16,833 research outputs found

    Disease and psychological status in ankylosing spondylitis.

    Get PDF
    Objectives. Psychological factors may be important in the assessment and management of ankylosing spondylitis (AS). Our primary objective was to describe associations between disease and psychological status in AS, using AS-specific assessment tools and questionnaires. Our secondary objectives were to identify patient subgroups based on such associations and to determine the stability of the measures over time. Methods. A total of 110 patients were assessed at 6-monthly intervals up to four times using tools to measure disease [Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and the Bath Ankylosing Spondylitis Metrology Index (BASMI)], psychological [Hospital Anxiety and Depression Questionnaire (HADS), Health Locus of Control—Form C Questionnaire (HLC-C)] and generic health [Short form (SF)-36] status. Results. Eighty-nine participants completed all four assessments. Throughout the study, BASDAI, BASFI and BASMI scores correlated significantly with anxiety, depression, internality and health status, but not with levels of belief in chance or powerful others. Clinically anxious or depressed subgroups had significantly worse BASDAI and BASFI, but not BASMI, scores. BASMI scores were the least closely linked to psychological status. Mean scores for disease, psychological and health status were clinically stable over the 18 months period. Conclusions. Disease status scores in AS correlated significantly with anxiety, depression, internality and health status. Interpretation of AS disease scores should take an account of psychological status and the choice of measures used. These findings have important potential applications in AS management and monitoring, including the identification of patients for biological therapies

    Damping of Electron Density Structures and Implications for Interstellar Scintillation

    Full text link
    The forms of electron density structures in kinetic Alfven wave turbulence are studied in connection with scintillation. The focus is on small scales L1081010L \sim 10^8-10^{10} cm where the Kinetic Alfv\'en wave (KAW) regime is active in the interstellar medium. MHD turbulence converts to a KAW cascade, starting at 10 times the ion gyroradius and continuing to smaller scales. These scales are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying kinetic Alfv\'en wave turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest fluctuation levels in electron density may yield large scintillation events during pulsar signal propagation in the interstellar medium. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails

    Passive cooling technology for photovoltaic panels for domestic houses

    Get PDF
    The efficiency of photovoltaic panels decreases as the panels' temperature increases, which results in deduction of electricity generation. In order to reduce this effect, different cooling methods were proposed and investigated. This paper reviews the previous work on cooling PV cells and concludes that the cost-effectiveness, design feasibility and minimal energy consumption are the important design consideration for cooling systems. Based on these considerations, this paper reports a passive cooling method that utilizes rainwater as cooling media and a gas expansion device to distribute the rainwater. The gas is thermally expanded from receiving solar radiation as such the amount of water it pushes to flow over the PV cells is proportional with the solar radiation it received. The paper reports a design and simulation of such a system for a domestic house application. In the paper, a relationship of the gas chamber size, solar radiation and gas expansion volume was established for evaluation with respect to the variation of gas temperature and the amount of rainwater used for cooling. A heat transfer model was used to evaluate the performance of the cells by cooling with this passive device. The results show that on a design day, the passive cooling system reduces the temperature of the cells and increases electrical efficiency of the PV panel by 8.3%. The payback period of this system is <14 years

    Impact of modulation on CMB B-mode polarization experiments

    Full text link
    We investigate the impact of both slow and fast polarization modulation strategies on the science return of upcoming ground-based experiments aimed at measuring the B-mode polarization of the CMB. Using simulations of the Clover experiment, we compare the ability of modulated and un-modulated observations to recover the signature of gravitational waves in the polarized CMB sky in the presence of a number of anticipated systematic effects. The general expectations that fast modulation is helpful in mitigating low-frequency detector noise, and that the additional redundancy in the projection of the instrument's polarization sensitivity directions onto the sky when modulating reduces the impact of instrumental polarization, are borne out by our simulations. Neither low-frequency polarized atmospheric fluctuations nor systematic errors in the polarization sensitivity directions are mitigated by modulation. Additionally, we find no significant reduction in the effect of pointing errors by modulation. For a Clover-like experiment, pointing jitter should be negligible but any systematic mis-calibration of the polarization coordinate reference system results in significant E-B mixing on all angular scales and will require careful control. We also stress the importance of combining data from multiple detectors in order to remove the effects of common-mode systematics (such as 1/f atmospheric noise) on the measured polarization signal. Finally we compare the performance of our simulated experiment with the predicted performance from a Fisher analysis. We find good agreement between the Fisher predictions and the simulations except for the very largest scales where the power spectrum estimator we have used introduces additional variance to the B-mode signal recovered from our simulations.Comment: Replaced with version accepted by MNRAS. Analysis of half-wave plate systematic (differential transmittance) adde

    Thermoluminescence and optically stimulated luminescence of gamma-irradiated mineral zircon

    Get PDF
    Thermoluminescence (TL) manifested by gamma-irradiated mineral zircon has shown a strong TL peak at about 165 °C which is due to recombination of electrons and Dy3+ related shallow hole traps. After they have been removed by a short preheat we have observed two TL peaks at 300-320 °C and ≈420 °C, which are mainly due to recombination of electrons and Tb3+ related hole traps centres yielding its characteristic luminescence. The experimental results indicate that optically stimulated luminescence (OSL) is due to luminescent emission of Tb3+ ions and [SiO4]4– groups. The deep traps related to the 420 °C TL peak contribute to the Tb3+ related OSL. The deep traps related to the 300-320 °C TL peak contribute to OSL associated with the luminescent emission of [SiO4]4– groups.

    Dietary Intakes of Elite 14 - 19 Year Old English Academy Rugby Players During a Pre-Season Training Period.

    Get PDF
    Good nutrition is essential for the physical development of adolescent athletes, however data on dietary intakes of adolescent rugby players are lacking. This study quantified and evaluated dietary intake in 87 elite male English academy rugby league (RL) and rugby union (RU) players by age (under-16 (U16) and under-19 (U19) years old) and code (RL and RU). Relationships of intakes with body mass and composition (sum of 8 skinfolds) were also investigated. Using 4-day diet and physical activity diaries, dietary intake was compared to adolescent sports nutrition recommendations and the UK national food guide. Dietary intake did not differ by code, whereas U19s consumed greater energy (3366 ± 658 vs. 2995 ± 774 kcal.day-1), protein (207 ± 49 vs. 150 ± 53 g.day-1) and fluid (4221 ± 1323 vs. 3137 ± 1015 ml.day-1) than U16s. U19s consumed a better quality diet than U16s (greater intakes of fruit and vegetables; 4.4 ± 1.9 vs. 2.8 ± 1.5 servings.day-1; non-dairy proteins; 3.9 ± 1.1 vs. 2.9 ± 1.1 servings.day-1) and less fats and sugars (2.0 ± 1. vs. 93.6 ± 2.1 servings.day-1). Protein intake vs. body mass was moderate (r = 0.46, p < 0.001), and other relationships were weak. The findings of this study suggest adolescent rugby players consume adequate dietary intakes in relation to current guidelines for energy, macronutrient and fluid intake. Players should improve the quality of their diet by replacing intakes from the fats and sugars food group with healthier choices, while maintaining current energy, and macronutrient intakes

    From the streets of Wellington to the Ivy League

    Get PDF
    corecore