1,537 research outputs found

    An ab initio and dynamics study of the photodissociation of nitric acid HNO3

    Full text link
    We investigated the photodissociation of HNO3 within the first (300 nm) and the third (200 nm) absorption band. The relevant S1 and S3 potential energy surfaces were calculated by taking into account the N-O single bond and N=O “double” bond distances. The striking feature of the dynamical analysis is a bifurcation of the wave packet on the S3 surface which explains the branching into the two reaction pathways with the products OH+NO2 and O+HONO found in experiments. Dissociation on the S1 surface is predicted to proceed along a single channel leading to OH+NO2, both in their electronic ground states. Corresponding author

    Fibronectin-Cleaving Activity in Bronchial Secretions of Patients with Cystic Fibrosis

    Get PDF
    In cystic fibrosis, colonization of the airways with Pseudomonas aeruginosa follows colonization with Staphylococcus aureus and is related to accelerated deterioration of pulmonary function. Because P. aeruginosa adheres better to cell surfaces devoid of fibronectin, we searched for fibronectin-cleaving activity in bronchial secretions and saliva from 24 patients with cystic fibrosis who were followed up for 4.5 y and from two control groups. Proteolytic activity against 125I-labeled fibronectin wascontinuously present in cystic fibrosis bronchial secretions; significantly higher fibronectin-cleaving activity was found in older vs. younger patients, in patients with advanced disease stages determined by a five-stage scoring system, and in those colonized with P. aeruginosa. The fibronectin-cleaving activity was due to neutrophil elastase and cathepsin G. Cystic fibrosis bronchial secretions had proteolytic activity against surface fibronectin of airway mucosal cells. Thus fibronectin-cleaving activity of bronchial secretions rather than of saliva may favor P. aeruginosa colonization of the upper respiratory tract in individuals with cystic fibrosi

    Cosmogenic rare gases and 10-Be in a cross section of Knyahinya

    Get PDF
    The concentrations of cosmogenic nuclides were studied as a function of shielding on samples from a cross section of the 293 kg main fragment of the L5 chondrite Knyahinya. The stone broke into two nearly symmetrical parts upon its fall in 1866. The planar cross section has diameters between 40 and 55 cm. He, Ne, and Ar were measured on about 20 samples by mass spectrometry and the 10-Be activities on aliquots of 10 selected samples were determined by AMS. The 10-Be data are presented and the abundances of spallogenic nuclides are compared with the model calculations reported by Reedy for spherical L chondrites. The 10-Be production rates in Knyahinya are shown versus the shielding parameter 22-Ne/21-Ne

    Levels of Free Granulocyte Elastase in Bronchial Secretions from Patients with Cystic Fibrosis: Effect of Antimicrobial Treatment Against Pseudomonas aeruginosa

    Get PDF
    Large amounts of free granulocyte elastase (GE), an enzyme capable of mediating airway damage, have been found in bronchial secretions of patients with cystic fibrosis who are infected with Pseudomonas aeruginosa. This finding indicates an imbalance between GE and its antiproteases, α1-proteinase inhibitor (α1-PI) and bronchial mucosal inhibitor (BMI), in the airways of these individuals. The effect of intravenous antimicrobial treatment against P. aeruginosa on activity and concentration of GE, BMI, and α1-PI was evaluated in 30 treatment courses of 20 patients with cystic fibrosis. Although sputum volume and level of immunoreactive GE decreased and concentrations of α1-PI and BMI increased significantly (P < .05), a high level of free GE persisted. No active α1-PI and BMI were detectable after treatment. High levels of GE correlated with a poor pulmonary condition (rs = .98, P < .001). In vitro, elastolytic activity of bronchial secretions from patients with cystic fibrosis was significantly inhibited by eglin C and an oxidation-resistant variant of α1-PI, both compounds currently produced by recombinant DNA technolog

    First-Principles Calculations of Hyperfine Interactions in La_2CuO_4

    Full text link
    We present the results of first-principles cluster calculations of the electronic structure of La_2CuO_4. Several clusters containing up to nine copper atoms embedded in a background potential were investigated. Spin-polarized calculations were performed both at the Hartree-Fock level and with density functional methods with generalized gradient corrections to the local density approximation. The distinct results for the electronic structure obtained with these two methods are discussed. The dependence of the electric-field gradients at the Cu and the O sites on the cluster size is studied and the results are compared to experiments. The magnetic hyperfine coupling parameters are carefully examined. Special attention is given to a quantitative determination of on-site and transferred hyperfine fields. We provide a detailed analysis that compares the hyperfine fields obtained for various cluster sizes with results from additional calculations of spin states with different multiplicities. From this we conclude that hyperfine couplings are mainly transferred from nearest neighbor Cu^{2+} ions and that contributions from further distant neighbors are marginal. The mechanisms giving rise to transfer of spin density are worked out. Assuming conventional values for the spin-orbit coupling, the total calculated hyperfine interaction parameters are compared to informations from experiments.Comment: 23 pages, 9 figure

    Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film

    Get PDF
    Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 K to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3) s^(-1). We also observe a temperature dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure

    Analysis of neural crest-derived clones reveals novel aspects of facial development

    Get PDF
    Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth

    Aperiodic dynamical decoupling sequences in presence of pulse errors

    Full text link
    Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstrate that by applying the control pulses along different directions, the performance of QDD protocols can be noticeably improved, and explain the reason of such an improvement. Our results can be useful for future implementations of the aperiodic decoupling protocols, and for better understanding of the impact of errors on quantum control of spins.Comment: updated reference

    Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in Charcot-Marie-Tooth Neuropathies

    Get PDF
    We previously reported that autosomal recessive demyelinating Charcot-Marie-Tooth (CMT) type 4B1 neuropathy with myelin outfoldings is caused by loss of MTMR2 (Myotubularin-related 2) in humans, and we created a faithful mouse model of the disease. MTMR2 dephosphorylates both PtdIns3P and PtdIns(3,5)P2, thereby regulating membrane trafficking. However, the function of MTMR2 and the role of the MTMR2 phospholipid phosphatase activity in vivo in the nerve still remain to be assessed. Mutations in FIG4 are associated with CMT4J neuropathy characterized by both axonal and myelin damage in peripheral nerve. Loss of Fig4 function in the plt (pale tremor) mouse produces spongiform degeneration of the brain and peripheral neuropathy. Since FIG4 has a role in generation of PtdIns(3,5)P2 and MTMR2 catalyzes its dephosphorylation, these two phosphatases might be expected to have opposite effects in the control of PtdIns(3,5)P2 homeostasis and their mutations might have compensatory effects in vivo. To explore the role of the MTMR2 phospholipid phosphatase activity in vivo, we generated and characterized the Mtmr2/Fig4 double null mutant mice. Here we provide strong evidence that Mtmr2 and Fig4 functionally interact in both Schwann cells and neurons, and we reveal for the first time a role of Mtmr2 in neurons in vivo. Our results also suggest that imbalance of PtdIns(3,5)P2 is at the basis of altered longitudinal myelin growth and of myelin outfolding formation. Reduction of Fig4 by null heterozygosity and downregulation of PIKfyve both rescue Mtmr2-null myelin outfoldings in vivo and in vitro

    Obscured Activity: AGN, Quasars, Starbursts and ULIGs observed by the Infrared Space Observatory

    Full text link
    Some of the most active galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS), has enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star-formation as well as those containing a dominant active galactic nucleus (AGN). Mid infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid and far infrared. This was particularly useful since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry also revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based upon ISO data spanning the full range of luminosity and type of active galaxies.Comment: Accepted for publication in 'ISO science legacy - a compact review of ISO major achievements', Space Science Reviews - dedicated ISO issue. To be published by Springer in 2005. 62 pages (low resolution figures version). Higher resolution PDFs available from http://users.physics.uoc.gr/~vassilis/papers/VermaA.pdf or http://www.iso.vilspa.esa.es/science/SSR/Verma.pd
    • …
    corecore