240 research outputs found

    Climatic effects on niche evolution in a passerine bird clade depend on paleoclimate reconstruction method

    Get PDF
    Climatic niches describe the climatic conditions in which species can persist. Shifts in climatic niches have been observed to coincide with major climatic change, suggesting that species adapt to new conditions. We test the relationship between rates of climatic niche evolution and paleoclimatic conditions through time for 65 Old-World flycatcher species (Aves: Muscicapidae). We combine niche quantification for all species with dated phylogenies to infer past changes in the rates of niche evolution for temperature and precipitation niches. Paleoclimatic conditions were inferred independently using two datasets: a paleoelevation reconstruction and the mammal fossil record. We find changes in climatic niches through time, but no or weak support for a relationship between niche evolution rates and rates of paleoclimatic change for both temperature and precipitation niche and for both reconstruction methods. In contrast, the inferred relationship between climatic conditions and niche evolution rates depends on paleoclimatic reconstruction method: rates of temperature niche evolution are significantly negatively related to absolute temperatures inferred using the paleoelevation model but not those reconstructed from the fossil record. We suggest that paleoclimatic change might be a weak driver of climatic niche evolution in birds and highlight the need for greater integration of different paleoclimate reconstructions.Peer reviewe

    Mammalian body size evolution was shaped by habitat transitions as an indirect effect of climate change

    Get PDF
    Aim: Body size evolution has long been hypothesized to have been driven by factors linked to climate change, but the specific mechanisms are difficult to disentangle due to the wide range of functional traits that covary with body size. In this study, we investigated the impact of regional habitat changes as a potential indirect effect of climate change on body size evolution. Location: Europe and North America. Time period: The Neogene (similar to 23-2 million years ago). Major taxa: Five orders of terrestrial mammals: Artiodactyla, Carnivora, Perissodactyla, Proboscidea and Primates. Methods: We compared the two continental faunas, which have exceptional fossil records of terrestrial mammals and underwent different processes of habitat transition during the Neogene. Using Bayesian multilevel regression models, we assessed the variation in the temporal dynamics of body size diversity among ecographic groups, defined by their continent of occurrence and dietary preference. Results: Model comparisons unanimously supported a combined effect of diet and continent on all metrics of body size frequency distributions, rejecting the shared energetic advantage of larger bodies in colder climates as a dominant mechanism of body size evolution. Rather, the diet-specific dynamics on each continent pinpointed an indirect effect of climate change - change in habitat availability, and thus the resource landscape as a key driver of mammalian evolution. Main conclusions: Our study highlights dietary preference as a mechanistic link between mammalian evolution and habitat transition mediating an indirect climate-change effect and demonstrates the complexity of climatic influence on biodiversity. Our findings suggest that the intensified habitat modification today likely poses a bigger threat than climate change in itself to living mammals, and perhaps all endotherms.Peer reviewe

    Predicting extinctions with species distribution models

    Get PDF
    Predictions of species-level extinction risk from climate change are mostly based on species distribution models (SDMs). Reviewing the literature, we summarise why the translation of SDM results to extinction risk is conceptually and methodologically challenged and why critical SDM assumptions are unlikely to be met under climate change. Published SDM-derived extinction estimates are based on a positive relationship between range size decline and extinction risk, which empirically is not well understood. Importantly, the classification criteria used by the IUCN Red List of Threatened Species were not meant for this purpose and are often misused. Future predictive studies would profit considerably from a better understanding of the extinction risk–range decline relationship, particularly regarding the persistence and non-random distribution of the few last individuals in dwindling populations. Nevertheless, in the face of the ongoing climate and biodiversity crises, there is a high demand for predictions of future extinction risks. Despite prevailing challenges, we agree that SDMs currently provide the most accessible method to assess climate-related extinction risk across multiple species. We summarise current good practice in how SDMs can serve to classify species into IUCN extinction risk categories and predict whether a species is likely to become threatened under future climate. However, the uncertainties associated with translating predicted range declines into quantitative extinction risk need to be adequately communicated and extinction predictions should only be attempted with carefully conducted SDMs that openly communicate the limitations and uncertainty

    Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program

    Get PDF
    Citation: Battenfield, S. D., Guzman, C., Gaynor, R. C., Singh, R. P., Pena, R. J., Dreisigacker, S., . . . Poland, J. A. (2016). Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program. Plant Genome, 9(2), 12. doi:10.3835/plantgenome2016.01.0005Wheat (Triticum aestivum L.) cultivars must possess suitable end-use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense. Without testing and selection, many undesirable materials are advanced, expending additional resources. Here, we develop and validate whole-genome prediction models for end-use quality phenotypes in the CIMMYT bread wheat breeding program. Model accuracy was tested using forward prediction on breeding lines (n = 5520) tested in unbalanced yield trials from 2009 to 2015 at Ciudad Obregon, Sonora, Mexico. Quality parameters included test weight, 1000-kernel weight, hardness, grain and flour protein, flour yield, sodium dodecyl sulfate sedimentation, Mixograph and Alveograph performance, and loaf volume. In general, prediction accuracy substantially increased over time as more data was available to train the model. Reflecting practical implementation of genomic selection (GS) in the breeding program, forward prediction accuracies (r) for quality parameters were assessed in 2015 and ranged from 0.32 (grain hardness) to 0.62 (mixing time). Increased selection intensity was possible with GS since more entries can be genotyped than phenotyped and expected genetic gain was 1.4 to 2.7 times higher across all traits than phenotypic selection. Given the limitations in measuring many lines for quality, we conclude that GS is a powerful tool to facilitate early generation selection for end-use quality in wheat, leaving larger populations for selection on yield during advanced testing and leading to better gain for both quality and yield in bread wheat breeding programs

    Global patterns and drivers of phylogenetic structure in island floras

    Get PDF
    Islands are ideal for investigating processes that shape species assemblages because they are isolated &nbsp;and have discrete boundaries. Quantifying phylogenetic assemblage structure allows inferences in-situ speciation. Here, we link phylogenetic assemblage structure to island characteristics across 393 islands worldwide &nbsp;and 37,041 vascular plant species (representing angiosperms overall, palms and ferns). Physical and &nbsp;bioclimatic factors, especially those impeding colonization and promoting speciation, explained &nbsp;more &nbsp;variation &nbsp;in &nbsp;phylogenetic &nbsp;structure &nbsp;of &nbsp;angiosperms &nbsp;overall &nbsp;(49%) &nbsp;and &nbsp;palms &nbsp;(52%) &nbsp;than &nbsp;of &nbsp;ferns consistent with their dispersal- and speciation-related traits and climatic adaptations. Phylogenetic &nbsp;diversity was negatively related to isolation for palms, but unexpectedly it was positively related large-seeded, animal-dispersed palm family whereas colonization from biogeographically distinct in-situ among taxonomic groups on islands, which sheds light on the origin of insular plant diversity.</p

    The shape of mammalian phylogeny: patterns, processes and scales

    Get PDF
    Mammalian phylogeny is far too asymmetric for all contemporaneous lineages to have had equal chances of diversifying. We consider this asymmetry or imbalance from four perspectives. First, we infer a minimal set of &apos;regime changes&apos;-points at which net diversification rate has changedidentifying 15 significant radiations and 12 clades that may be &apos;downshifts&apos;. We next show that mammalian phylogeny is similar in shape to a large set of published phylogenies of other vertebrate, arthropod and plant groups, suggesting that many clades may diversify under a largely shared set of &apos;rules&apos;. Third, we simulate six simple macroevolutionary models, showing that those where speciation slows down as geographical or niche space is filled, produce more realistic phylogenies than do models involving key innovations. Lastly, an analysis of the spatial scaling of imbalance shows that the phylogeny of species within an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions of geographical or niche space

    Early and Differential Diagnosis of Dementia and Mild Cognitive Impairment Design and Cohort Baseline Characteristics of the German Dementia Competence Network

    Get PDF
    Background: The German Dementia Competence Network (DCN) has established procedures for standardized multicenter acquisition of clinical, biological and imaging data, for centralized data management, and for the evaluation of new treatments. Methods: A longitudinal cohort study was set up for patients with mild cognitive impairment (MCI), patients with mild dementia and control subjects. The aims were to establish the diagnostic, differential diagnostic and prognostic power of a range of clinical, laboratory and imaging methods. Furthermore, 2 clinical trials were conducted with patients suffering from MCI and mild to moderate Alzheimer's Disease (AD). These trials aimed at evaluating the efficacy and safety of the combination of galantamine and memantine versus galantamine alone. Results: Here, we report on the scope and projects of the DCN, the methods that were employed, the composition and flow within the diverse groups of patients and control persons and on the clinical and neuropsychological baseline characteristics of the group of 2,113 subjects who participated in the observational and clinical trials. Conclusion: These data have an impact on the procedures for the early and differential clinical diagnosis of dementias, the current standard treatment of AD as well as on future clinical trials in AD. Copyright (C) 2009 S. Karger AG, Base

    Twenty-million-year relationship between mammalian diversity and primary productivity

    Get PDF
    At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity–productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity–productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23–1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity–productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction

    Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains

    Get PDF
    [Aim] Climate change causes shifts in species ranges globally. Terrestrial plant species often lag behind temperature shifts, and it is unclear to what extent animal-dispersed plants can track climate change. Here, we estimate the ability of bird-dispersed plant species to track future temperature change on a tropical mountain.[Location] Tropical elevational gradient (500–3500 m.a.s.l.) in the Manú biosphere reserve, Peru. [Time period] From 1960–1990 to 2061–2080. [Taxa] Fleshy-fruited plants and avian frugivores. [Methods] Using simulations based on the functional traits of avian frugivores and fruiting plants, we quantified the number of long-distance dispersal (LDD) events that woody plant species would require to track projected temperature shifts on a tropical mountain by the year 2070 under different greenhouse gas emission scenarios [representative concentration pathway (RCP) 2.6, 4.5 and 8.5]. We applied this approach to 343 bird-dispersed woody plant species. [Results] Our simulations revealed that bird-dispersed plants differed in their climate-tracking ability, with large-fruited and canopy plants exhibiting a higher climate-tracking ability. Our simulations also suggested that even under scenarios of strong and intermediate mitigation of greenhouse gas emissions (RCP 2.6 and 4.5), sufficient upslope dispersal would require several LDD events by 2070, which is unlikely for the majority of woody plant species. Furthermore, the ability of plant species to track future changes in temperature increased in simulations with a low degree of trait matching between plants and birds, suggesting that plants in generalized seed-dispersal systems might be more resilient to climate change. [Main conclusion] Our study illustrates how the functional traits of plants and animals can inform predictive models of species dispersal and range shifts under climate change and suggests that the biodiversity of tropical mountain ecosystems is highly vulnerable to future warming. The increasing availability of functional trait data for plants and animals globally will allow parameterization of similar models for many other seed-dispersal systems.Fieldwork at Manú was conducted under the permits 041-2010-AG-DGFFSDGEFFS, 008-2011-AG-DGFFS-DGEFFS, 01-C/C-2010SERNANP-JPNM and 01-2011-SERNANP-PNM-JEF and supported by a scholarship from the German Academic Exchange Service to D.M.D. D.M.D. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant number 787638) and the Swiss National Science Foundation (grant number 173342), both awarded to C. H. Graham. W.D.K. acknowledges a Global Ecology grant from the University of Amsterdam Faculty Research Cluster. I.D. was funded by the Alexander von Humboldt Foundation and is now supported by the Balearic Government. S.A.F. was funded by the German Research Foundation (DFG; FR 3246/2-2) and the Leibniz Competition of the Leibniz Association (P52/2017)
    corecore