10 research outputs found

    Best practice guidelines for environmental DNA biomonitoring in Australia and New Zealand

    Get PDF
    Environmental DNA (eDNA)- based methods are increasingly used by government agencies to detect pests and threatened species, and for broader biodiversity monitor-ing. Given rapid technological advances and a growing number of commercial service providers, there is a need to standardize methods for quality assurance and to main-tain confidence in eDNA- based results. Here, we introduce two documents to pro-vide best- practice guidelines for Australian and New Zealand eDNA researchers and end- users (available from https://sedna socie ty.com/publications ): the Environmental DNA protocol development guide for biomonitoring provides minimum standard consid-erations for eDNA and environmental RNA projects across the complete workflow, from ethical considerations and experimental design to interpreting and communicat-ing results. The Environmental DNA test validation guidelines outline key steps to be used in assay development and validation for species-specific testing and metabar-coding. Both guidelines were developed as an initiative of the Australian Government Department of Agriculture, Fisheries and Forestry and led by the Southern eDNA Society in a collaborative process including multiple consultation rounds with eDNA experts, end-users, and stakeholders to adapt the guidelines to Australian and New Zealand needs. The aim of these guidelines is not to be prescriptive, but to set mini-mum standards to support a consistent and best- practice approach to eDNA testing. We anticipate that the guidelines will be reviewed and regularly updated as required. Our aspiration is that these best- practice guidelines will ensure environmental man-agers are provided with robust scientific evidence to support decision- making

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms.This work was supported as a Science Innovation Project by the Department of Agriculture, Water and the Environment’s Science Innovation Program funding 2021–22 (project team: A.J.M., L.J.C., D.M.B., C.K.K., J.S.S. and L.S.). Support was also provided (to J.D.S, E.L.J., S.A.R., J.S.S., M.I.S., J.M.S., N.G.W.) from Australian Research Council SRIEAS grant SR200100005. P.C. and K.A.H. are supported by NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team and Environment Office, respectively. L.R.P. and M.G. are supported by Biodiversa ASICS funding

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    SUPPLEMENTARY MATERIAL : FIGURE S1. Map of Antarctica and the Southern Ocean including year-round Australian stations. Sourced from the Australian Antarctic Data Centre (https://data.aad.gov.au/map-catalogue/map/14159) under a Creative Commons Attribution 4.0 Unported License. TABLE S1. Ranked list of marine species that represent the greatest perceived risk of arrival, establishment, and impact via the Australian Antarctic Program. TABLE S2. Ranked list of terrestrial invertebrate species that represent the greatest perceived risk of arrival, establishment, and impact via the Australian Antarctic Program. TABLE S3. Ranked list of terrestrial plant species that represent the greatest perceived risk of arrival, establishment, and impact via the Australian Antarctic Program. TABLE S4. Genetic resources currently available for priority species, including species-specific real-time PCR assays, and reference sequences for DNA barcoding genes or mitochondrial/chloroplast genomes.Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by- consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms.A Science Innovation Project by the Department of Agriculture, Water and the Environment’s Science Innovation Program; Australian Research Council; NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team and Environment Office; and Biodiversa ASICS funding.http://www.reabic.net/journals/mbi/Default.aspxhj2024Plant Production and Soil ScienceSDG-14:Life below wate

    Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree

    Get PDF
    Adaptation to new environments can start from new mutations or from standing variation already present in natural populations. Whether admixture constrains or facilitates adaptation from standing variation is largely unknown, especially in ecological keystone or foundation species. We examined patterns of neutral and adaptive population divergence in Populus tremula L.;a widespread forest tree, using mapped molecular genetic markers. We detected the genetic signature of postglacial admixture between a Western and an Eastern lineage of P. tremula in Scandinavia, an area suspected to represent a zone of postglacial contact for many species of animals and plants. Stringent divergence-based neutrality tests provided clear indications for locally varying selection at the European scale. Six of 12 polymorphisms under selection were located less than 1 kb away from the nearest gene predicted by the Populus trichocarpa genome sequence. Few of these loci exhibited a signature of 'selective sweeps' in diversity-based tests, which is to be expected if adaptation occurs primarily from standing variation. In Scandinavia, admixture explained genomic patterns of ancestry and the nature of clinal variation and strength of selection for bud set, a phenological trait of great adaptive significance in temperate trees, measured in a common garden trial. Our data provide a hitherto missing direct link between past range shifts because of climatic oscillations, and levels of standing variation currently available for selection and adaptation in a terrestrial foundation species. © 2010 Blackwell Publishing Ltd

    Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models

    No full text
    Titanium dioxide nanoparticles (TiO2 NPs) are widely incorporated in various consumer products such as cosmetics and food. Despite known human exposure, the potential risks of TiO2 NPs during pregnancy are not fully understood, but several studies in mice elucidated toxic effects on fetal development. It has also been shown that modifying NPs with positive or negative surface charge alters cellular uptake and abolishes fetotoxicity of silicon dioxide (SiO2) NPs in mice. Here, we investigated accumulation and translocation of positively charged TiO2-NH2 and negatively charged TiO2-COOH NPs at the placental barrier, to clarify whether surface charge provides a means to control TiO2 NP distribution at the placental barrier. To ensure outcome relevant for humans, the recently developed in vitro human placental co-culture model and the gold standard amongst placental translocation models – the ex vivo perfusion of human term placental tissue – were employed during this study. Sector field-ICP-MS analysis of maternal and fetal supernatants as well as placental cells/tissues revealed a substantial accumulation of both TiO2 NP types while no considerable placental translocation was apparent in both models. Characterization of agglomeration behavior demonstrated a strong and fast agglomeration of TiO2-NH2 and TiO2-COOH NPs in the different culture media. Overall, our results indicate that surface charge is not a key factor to steer placental uptake and transfer of TiO2. Moreover, the negligible placental transfer but high accumulation of TiO2 NPs in placental tissue suggests that potential effects on fetal health may occur indirectly, which calls for further studies elucidating the impact of TiO2 NPs on placental tissue functionality and signaling

    Applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms

    Quellen- und Literaturverzeichnis

    No full text
    corecore