27 research outputs found

    Responses of Bacillus subtilis to Hypotonic Challenges: Physiological Contributions of Mechanosensitive Channels to Cellular Survivalâ–ż

    No full text
    Mechanosensitive channels are thought to function as safety valves for the release of cytoplasmic solutes from cells that have to manage a rapid transition from high- to low-osmolarity environments. Subsequent to an osmotic down-shock of cells grown at high osmolarity, Bacillus subtilis rapidly releases the previously accumulated compatible solute glycine betaine in accordance with the degree of the osmotic downshift. Database searches suggest that B. subtilis possesses one copy of a gene for a mechanosensitive channel of large conductance (mscL) and three copies of genes encoding proteins that putatively form mechanosensitive channels of small conductance (yhdY, yfkC, and ykuT). Detailed mutational analysis of all potential channel-forming genes revealed that a quadruple mutant (mscL yhdY yfkC ykuT) has no growth disadvantage in high-osmolarity media in comparison to the wild type. Osmotic down-shock experiments demonstrated that the MscL channel is the principal solute release system of B. subtilis, and strains with a gene disruption in mscL exhibited a severe survival defect upon an osmotic down-shock. We also detected a minor contribution of the SigB-controlled putative MscS-type channel-forming protein YkuT to cellular survival in an mscL mutant. Taken together, our data revealed that mechanosensitive channels of both the MscL and MscS types play pivotal roles in managing the transition of B. subtilis from hyper- to hypo-osmotic environments

    Are existing standard methods suitable for the evaluation of nanomedicines: some case studies

    No full text
    International audienceThe use of nanotechnology in medical products has been demonstrated at laboratory scale, and many resulting nanomedicines are in the translational phase toward clinical applications, with global market trends indicating strong growth of the sector in the coming years. The translation of nanomedicines toward the clinic and subsequent commercialization may require the development of new or adaptation of existing standards to ensure the quality, safety and efficacy of such products. This work addresses some identified needs, and illustrates the shortcomings of currently used standardized methods when applied to medical-nanoparticles to assess particle size, drug loading, drug release and in vitro safety. Alternative physicochemical, and in vitro toxicology methods, with the potential to qualify as future standards supporting the evaluation of nanomedicine are provided

    Changes in miRNA Expression Profiling during Neuronal Differentiation and Methyl Mercury-Induced Toxicity in Human in Vitro Models

    No full text
    MicroRNAs (miRNAs) are implicated in the epigenetic regulation of several brain developmental processes, such as neurogenesis, neuronal differentiation, neurite outgrowth, and synaptic plasticity. The main aim of this study was to evaluate whether miRNA expression profiling could be a useful approach to detect in vitro developmental neurotoxicity. For this purpose, we assessed the changes in miRNA expression caused by methyl mercury chloride (MeHgCl), a well-known developmental neurotoxicant, comparing carcinoma pluripotent stem cells (NT-2) with human embryonic stem cells (H9), both analyzed during the early stage of neural progenitor commitment into neuronal lineage. The data indicate the activation of two distinct miRNA signatures, one activated upon neuronal differentiation and another upon MeHgCl-induced toxicity. Particularly, exposure to MeHgCl elicited, in both neural models, the down-regulation of the same six out of the ten most up-regulated neuronal pathways, as shown by the up-regulation of the corresponding miRNAs and further assessment of gene ontology (GO) term and pathway enrichment analysis. Importantly, some of these common miRNA-targeted pathways defined in both cell lines are known to play a role in critical developmental processes, specific for neuronal differentiation, such as axon guidance and neurotrophin-regulated signaling. The obtained results indicate that miRNAs expression profiling could be a promising tool to assess developmental neurotoxicity pathway perturbation, contributing towards improved predictive human toxicity testing

    Future perspectives for advancing regulatory science of nanotechnology-enabled health products.

    No full text
    The identification of regulatory challenges for nanotechnology-enabled health products, followed by discussions with the involved stakeholders, is the first step towards a strategic planning of how such challenges can be successfully addressed in the future. In order to better understand whether the identified regulatory needs are sector-specific for health products or might also hinder the progress in other domains, the REFINE consortium reached out to communities representing other sectors that also exploit the potential of nanotechnology, i.e. industrial chemicals, food and cosmetics. Through a series of trans-sectorial workshops, REFINE partners identified common as well as sector-specific challenges and discussed possible ways forward. Potential solutions lie in a more strengthen collaboration between regulatory and research communities resulting in a targeted production and exploitation of academic data for the regulatory decision-making. Furthermore, a coordinated use of knowledge sharing platforms and databases, trans-sectorial standardisation activities and harmonisation of regulatory activities between geographical regions are possible ways forward, in line with the upcoming European political initiatives such as the Chemical Strategy for Sustainability (CSS). Finally, we also discuss the perspectives for further development and sustainability of methods and tools developed in the REFINE project. GRAPHICAL ABSTRACT: [Image: see text

    Synthesis, Release, and Recapture of Compatible Solute Proline by Osmotically Stressed Bacillus subtilis Cells

    No full text
    Hoffmann T, von Blohn C, Stanek A, Moses S, Barzantny H, Bremer E. Synthesis, Release, and Recapture of Compatible Solute Proline by Osmotically Stressed Bacillus subtilis Cells. Applied and environmental microbiology. 2012;78(16):5753-5762.Bacillus subtilis synthesizes large amounts of the compatible solute proline as a cellular defense against high osmolarity to ensure a physiologically appropriate level of hydration of the cytoplasm and turgor. It also imports proline for this purpose via the osmotically inducible OpuE transport system. Unexpectedly, an opuE mutant was at a strong growth disadvantage in high-salinity minimal media lacking proline. Appreciable amounts of proline were detected in the culture supernatant of the opuE mutant strain, and they rose concomitantly with increases in the external salinity. We found that the intracellular proline pool of severely salinity-stressed cells of the opuE mutant was considerably lower than that of its opuE(+) parent strain. This loss of proline into the medium and the resulting decrease in the intracellular proline content provide a rational explanation for the observed salt-sensitive growth phenotype of cells lacking OpuE. None of the known MscL- and MscS-type mechanosensitive channels of B. subtilis participated in the release of proline under permanently imposed high-salinity growth conditions. The data reported here show that the OpuE transporter not only possesses the previously reported role for the scavenging of exogenously provided proline as an osmoprotectant but also functions as a physiologically highly important recapturing device for proline that is synthesized de novo and subsequently released by salt-stressed B. subtilis cells. The wider implications of our findings for the retention of compatible solutes by osmotically challenged microorganisms and the roles of uptake systems for compatible solutes are considered
    corecore