40 research outputs found

    Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)

    Get PDF
    Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.Austrian Science Fund (FWF) PZ00P3-161472National Science Foundation (NSF) 1811965 1645256Triad FoundationGerman Research Foundation (DFG) DFG-PE 2059/3-1Agencia Estatal de Investigacion CGL2017-86626-C2-2-PLOEWE Program Insect Biotechnology and BioresourcesJunta de Andalucía A-RNM505-UGR1

    Analysis Of Genes Underlying Mate Selectivity In Arabidopsis: Regulation Of The S-Locus Receptor Kinase And Identification Of Novel Candidate Rapidly Evolving Reproductive Genes

    Full text link
    Mate selectivity in plants, as in other eukaryotes, is often based on the activity of highly polymorphic and rapidly evolving reproductive proteins. In flowering plants, selectivity in intraspecific and interspecific matings is observed not only in interactions between female and male gametes, but also in interactions between the male gametophyte with cells of the pistil that line the path of pollen tubes as they make their way from the stigma through the transmitting tract and into the ovary. In the following studies, the model plant Arabidopsis thaliana will provide a useful platform for analysis of intra and interspecific mate selectivity. Intraspecific mate selectivity is often enforced by selfincompatibility (SI), a barrier to self-pollination that inhibits productive pollen-pistil interactions. Consistent with their role in recognition, some genes involved in SI are highly polymorphic and exhibit signals of positive selection. A. thaliana is self fertile, but can be made to express SI by transformation with two functional SI genes isolated from its close self-incompatible relative, A. lyrata. In Chapter 2, an induced mutation that suppresses the SI phenotype of these transformants is analyzed to investigate the regulation of SI. Mapbased cloning determined that the mutation disrupted NRPD1a, a plant-specific polymerase required for DNA methylation and production of some types of silencing RNAs. Subsequent analyses showed that NRPD1a, along with the RNA-dependent RNA polymerase RDR2, is required for SI in some A. thaliana accessions. In Chapter 3, to assess interspecific mate selectivity, a screen was conducted to find rapidly evolving genes in Arabidopsis spp. A full genome sequence and the availability of extensive polymorphism data and genetic resources make A. thaliana ideal for identifying rapidly evolving reproductive genes. Previously generated A. thaliana data sets containing genes expressed in cells of the pistil, pollen, or pollen tubes were used to search for orthologous genes in the recently sequenced genome of A. lyrata. Within- and between-species variation in candidate rapidly evolving genes was investigated and statistical analyses of positive selection were performed. Several candidate genes were identified which may play an important role in species-specific reproductive function

    ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress

    No full text
    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators

    Aphid Resistance Segregates Independently of Cardenolide and Glucosinolate Content in an <i>Erysimum cheiranthoides</i> (Wormseed Wallflower) F2 Population

    No full text
    Plants in the genus Erysimum produce both glucosinolates and cardenolides as a defense mechanism against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardenolide content, and their resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not further induced by aphid feeding. To investigate the relative importance of glucosinolates and cardenolides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. The genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci, which affected glucosinolates and cardenolides, but not the aphid resistance. The abundance of most glucosinolates and cardenolides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although the overall cardenolide content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardenolides have a predominant effect on aphid resistance in E. cheiranthoides

    Data from: Diversification of R2R3-MYB transcription factors in the tomato family Solanaceae

    No full text
    MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In this study, we identify 559 R2R3 MYB genes using whole genome data from four species of Solanaceae and reconstruct their evolutionary relationships. We compare the Solanaceae R2R3 MYBs to the well-characterized Arabidopsis thaliana sequences to estimate functional diversity and to identify gains and losses of MYB clades in the Solanaceae. We identify numerous R2R3 MYBs that do not appear closely related to Arabidopsis MYBs, and thus may represent clades of genes that have been lost along the Arabidopsis lineage or gained after the divergence of Rosid and Asterid lineages. Despite differences in the distribution of R2R3 MYBs across functional subgroups and species, the overall size of the R2R3 subfamily has changed relatively little over the roughly 50 million-year history of Solanaceae. We added our information regarding R2R3 MYBs in Solanaceae to other data and performed a meta-analysis to trace the evolution of subfamily size across land plants. The results reveal many shifts in the number of R2R3 genes, including a 54 % increase along the angiosperm stem lineage. The variation in R2R3 subfamily size across land plants is weakly positively correlated with genome size and strongly positively correlated with total number of genes. The retention of such a large number of R2R3 copies over long evolutionary time periods suggests that they have acquired new functions and been maintained by selection. Discovering the nature of this functional diversity will require integrating forward and reverse genetic approaches on an -omics scale
    corecore