45 research outputs found

    How Live Music Moves Us: Head Movement Differences in Audiences to Live Versus Recorded Music

    Get PDF
    A live music concert is a pleasurable social event that is among the most visceral and memorable forms of musical engagement. But what inspires listeners to attend concerts, sometimes at great expense, when they could listen to recordings at home? An iconic aspect of popular concerts is engaging with other audience members through moving to the music. Head movements, in particular, reflect emotion and have social consequences when experienced with others. Previous studies have explored the affiliative social engagement experienced among people moving together to music. But live concerts have other features that might also be important, such as that during a live performance the music unfolds in a unique and not predetermined way, potentially increasing anticipation and feelings of involvement for the audience. Being in the same space as the musicians might also be exciting. Here we controlled for simply being in an audience to examine whether factors inherent to live performance contribute to the concert experience. We used motion capture to compare head movement responses at a live album release concert featuring Canadian rock star Ian Fletcher Thornley, and at a concert without the performers where the same songs were played from the recorded album. We also examined effects of a prior connection with the performers by comparing fans and neutral-listeners, while controlling for familiarity with the songs, as the album had not yet been released. Head movements were faster during the live concert than the album-playback concert. Self-reported fans moved faster and exhibited greater levels of rhythmic entrainment than neutral-listeners. These results indicate that live music engages listeners to a greater extent than pre-recorded music and that a pre-existing admiration for the performers also leads to higher engagement

    Data from: Ovarian fluid allows directional cryptic female choice despite external fertilization

    No full text
    In species with internal fertilization, females can favour certain males over others, not only before mating but also within the female’s reproductive tract after mating. Here, we ask whether such directional post-mating (that is, cryptic) female mate choice can also occur in species with external fertilization. Using an in vitro sperm competition experiment, we demonstrate that female ovarian fluid (ovarian fluid) changes the outcome of sperm competition by decreasing the importance of sperm number thereby increasing the relative importance of sperm velocity. We further show that ovarian fluid does not differentially affect sperm from alternative male phenotypes, but generally enhances sperm velocity, motility, straightness and chemoattraction. Under natural conditions, female ovarian fluid likely increases the paternity of the preferred parental male phenotype, as these males release fewer but faster sperm. These results imply females have greater control over fertilization and potential to exert selection on males in species with external fertilization than previously thought possible

    Alonzo_et_al_Nature_Comm_2016_Expt1

    No full text
    This file contains the data from Experiment 1 (the “in vitro” sperm competition experiments. These data are represented in Figures 1 and 2 and Tables 1 and 2

    Data from: Species-specific patterns of nonapeptide brain gene expression relative to pair-bonding behaviour in grouping and non-grouping cichlids

    No full text
    Comparative studies have revealed that vasopressin-oxytocin pathways are associated with both pair bonding and grouping behaviour. However, the relationship between pair bonding and grouping behaviourremains unclear.In this study,our aim was to identify whether two species that differ in grouping behaviourdisplay a corresponding difference in their pair bonds, and in the underlying vasopressin-oxytocinhormonal pathways. Using two species of cichlid fishes, the highly social Neolamprologuspulcher and the non-social Telmatochromis temporalis, we measuredproximity of pairs during pair bond formation, and then measured social behaviors (proximity, aggression, submission,affiliation)and brain gene expression of isotocin and arginine vasotocin (the teleost homologues of oxytocin and vasopressin, respectively), as well as their receptors, after a temporary separation and subsequent reunion of the bonded pairs. Pairs of the social species spent more time in close proximity relative to the non-social species. Rates of aggression increased in both species following the separation and reunion treatment, relative to controls that were not separated.Overall, whole brain expression of isotocin was higher in the social species relative to the non-social species, and correlated with proximity, submission, and affiliation, but only in the social species. Our results suggest that both a social and a non-social cichlid species have similar behavioural responses to a temporary separation from a mate, and we found no differencein the brain gene expression of measured hormones and receptors based on our separation-reunion treatment. However, our results highlight the importance of isotocin in mediating submissive and affiliativebehaviourin cichlid fishes, and demonstrate thatisotocinhas species-specific correlations with socially relevantbehaviours

    Alonzo_et_al_Nature_Comm_2016_Expt3

    No full text
    This file contains the data from Experiment 3 (the experiment examining the effect of ovarian fluid on sperm chemoattraction). These data are represented in Figure 4

    Alonzo_et_al_Nature_Comm_2016_Expt2

    No full text
    This file contains the data from Experiment 2 (the experiment examining the effect of ovarian fluid on sperm characteristics). These data are represented in Figure 3

    No evidence for larger brains in cooperatively breeding cichlid fishes

    No full text
    The social brain hypothesis posits that frequent social interactions, characteristic of group living species, select for greater socio-cognitive abilities and the requisite neural machinery. An extension of the social brains hypothesis, known as the cooperative breeding brain hypothesis, postulates that cooperatively breeding species, which live in stable social groups and provide allocare, face particularly pronounced cognitive demands as they must recognize, remember, and differentially respond to multiple group members. These socio-cognitive challenges are thought to have selected for increased cognitive capacity, supported by a bigger brain. In order to test the prediction that cooperative breeders have larger brains, we performed a phylogenetically-controlled comparison of the whole brain masses of adult fish from 16 closely related species of cooperatively and independently breeding Lamprologine cichlid species from Lake Tanganyika. We collected data on brain mass from males of eight species of Lamprologine cichlids and added this to brain mass data from eight more species found in the published literature. Controlling for body size and phylogeny, we found that cooperative breeding species did not have larger brains, and this was true of for both our field collected dataset and the expanded dataset including published values. This study adds to a growing body of literature from other taxa casting doubt on the cooperative breeding brain hypothesis.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Template-controlled acidity and catalytic activity of ferrierite crystals

    Get PDF
    A synthesis strategy to tailor the acid sites location in ferrierite crystals has been developed. The zeolite catalysts were synthesised in fluoride medium using different combinations of organic structure directing agents (SDAs) in the absence of inorganic cations. Therefore, the negative charge associated to the incorporation of aluminium to the framework was compensated exclusively by the positive charge of the organic SDAs. In this way, Al sitting in the zeolite framework was driven by the specific location of the different SDA molecules within the zeolite void volume. Following this synthesis strategy, it has been found that the distribution of strongly acidic hydroxyl groups in the proton form of the zeolites obtained after removal of the organic templates was dependent on the combination of organic molecules used as SDAs. Moreover, the catalytic activity of the zeolites in m-xylene and 1-butene isomerisation increased as the relative population of strong Brönsted acid groups in sterically constrained sites inside the ferrierite cavity decreased.This work has been financially supported by the MICINN (project CTQ2006-06282).Peer reviewe
    corecore