topography and biomass evolution given an asymmetrical forcing. Simi-
lar as in Fig. 8, a residual current is superimposed upon the M2 tidal constituent (in the 
positive x∗-direction). Figure 11 presents the results for this case, where in panels (a, b) the 
temporal evolution of a biomass hump ( �∗

gaus
= 0.03 kg m−1 and �∗ = 50 m ) and a flat bed 

is shown. Due to the imposed residual current, patterns of migration now appear for both 
topography and biomass. Remarkably, we see that the biomass hump initially migrates 
in a negative x∗-direction. This becomes more clear from Fig. 11d, where the position of 
the biomass crests and troughs are tracked over time. The negative migration of this peak 
even increases near the inflection point 

(
�∗

0
= 0.5 kg m−1

)
 . Moreover, the developing bio-

mass trough shows a similar negative migration trend. The downstream crest, however, is 
migrating in the direction of the residual current. The different migration directions are 
also visible for the bed evolution, where in Fig. 11c its crest and trough development are 
tracked. It appears that for both bed and biomass evolution, this behaviour continues until a 
stable (positive) migration and phase difference is established.

Fig. 10   Similar to Fig.  9c, d, but now for different values of the logistic growth rate. In a, b the results 
for fast biomass growth 

(
�∗

g
= 1 m kg−1year−1

)
 , and in c, d the results for slow biomass growth (

�∗

g
= 0.1 m kg−1year−1

)
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Although not distinctly visible from Fig. 11, the preferred phase difference between bio-
mass and topography in this situation is slightly less than 180◦ . For an increasing residual 
current strength, this phase difference decreases even more. To illustrate this, we present in 
Fig. 12a the bed and biomass profile after 8 year in case of a residual current strength of 
U∗

M0
= 0.05 kg m−1 . It can be clearly seen that the biomass crests are now concentrated on 

the lee side of the developing sand waves. Additionally, in Fig. 12b the phase difference 
between biomass and topography 

(
��

)
 is plotted as a function of the residual current 

strength. It shows that for an increasing residual velocity, the phase shift gradually 
decreases and tends towards a value of 90◦.

5 � Discussion

5.1 � Comparison to ‘traditional’ stability analysis

In ‘traditional’ stability modelling studies (i.e. morphodynamics only, uncoupled), it is 
common to unravel the individual contributions to the growth and migrations rates (e.g., 
Campmans et al. [14]). Also for the two-way coupled model presented in this work, these 

Fig. 11   Evolution of topography and biomass in case of a superimposed residual current velocity of 
U

∗

M0
= 0.01 m s−1 in the positive x∗-direction. The results are given for an initial biomass hump (dashed-

dotted line) with �∗

gaus
= 0.03 kg m−1 and �∗ = 50 m , and a flat bed. Each shade of grey indicates a time 

step of 1 year . The lower panels c, d show the tracked crest and trough positions of the above topography 
and biomass evolution, respectively. The dashed lines indicate the troughs, whereas the solid lines indicate 
the crests
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contributions can be specified (as in “Appendix 3”). However, within the current methodol-
ogy the interpretation of these contributions is somewhat different, since the resulting sys-
tem of equations forms a 2 × 2 eigenvalue problem [Eq. (36)], leading to two distinct com-
plex growth rates. As a result, the growth (and migration) rate does not depend 
proportionally on its associated entries any more. For instance, a change of a certain indi-
vidual contribution related to bed perturbations 

(
�h
h1
, �

�

h1

)
 does not solely affect the associ-

ated topography growth rate—as is the case for ‘traditional’ stability analysis—but now 
also that of biomass. Consequently, to fully understand the magnitude of these contribu-
tions, the resulting eigenvectors of the eigenvalue problem have to be taken into account as 
well. These eigenvectors describe the relative contribution of the entries to the associated 
growth rates. We would like to stress that our approach still implies a linear problem, and 
thus can be analytically solved by means of linear algebra.

In a study into current-generated sorted bed forms, van Oyen et al. [50] found that the 
resulting eigenmodes could be assigned to either roughness or topography. In our model, 
we observe that the eigenmodes can be related to either biomass or topography, but only to 
a certain extent. It turns out that the classification of these eigenmodes is bound by a cer-
tain range of parameter settings. Particularly for smaller values of the benthic basic state, 
both eigenmodes have the tendency to influence both perturbations (here referred to as 
the ‘mixed’ eigenmode). However, using this classification still contributes to our general 
understanding of the system, such that we can effectively use this methodology for a sys-
tematic process analysis.

5.2 � Autonomous benthic growth and the role of the biological time scale

In contrast to ‘traditional’ stability analysis, the FGM for a given parameter setting does 
not have to be the eventual mode (wavelength) observed in the field. The role of the auton-
omous benthic growth here is crucial; as the resulting eigenmodes are only valid for a cer-
tain moment in time, the FGM (and its properties) may vary due to an evolving biomass. In 
particular, the largest effect of the autonomous benthic growth on the perturbations enters 
the system through the logistic growth contribution ( �logistic ). It appears that this contribu-
tion leads to positive growth rates for the ‘biological’ eigenmode if the benthic basic state 

(a) (b)

Fig. 12   In a the bed (black line) and biomass (grey line) profile after t∗ = 8 year for a residual current 
strength of U∗

M0
= 0.05 m s−1 . The two dots indicate the location of the biomass crest with respect to the 

topography profile. In b the phase difference of biomass w.r.t. topography 
(
��

)
 after t∗ = 8 year as a func-

tion of the residual current strength U∗

M0
 . Here, the dot refers to the case presented in a 
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is below the inflection point of the logistic growth profile (Fig. 3), while the opposite holds 
for values larger than the inflection point. Moreover, we can conclude from the moduli that 
if the benthic basic state is above the inflection point, the growth rate of the topography 
perturbation is almost solely determined by the ‘mixed’ eigenmode, whereas for values 
lower than the inflection point, both eigenmodes influence the topographical growth rate. 
On the other hand, the biomass growth is determined by both eigenmodes regardless the 
benthic basic state. Furthermore, the results showed that the growth rate of the ‘biologi-
cal’ mode is almost spatially uniform (equal for all k∗ ), whereas the ‘mixed’ mode shows a 
distinct FGM. As a consequence, the ‘mixed’ mode is mainly responsible for the eventually 
occurring wavelength in the field.

Although we gain much insight from the cases where �∗

0
 is fixed, one should continue 

to study the temporal behaviour of the system to fully understand the outcome. Imposing 
a hump (biomass or topography, without perturbing the other) shows us that only a small 
disturbance may trigger growth of rhythmic patterns of both sand waves and biomass. It 
appears that the biological time scale is an important factor for the initial evolution of the 
coupled system. If the biological time scale were much shorter than the morphological 
time scale, it would be justified to only look at the FGM for the situation of fully devel-
oped biomass (�∗

0
= 1 kg m−1

) . Conversely, if both time scales were of the same order, 
the FGM would constantly be subject to change. Important to note here is that a slow bio-
logical growth does not only affect the biomass evolution, but also the initial growth of the 
topographic perturbations. Although linear stability models are not able to describe finite-
amplitude behaviour of sand waves, non-linear models, used for this particular purpose, 
determine the FGM (preferred wavelength) to bypass the initial growth stage, and hence, 
speed up computational time [47]. If biological processes would be included in these non-
linear models, it should thus be noted that the FGM might vary over time.

From the results it follows that phase shifts of various magnitudes may occur between 
the crests of bed and biomass perturbations. In particular for the cases where the benthic 
basic state is fixed, rich behaviour is visible with regard to phase shifts. In the situation 
where a topography hump is imposed, an anti-phase develops between bed and biomass. 
Remarkably, when a biomass hump is imposed, this phase difference only starts to evolve 
after the autonomous biomass evolution has passed the inflection point of logistic growth. 
Moreover, for an increasing residual current strength, the phase difference decreases and 
the biomass crests are concentrated on the lee side of the sand waves 

(
�� = 90◦−180◦

)
 . 

This contrasts the result from Fig. 8, where an opposite (i.e. negative) phase shift is present 
for the dominant ‘mixed’ eigenmode. Indeed, from the crest and trough development in 
Fig. 11 it can be seen that before both perturbations have developed a steady phase differ-
ence, crests and troughs may show negative migration rates, resulting in phase shifts that 
significantly differ from the eventual phase difference. Again, this emphasizes the impor-
tance of taking into account the evolving basic state, rather than only looking at a fixed 
value for �∗

0
.

For a limited range of modes, and given that the benthic basic state is below the inflec-
tion point, we showed that standing waves for both sand waves and biomass can occur. In 
this case both eigenmodes are each others complex conjugate, each displaying migration in 
opposite direction. The temporal evolution of the superimposed bed and biomass patterns 
would thus be oscillatory, hence a standing wave. This type of behaviour is observed in 
other morphodynamic stability studies as well [38, 48]. The latter showed that for waves 
approaching the coast perpendicularly, surf zone patterns may behave as standing waves. 
Moreover, they showed that for oblique wave incidence this behaviour vanishes. These 
findings correspond to our results where complex conjugate eigenmodes only occur for 
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symmetrical tidal forcing. Considering that under field conditions a pure symmetrical tide 
does not occur—and taking into account the evolution of the benthic basic state—it is 
highly unlikely that this standing wave pattern will develop in nature.

5.3 � Comparison to field data

Our model shows that the biomass of benthic organisms and sand waves develop in anti-
phase (or close to), which is supported by observations in the field. Baptist et al. [1], and 
more recently, Damveld et al. [17] observed that organisms living on top of the seabed as 
well as within, occur much more frequently in sand waves troughs compared to the crests. 
Moreover, preliminary results from a recent field campaign show that various abiotic 
parameters, which are good predictors for the occurrence of benthic organisms, such as 
silt content and permeability, also show phase related patterns over sand waves [15]. This 
study showed that silt content, for example, is much higher in the sand wave troughs, but 
also on the lee slope, compared to the crests and stoss slope of the sand wave. Although 
other processes influence the habitat of benthic organisms as well, the observed patterns 
from this field study generally agree with the phase differences presented in this work.

To enable further comparison of our model results to field observations, the next step 
is to gather more information about local environmental and biological conditions. We 
are particularly interested in the biomass values over sand wave fields. In addition, data 
from different locations enables us to quantitatively relate these biological parameters to 
the wavelengths and growth and migration rates of the local bed forms. Furthermore, the 
parametrisations used in this model need to be fitted to more realistic parameter settings, 
although information on the effect of benthic organisms on the hydrodynamic and mor-
phological processes in subtidal areas is scarce. Nevertheless, Borsje et al. [9] already pro-
posed several biological parametrisations, which could serve as a starting point for future 
work. For instance, this two-way coupled model allows for the inclusion of a biologically 
influenced critical shear stress. Finally, in order to be flexible towards the available experi-
mental data, we would like to point out that our modelling approach is not restricted to the 
use biomass as an indicator for benthic organisms, but that other indicators can be used as 
well (e.g., abundance, biodiversity).

6 � Conclusions and outlook

In this paper we developed a fully two-way coupled model between sand waves and benthic 
organisms. With this model we are able to systematically investigate the processes that are 
leading to the formation of sand waves and the spatial and temporal distribution of benthos 
over these bed forms. Although the parametrisations used for the two-way coupling were 
not yet fitted to local environmental data, we showed that a local biomass disturbance leads 
to the growth of sand waves, and vice versa. Furthermore, we observed that phase shifts 
may occur between sand waves and biomass perturbations, similar to field observations. 
For a symmetrical forcing, we observed that they are in anti-phase. Furthermore, a residual 
current leads to a phase shift where the biomass maxima are concentrated on the lee slope 
of the sand waves.

This is the first study including the two-way coupling between sand waves and ben-
thic organisms in a process-based morphodynamic model. In doing so, we recognised that 
the methodology of this work differs from ‘traditional’ morphodynamic stability modelling 
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studies. Here, we ended up with a linear eigenvalue problem that eventually results in two 
distinct eigenmodes, instead of one eigenmode for the ‘traditional’ stability analysis. Moreo-
ver, the benthic basic state displays autonomous growth, such that the temporal evolution of 
the bed and biomass profile has to be taken into account to fully understand the results of 
this methodology. Also, the growth of this benthic basic state plays an important role in this 
study, as its stage relative to the inflection point of the logistic growth determines whether the 
eigenmodes can be related to either biology, morphology, or both. Also, if the benthic basic 
stage is below the inflection point an in-phase pattern may initially develop. This is especially 
relevant in case of slow biological growth, i.e. a long biological time scale. Finally, we have 
shown that the biological time scale significantly influences the morphological evolution. For 
slow biological growth, sand waves also tend to develop on a slower rate, in contrast to a fast 
biological growth.

A next step is to investigate these processes using parametrisations which are better fitted 
to experimental data. A sensitivity analysis into a realistic biological parameter range would 
then give insight in their influence on the model results. Using these insights, this model can 
eventually be used for predicting the formation properties of tidal sand waves combined with 
biological evolution in shallow sandy seas.
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Appendix 1: Basic state

Flow solution

In the case of a flat bed, no spatial variations are present, and the basic flow is characterised 
by the absence of vertical velocities near the bed. Thus, based on continuity, we conclude that 
w0 = 0 in the entire water column. The basic flow problem can then be written as

The boundary conditions at the free surface and at the bed read

Similar to the forcing [Eq. (24)], the horizontal basic flow can be described using a tempo-
ral Fourier series

(44)
�u0
�t

= −F + Av

�2u0

�z2
.

(45)
�u0
�z

= 0 at z = 0,

(46)Av

�u0
�z

= fslip,0Su0 at z = − 1.

http://creativecommons.org/licenses/by/4.0/
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with complex Fourier coefficients û0,m . This leads to the following differential equation for 
the basic state flow problem:

which can be solved for an expression for û0,m:

with � =

√
im

Av

 . Finally, the basic shear stress is given by

Sediment transport

In the basic state, the sediment flux for ||𝜏0|| > 𝜏c reads

Coupling coefficients

The basic coupling coefficients read

In Eq. (53) we have used that the evolution of biomass can be calculated on a tide-aver-
aged scale. Moreover, there is no spatial dependency in shear stress, hence we obtain 
�ref,0 =

⟨||�0||
⟩
tide

.

Biomass evolution

The basic biomass satisfies a logistic equation without a dispersal term, i.e.

(47)u0 =

M∑
m=−M

û0,me
imt,

(48)imû0,m = − F̂m + Av

d2û0,m

dz2
,

(49)û0,m =

F̂m

2Av

[
z2 − 1 +

2Av

fslip,0S

]
for m = 0,

(50)û0,m =

iF̂m

m

[
1 −

fslip,0S cosh (𝜉z)

Av𝜉 sinh (𝜉) + fslip,0S cosh (𝜉)

]
for m ≠ 0,

(51)�0 = Av

�u0
�z

at z = − 1,

(52)q0 =
(||�0|| − �c

)3∕2 �0
||�0||

.

(53)feq,0 = 1,

(54)fslip,0 =
(
1 − �slip

)
exp

(
−�slip�0

)
+ �slip.

(55)
��0

�tlong
= �b,g�0

(
1 − �0

)
.
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The solution to Eq. (55) is found to be

where �0,0 denotes the basic biomass at tlong = 0.

Appendix 2: Perturbed state

Flow solution

The perturbed flow problem is written as

with boundary conditions at the free surface

and at the bed

Using Eq. (31), the complex amplitudes 𝜓̆1 are described as a truncated Fourier series in 
time, and is given by

This leads to the following differential equation for the flow problem per temporal 
component:

The boundary conditions at the free surface read

(56)�0(tlong) =
1

exp
(
−�b,gtlong

)[(
�0,0

)
−1

− 1
]
+ 1

,

(57)
�u1
�x

+

�w1

�z
= 0,

(58)
�u1
�t

+ r

(
u0

�u1
�x

+ w1

�u0
�z

)
= −r

��1
�x

+ Av

�2u1

�z2
,

(59)w1 = 0,
�u1
�z

= 0 at z = 0,

(60)w1 = u0
�h1
�x

at z = −1,

(61)Av

(
�u1
�z

+ h1
�2u0

�z2

)
= fslip,0S

(
u1 + h1

�u0
�z

)
+ fslip,1Su0 atz = − 1.

(62)𝜓̆(t) =

M∑
m=−M

𝜓̂1,me
imt.

(63)iû1,m +

dŵ1,m

dz
= 0,

(64)imû1,m + r

M∑
n=−M

[
iû0,nû1,m−n + ŵ1,n

dû0,m−n

dz

]
= −ir𝜁1,m + Av

d2û1,m

dz2
.
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and the boundary conditions at the bed are given by

Similar to Campmans et  al. [14], we solve this system of ordinary differential equations 
using a shooting method in combination with the 4th order Runge–Kutta numerical inte-
gration. Finally, the perturbed bed shear stress reads

Sediment transport

The perturbed sediment transport equation for ||𝜏0|| > 𝜏c is given by

Coupling coefficients

The perturbed coupling coefficients read

Appendix 3: Individual contributions to the eigenvalue problem

The contributions �h
h1
, �

�

h1
, �h

�1
and �

�

�1
 [as presented in Eq.  (34), and further specified in 

Eq. (36)] are given below. The topographic contributions related to bottom evolution 
(
�h
h1

)
 are

where �flow,abiotic is the abiotic contribution due to the perturbed flow and �slope is the slope 
effect contribution. Furthermore, the biological contributions related to bottom evolution (
�
�

h1

)
 are

(65)ŵ1,m = 0,
dû1,m

dz
= 0 at z = 0,

(66)ŵ1,m = ih̆1û0,m at z = − 1,

(67)Av

(
dû1,m

dz
+ h̆1

d2û0,m

dz2

)
= f̆slip,0S

(
û1,m + h̆1

dû0,m

dz

)
+ f̆slip,1Sû0,m at z = − 1.

(68)�1 = Av

(
�u1
�z

+ h1
�2u0

�z2

)
at z = − 1.

(69)q1 = �

√
||�0|| − �c

(
�1 −

�0
||�0||

�c

)
− �

�h1
�x

(||�0|| − �c
)3∕2

.

(70)feq,1 = −

⟨
�eq

�1�0
||�0||

⟩

tide

,

(71)fslip,1 =
(
�slip − 1

)
�slip�1 exp

(
−�slip�0

)
.

(72)𝜔flow,abiotic = −ik𝜈m
3

2

⟨√||𝜏0|| − fcrit,0𝜏c𝜏̆
h
1

⟩

tide

,

(73)�slope = −k2�m�
⟨(||�0|| − fcrit,0�c

)3∕2
⟩
tide

,
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Here, �flow,biotic is the biotic contribution due to the perturbed flow. Next, the topographic 
contribution related to the evolution of biomass 

(
�h
�1

)
 is

with �eq,abiotic as the contribution related to the abiotic influenced carrying capacity. Finally, 
the biological contributions related to the evolution of biomass 

(
�
�

�1

)
 are

Here, �eq,biotic is the contribution related to the biotic influenced carrying capacity, �logistic 
is the contribution due to the perturbed logistic growth and �dispersal is the biological dis-
persal effect.
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