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Summary 25 

In intimate ecological interactions, the interdependency of species may result in correlated demographic 26 

histories. For species of conservation concern, understanding the long-term dynamics of such interactions 27 

may shed light on the drivers of population decline. Here we address the demographic history of the 28 

monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed, Asclepias 29 
syriaca, using broad-scale sampling and genomic inference. Because genetic resources for milkweed have 30 

lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation 31 

for common milkweed. Next, we show that despite its enormous geographic range across eastern North 32 

America, A. syriaca is best characterized as a single, roughly panmictic population. Using Approximate 33 
Bayesian Computation via Random Forests (ABC-RF), a machine learning method for reconstructing 34 

demographic histories, we show that both monarchs and milkweed experienced population expansion 35 

during the most recent recession of North American glaciers 10,000-20,000 years ago. Our data also 36 

identify concurrent population expansions in both species during the large-scale clearing of eastern forests 37 
(~200 years ago). Finally, we find no evidence that either species experienced a reduction in effective 38 

population size over the past 75 years. Thus, the well-documented decline of monarch abundance over the 39 

past 40 years is not visible in our genomic dataset, reflecting a possible mismatch of the overwintering 40 
census population to effective population size in this species.  41 

Introduction 42 

Despite the critical importance of understanding past population dynamics, especially for species of 43 
conservation concern, inferring demographic histories can be extremely challenging. Novel genomic 44 

methodologies based on sampling extant individuals and interpretation of genomic patterns of diversity 45 

have recently provided insight into the demographic histories of species ranging from protists to 46 

humans1,2. Over the past 25 years, conservationists have become increasingly alarmed by the decline of 47 
the monarch butterfly’s overwintering population3,4,5 . Despite significant academic and public energy 48 

focused on understanding and reversing this, the exact cause of this decline is still a matter of debate. 49 

Multiple factors have been proposed to underlie the monarch’s decline, including a decrease in the 50 

abundance of the monarch's food source (primarily a single species of milkweed: common milkweed), 51 
reduced abundance or quality of nectar plants, climate change, and destruction of their overwintering 52 
sites6-9.  53 

Here we address correlated demographic changes of monarchs and milkweeds over three hypothesized 54 
critical events during the Holocene. Placing this recent decline in a historical context will help us begin to 55 

address fundamental questions about the relationship between milkweed, monarchs, and humans. For 56 

instance, did colonizing Europeans inadvertently increase the size of the monarch population by 57 

massively expanding common milkweed habitat through deforestation and ploughing of prairies (as 58 
suggested by (10) and (11))?  Does the recent decline of the overwintering census population follow from 59 

an artificial high? Does it represent a decline to levels lower than those seen before European 60 

colonization? And finally, are monarch and common milkweed population demographics matched, 61 

perhaps indicating that common milkweed is the limiting resource for monarch butterfly populations? 62 
Providing insight into these questions has remained intractable to date. However, recent advances in 63 

population genetic approaches and machine learning now allow us unprecedented ability to reconstruct 64 
demographic histories of populations.  65 

To reconstruct the demographic histories of monarchs and milkweed, here we use Approximate Bayesian 66 

Computation with Random Forests (ABC-RF)12. Briefly, ABC modeling uses simulated data sets to 67 

estimate posterior probabilities when the likelihoods of observed data given specific models are difficult 68 



 

 

to calculate13,14. Genetic data sets are simulated under a number of different demographic models, and the 69 

simulated data sets closest to the observed data are used to estimate the posterior probabilities of 70 

individual models and distributions of parameters of interest. The Random Forest approach described by 71 
Pudlo et al.12 and Raynal et al.15, implements a machine learning algorithm to do model selection and 72 

parameter estimation. The RF approach improves upon traditional ABC modelling in that ABC-RF is 73 

insensitive to the choice of summary statistics, and less computationally expensive as well. This approach 74 

has recently been employed by a number of population genetic studies on a diverse array of organisms, 75 
including insects16, plants17 , chordates18 including humans19 , and pathogens1 , and it has been used to 76 

reconstruct biological invasions and other demographic events happening within the past few decades or 77 
centuries20,21,22. 78 

Accordingly, we use the ABC-RF approach to test how the last glacial retreat, the ploughing-up of the 79 

prairie and deforestation, and finally expansion of industrial agriculture impacted monarch and milkweed 80 

populations. Specifically, we addressed the following questions: (1) Have A. syriaca and D. plexippus 81 
populations expanded in prior millennia (5-25 kya), potentially due to the retreat of the glaciers after the 82 

last glacial maximum23 ? (2) Have A. syriaca and D. plexippus populations expanded in the past centuries 83 

(1751-1899), potentially due to the conversion of native forests and prairies to agriculture land, as suggest 84 

by, e.g., L.P. Brower (1995)11? (3) Have A. syriaca and D. plexippus populations experienced a bottleneck 85 
along with the industrialization of agriculture within past decades (1945-2015), potentially due to the 86 
increased use of herbicide in crop fields24,25 ?   87 

To facilitate answering these questions, we assembled a new genome for A. syriaca. Previously existing 88 
genomic resources were limited to low coverage assemblies and transcriptomes26. Next, we sampled and 89 

conducted genomic analyses for 231 milkweed isolates from across the entire native range. Finally, using 90 

this data set, we test a series of explicit hypotheses using ABC-RF to ask how these climate and 91 

anthropogenic events have impacted population change of these iconic species. We conducted these 92 
analyses in parallel on milkweed and monarchs, using previously published whole-genome sequencing 93 

data from Zhan et al. (2014) for the latter27. As such, our analysis addresses whether the demographic 94 
histories of this intimate species interaction are matched or independent.  95 

Results 96 

Genome Assembly 97 

 PacBio sequencing resulted in over 300X coverage of the expected genome size of 420 Mb. The 98 

sequence was assembled into 748 contigs with a total length of 362 Mbp and an N50 of 1.9 Mbp. Kmer 99 

analysis supports this genome size. After haplotig removal, approximately 91% of the sequence was 100 

scaffolded into 11 sequences representing pseudomolecules. The final assembly has a length of 317 Mbp 101 

and captures 96.8% of the BUSCO set. 102 

 103 

Genome annotation of A. syriaca: 104 

 Approximately 57% of the genome consists of repetitive sequences. A total of 42,111 genes were 105 

predicted with an average length of 2,578 bp. Approximately 93% of the BUSCO protein set was 106 

identified in the annotation. Putative functions were assigned to 99% of the gene set. 107 

SNP Calling 108 



 

 

We gathered five different population genetic data sets for D. plexippus and A. syriaca. Collection sites 109 

and sample sizes for each data set are shown in Figure 1A. The number of individuals and SNPs, and the 110 
amount of missing data for each SNP data set is shown in Table 1. 111 

For common milkweed the final datasets following rigorous SNP filtering were:  112 
(1) Core Range GBS: the GBS approach sequenced and called approximately 900 SNPs from 87 plants. 113 

(2) Broad Range GBS:  the GBS approach sequenced and called approximately 900 SNPs from 96 plants. 114 

(3) Broad Range WGR: the WGR approach identified approximately 900 SNPs from 48 plants. 115 

For monarch butterflies: 116 

(4) We called approximately 11,700 SNPs from 28 butterflies from Zhan et al. 201427. These samples 117 
were collected between 2006-2007. 118 

(5) The Talla et al. dataset we analyzed consisted of 29 individuals collected in October 2016 and 119 

4509 SNPs28. 120 

Population Genetic Analysis 121 

All three of our milkweed data sets showed little genetic structure across their ranges. Heterozygosities, 122 
both observed and expected, varied little across our populations (Table 1). Global FST ranged from -0.002 123 

(Broad Range WGR data set) to 0.039 (Core Range GBS data set), indicating a low amount of 124 

geographically sorted population structure. FST values between pairs of populations were similarly low, 125 

with the exception that the invasive European population was more distinct from the North American 126 
populations, with pairwise FST values around 0.08 (Table 2). We further interrogated this genetic structure 127 
using two approaches.  128 

 In the first approach, we used STRUCTURE to assign each individual ancestry to 2 or more 129 
subpopulations.  It is important to note that STRUCTURE cannot be used to evaluate the fit of a single 130 

panmictic population as the optimal number of genetic clusters is determined based on the change in the 131 

log-likelihood between k-values [see 76]. Regardless of the number of subpopulations chosen a priori, for 132 

every subpopulation, STRUCTURE assigned all individuals roughly the same degree of ancestry in that 133 
subpopulation, regardless of their geographic location (visualized in Figure 1B for the Broad Range GBS 134 

data set). This was true across all three data sets; the one major exception was that in the Core Range 135 

GBS data set, the invasive European population was quite distinct from the North American populations. 136 
STRUCTURE results for all three data sets are provided in the Supporting Information. 137 

 Secondly, to circumvent the inability of STRUCTURE to evaluate k=1, we took a less-138 

parameterized approach by performing a Principal Components Analysis (PCA) on the allele frequencies 139 
of the SNPs in each data set (Figure 1C).  This approach identifies groups of covarying SNPs. For all 140 

three data sets, none of the first six PC axes clearly separate any population from any other(s); although 141 

some PC axes show some degree of geographic structure, there is always a considerable degree of overlap 142 

between the PC values of the various populations. For instance, in the Broad Range GBS data set 143 
(visualized in Figure 1C), PC1 largely separates several northwestern individuals from the remainder of 144 

the data set, possibly indicating introgression from A. speciosa, which is known to hybridize with A. 145 

syriaca in the northwestern part of the A. syriaca range. PC2 shows a slight amount of geographic signal, 146 

with western populations tending toward positive values and eastern populations tending toward negative 147 
values, but individuals from all four regions are well mixed in principal component space, indicating that 148 
this geographic signal is quite weak. 149 



 

 

 All three datasets support the conclusion that, in North America, A. syriaca is a single large 150 

metapopulation with little geographic structure. Our results for A. syriaca parallel findings for the 151 
monarch butterflies which show a lack of geographic population genetic structure in North America,77,78.  152 

Demographic modelling 153 

Projecting our observed data onto the LDA axes of our simulated data indicated that our set of 154 

demographic models were realistic, as the observed data fell within or near the cloud of simulated data 155 

points along all LDA axes (Figure S3). Also, per Pudlo et al. (2016), we also confirmed that we produced 156 

enough simulations, as a preliminary analysis showed that the prior error rate decreased only slightly by 157 
the addition of the last 20% of simulations12 (Table S1). In fact, we found a few cases in which error rates 158 

went up slightly after adding the final 20% of the data (by 0.3% or less), indicating that we are in the 159 

regime in which changes in error rate are determined by random fluctuations, and confirming that adding 160 

more simulations will not further improve the accuracy of this method. Furthermore, we followed the 161 
recommendation of Pudlo et al. (2016) for determining whether we had used enough decision trees in our 162 

Random Forest algorithm12. To do this, we repeated the RF algorithm several times using fewer trees, 163 

recalculating the prior error rate each time.  If the error rate stays nearly flat as we approach the maximum 164 

number of trees, this means that we used an appropriate number of trees, which was indeed the case for 165 
all three data sets (Figure S3). Finally, we also confirmed that our random forests were not overfitting to 166 

their training data set by comparing performance on testing and training datasets. We found similar 167 
accuracies when comparing testing and training datasets for all random forests (Table S2). 168 

Our random forest results were consistent across all three milkweed data sets and between 169 

monarchs and milkweeds (Figure 2). All 20 runs for each of the five data sets predicted the presence of a 170 

post-glacial expansion in population size, with an average posterior probability between 064 and 0.85. All 171 

20 runs for each data set also predicted the presence of a more recent population expansion alongside 18th 172 
and 19th century agriculture, with an average posterior probability between 0.71 and 0.97.  173 

There was more uncertainty with respect to the presence or absence of a recent bottleneck 174 
alongside the industrialization of agriculture. All 20 runs for the Broad Range GBS and Core Range GBS 175 

milkweed data sets predicted the absence of a recent bottleneck, though with with less confidence:  176 

posterior probabilities were between 0.47 and 0.67. Both monarch datasets indicated the lack of a recent 177 

bottleneck, though with differing confidences. The monarch dataset collected from 2006-2007 had a 178 

posterior probability of 0.47 while the more recently collected Talla et al. monarchs had a posterior 179 
probability of 0.85.  Broad Range WGR data set had 15 runs predicting the absence of a bottleneck (0.47 180 

average posterior probability), and 5 runs predicting its presence (0.55 posterior probability).  Model 181 

parameters estimated with the ABC-RF approach were nearly identical to their prior distributions, 182 

suggesting that our dataset does not have sufficient resolution for parameter estimation (results not 183 
shown). 184 

Note that posterior probabilities can be relatively low even when all 20 runs produce the same 185 
results. The agreement of the different runs shows that the random forest method produces similar 186 

predictions for the same observed data sets; however, it does not show how conclusively a particular data 187 

set can rule in or out a particular demographic event; posterior probabilities are an attempt to capture this 188 
latter.  189 

Discussion 190 

Understanding the impact of the Anthropocene on the natural world is of fundamental importance for 191 
conservation efforts. Until recently, elucidating patterns of population change in the recent past has been 192 



 

 

very difficult. In this study we employ an ABC-RF approach to study the near-term demographic history 193 

of monarchs and milkweeds. This approach was chosen in part because it has proven useful in other 194 

systems in elucidating very recent demographic events, within decades or centuries21,22. In addition, this 195 
approach requires fewer simulated datasets to train the classifier than are necessary for traditional ABC, 196 
and it is much more robust to choices of summary statistics12,79. 197 

We tested for changes in effective population size of the monarch butterfly and its primary food 198 

source, common milkweed, during three events: the most recent retreat of the glaciers, European 199 

settlement in North America, and industrial agriculture. Previously, using a PSMC (Pairwise Sequentially 200 

Markovian Coalescent) model, a method capable of testing for ancient events but less fit for resolving 201 
recent events, researchers demonstrated a population expansion of monarch butterflies after the last 202 

glaciation27.  Using ABC-RF, we likewise detect this expansion in monarch effective population sizes and 203 

also observe an expansion of common milkweed post-glaciation; we hypothesize that both are likely due 204 

to the large increase in ranges available to these species with the retreat of the glaciers. The low levels of 205 
population structure in common milkweed likely occur because the modern range of A. syriaca is a result 206 

of rapid (i.e., in the last 5-25 kya) invasion of central and eastern North America after the retreat of the 207 

glaciers. In this scenario, the rapid expansion, combined with A. syriaca being an obligate outcrosser with 208 

long-distance dispersal ability, has prevented the formation of extensive population structure. It is also 209 
possible that milkweed existed in a single refugium during the last glaciation, resulting in a 210 
homogenization of genetic variation.   211 

We provide population genetic evidence that common milkweed increased in abundance during the 212 
18th and 19th centuries. The most obvious cause for this is the clearing of forests and prairies to make 213 

way for agricultural land, a disturbance-rich environment in which A. syriaca thrives (at least, until the 214 

advent of herbicides). The increase observed in our data has previously been suspected, and there are two 215 

major hypotheses for how this increase affected monarch butterflies. The first hypothesis posits that A. 216 
syriaca has always been the most important host plant for monarchs, even before A. syriaca's population 217 

boom. As A. syriaca increased in abundance in a newly-disturbed landscape, monarchs increased in 218 

abundance alongside them. Thus, according to this hypothesis, the current size (and possible geographic 219 

extent) of the monarch migration was greater in the 18th-20th centuries than in the 17th century and 220 
prior11; a more radical form of this hypothesis suggests that the migratory behavior itself was absent 221 

before the 18th century10. However, although A. syriaca has increased in abundance due to disturbance, it 222 

is likely that other species of milkweeds, less tolerant of anthropogenic changes, have declined in 223 

abundance over the same period. The second hypothesis suggests that monarchs transitioned from a wider 224 
array of host plant species to become more reliant on common milkweed over this period of increase in 225 

common milkweed populations. If this occurred, then the newly-increased population sizes of A. 226 

syriaca did not represent a net increase in food resources for monarchs, and so we would not expect the 227 
monarch abundances in the 18th-20th centuries to be higher (or lower) than previously11. 228 

Regarding the fact that we found no evidence for a reduction in the effective population sizes of the 229 
monarchs or milkweed over the past 75 years, the simplest explanation for these results is that the 230 
demographic event in question did not occur. A second possibility is that the demographic event did 231 
occur, but it had an effect size that is too small to leave a signal in our data set. Unfortunately, our data set 232 
was not sensitive enough to estimate posterior distributions for the strength of these expansions or 233 
bottlenecks, so we are not able to quantify absolutely the minimum detectable event size. However, we 234 
can be confident that detected events are larger than undetected ones: i.e., if there was an undetected 235 
decline in monarch population size since 1945, it was less than the detected increase that occurred in the 236 
18th and 19th centuries. A third possibility, relevant to the hypothesized bottleneck with agriculture in past 237 
decades, is that the demographic event has occurred, but too recently to produce a detectable, population 238 



 

 

genetic signal. In this case, bottlenecks reduce diversity not only directly (via the elimination of the 239 
majority of lineages in the population when the bottleneck event occurs), but also indirectly, after the 240 
bottleneck, as the new, smaller population size means that fixation at a particular locus is more likely, 241 
thus eliminating even more genetic diversity after the bottleneck event. It is possible that a bottleneck has 242 
occurred in the past decades, but we are unable to see it because there has not yet been enough time for 243 
alleles to be driven to fixation in the new, reduced populations. This effect is likely to be stronger in 244 
milkweeds, which have a roughly tenfold longer generation time than do monarchs. This is one possible 245 
explanation for why the well documented recent declines in monarch and milkweed population sizes are 246 
not reflected in our data3-5. 247 
 248 

The monarchs sampled for our D. plexippus analysis were collected by Zhan et al. (2014) between 249 

2007-2009, several years before the all-time low of the Mexican overwintering population in the winter of 250 

2013-2014 27,80. One possible explanation for why our population genetic data do not show clear signals 251 
of a recent decline is that our samples were collected before the lowest population sizes occurred. At the 252 

request of a reviewer, we ruled out this possibility by examining monarchs collected after the lowest point 253 

of the Mexican overwintering population. To do this, we used the sequences published by Talla et 254 

al. (2020)28, which were collected in 2016, and repeated our analyses with these samples (details provided 255 
in Table S3). The results of these analyses were the same as for the monarch sequences from Zhan et al., 256 

showing that our results were not being affected by missing the tail end of the monarch decline in 2013-257 
2014.  258 

Our results indicate an increase in monarch populations alongside those of common milkweed in the 259 

18th and 19th centuries. How should biologists and conservationists react to this new data? This depends 260 

largely on which hypothesis about the monarch response to this increase is correct. If the 20th century 261 

population size of the monarch was anthropogenically inflated due to elevated common milkweed 262 
abundance, this puts contemporary declines in a less worrisome light, as they may simply represent 263 

returns to pre-modern population sizes. Monarch population sizes and migratory behavior were 264 

presumably sustainable for centuries before the clearing of the forests and prairies of Eastern North 265 

America. However, if monarchs responded to increased common milkweed abundance by shifting their 266 
diets without increasing the total population, then contemporary declines may well have put the monarchs 267 

at their lowest population size since the retreat of the glaciers. It is also important to note, that while 268 

monarch and milkweed populations experienced correlated increases in the 18th and 19th centuries, this 269 

correlated increase does not necessarily imply that increase in milkweed populations is completely causal 270 
for driving monarch population growth. Rather, it is possible that the ecological factors that drove 271 

milkweed growth also resulted in other changes that were beneficial to the monarch. For instance 272 

deforestation and spread of agricultural fields could result in an increase in nectar bearing plants which 273 
would be beneficial to migrating monarchs.  274 

The results presented here suggest that the recent decline of the monarch butterfly may be (at least in 275 

part) a return to pre-modern population sizes. That said, we encourage restraint in the interpretation of 276 

these results and encourage parallel studies to test these ideas further. Fully answering this question using 277 
population genetics will probably require improvements in our current techniques for demographic 278 

modelling and/or denser sequencing of Asclepias and D. plexippus individuals than is currently available. 279 

However, there are other potential data sets that could shine light on this question. As a start, population 280 

genomic analyses for other important milkweed species could reveal whether or not they declined during 281 
the period of common milkweed's increase: lack of such declines would suggest that the expansion of A. 282 

syriaca in particular could only have increased the monarch population. Brower (1995) suggested 283 

sampling cardenolide profiles from museum specimens of monarchs captured in the 19th and 20th 284 

centuries11. These profiles can indicate the specific milkweed species those individuals used as larvae, and 285 



 

 

thus show whether or not monarchs experienced a shift in their host species as humans cleared forests and 286 

prairies. Shifts to more diversity in milkweed hosts might also be detectable in more recent specimens 287 

collected on the East Coast of North America, as farming has become less prevalent in this region over 288 
past decades. The presence of such recent shifts (e.g., on to A. incarnata) would support the notion that 289 
changes in the availability of some hosts causes shifts in use of others, as hypothesized above. 290 

We emphasize that our results do not directly bear on current efforts to support monarch butterfly 291 

conservation. Regardless of how many monarchs were in North America in 1600, the current monarch 292 

population brings delight to people across North America and serves as a key conservation icon which 293 

introduces many non-scientists to the importance of invertebrate conservation, pollination biology, 294 
migratory behavior, and more. Having fewer of these charismatic insects present would be a loss to 295 
humankind regardless of how many of them were present a few centuries ago. 296 
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 310 

Figure/table legends: 311 

FIGURE 1 Population genetic structure of A. syriaca: A: Our sampling scheme covers most of the 312 

North American range of A. syriaca. Circles represent sites sampled for the Broad Range data sets, while 313 
squares represent sites sampled for the Core Range data sets. Sites are colored according to the rough 314 

geographic zones to which we assigned them for the purposes of calculating Fst. We assigned the Core 315 

Range site in Illinois to the southeastern population instead of the southwestern population, since 316 

otherwise we would have only one locality representing a population in that data set. The gray region is 317 
an approximation of the range of A. syriaca based on specimen records in Global  Biodiversity 318 

Information Facility75. B: STRUCTURE found no evidence of population structure among our milkweed 319 

specimens. The thin vertical bars represent individual milkweeds, and the four geographic zones are 320 

separated by thin white bars. Each bar is colored according to the cluster(s) to which it belongs. We 321 
present the results for the simplest analysis, in which STRUCTURE assumes K=2 clusters, and the 322 

analysis chosen by the Evanno method as optimal, K=11 68.  These results show strong genetic 323 

homogeneity across milkweed’s range. These data are from the Broad Range GBS data set; our other data 324 

sets produced similar results and are shown in the Supporting Information for all K-values from 2-20. C: 325 

PCA demonstrates weak geographic signal among some subsets of SNPs. Shown here are the first 326 

two principal components axes of allele frequencies, with each point representing an individual 327 

milkweed from the Broad Range GBS data set. Points are colored according to origin using the same 328 

color scheme as in Fig. 1A. These two PC axes capture about 4% of the total variation. The inset 329 

shows the eigenvalues for each principal component; these decline quite slowly, indicating that 330 



 

 

each individual PC axis explains relatively little of the variation in genotype. PC plots for additional 331 

axes, and for other data sets, show similarly weak levels of geographic signal, and are given in the 332 

Supporting Information. See also Figure S1.  333 

 334 

FIGURE 2 Population demographic modeling of A. syriaca and D. plexippus: Support for each of our 335 
hypothesized demographic events in our three milkweed and one monarch data sets. The Random 336 
Forest consensus on whether each event is present in the population history of that species is 337 
given, along with the estimated posterior probability of each in parentheses. The post-2013 338 
Monarch dataset was added post-hoc at the suggestion of a reviewer. See also Table S3.  339 

 340 
 341 
Table 1 Population genetics of A. syriaca and D. plexippus: 342 

127 loci had more than 2 alleles and were excluded from the ABC-RF analysis; a further 24 invariant 343 

SNPs were excluded from this analysis as well. 21272 loci had more than 2 alleles and were excluded 344 

from the ABC-RF analysis; a further 125 invariant SNP were excluded from this analysis as well. 3566 345 

loci had more than 2 alleles and were excluded from the ABC-RF analysis; a further 579 invariant SNP 346 
were excluded from this analysis as well. 1: AMOVA, p < 1*10-4. 2: AMOVA, p = 0.47. n: Sample size. 347 

Ho: Observed heterozygosity. He: Expected heterozygosity. FIS: Proportion of genetic variation in the 348 

population found in an individual. FST: Proportion of total genetic variance partitioned among 349 
populations.  350 

 351 

Table 2 Population structure of A. syriaca: 352 
 353 
GBS: Data from Genotyping By Sequencing approach. WGR: Data from Whole Genome 354 

Resequencing approach. 355 

 356 

 357 

STAR Methods 358 
 359 
Lead contact 360 

Requests for additional information or resources should be directed to Joshua Puzey (jrpuzey@wm.edu).  361 

Materials availability  362 

This study did not generate new unique reagents.  363 

 364 

Data and code availability:  365 

All original code has been deposited at Dryad and is publicly available as of the date of publication. 366 
https://doi.org/10.5061/dryad.k98sf7mc4  367 



 

 

Raw sequencing data (GBS) used for population genetic analysis of Asclepias syriaca are available on 368 
SRA (PRJNA975199).  369 

Raw sequencing data (WGR) used for population genetic analysis of Asclepias syriaca are available on 370 
SRA (PRJNA975923).  371 

The genome assembly and annotation of A. syriaca prsesented in this paper is available on GenBank 372 
(PRJNA787127).  373 

 374 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 375 

The GBS milkweed samples used in this study were collected from wild grown plant at locations depicted 376 

in Figure 1.  Plants for WGS were grown in the W&M greenhouse under ambient conditions prior 377 
to collecting a leaf for DNA extraction and sequencing.  378 

 379 

METHOD DETAILS 380 

To investigate correlated demographic histories of monarchs and milkweeds, we used five 381 

different data sets (Figure 1). In brief, the five data sets were: 382 

(1) Core Range GBS: We used a GBS approach to sequence SNPs from 87 plants from 30 sites, 383 

primarily collected in the eastern portion of this species’ range, with 1-5 plants per site. This data 384 

set includes 8 individuals collected from 4 sites in eastern Europe, where A. syriaca is an 385 

invasive species. Sites are mapped in Figure S1. The GBS approach was adopted to maximize 386 

the number of individuals genotyped at a subset of loci across the entire genome.  387 

(2) Broad Range GBS:  We used a Genotyping by Sequencing (GBS) approach to sequence 388 

SNPs from 96 plants from 47 sites across the North American range of this species, with 1-5 389 

plants per site. Sites are mapped in Figure S1. 390 

(3) Broad Range WGR: We used a skimming Whole Genome Resequencing (WGR) approach at 391 

low coverage to identify SNPs from plants collected from 48 sites across the North American 392 

range of this species, with 1 plant per site. Sites are mapped in Figure S1. The WGR approach 393 

was used to ensure that our results were not dependent on the specific SNP set produced by GBS. 394 

We analyzed the two different GBS datasets separately as they were produced in different labs 395 

and had different sequencing coverages.  396 

For monarch butterflies, we used: 397 

(4) the whole genome sequences published by Zhan et al. (2014), using 28 butterflies collected 398 

in 2006-2007 across the North American migratory range of this species27. 399 

(5) A fifth D. plexippus dataset was added post-hoc at the suggestion of a reviewer. The reviewer 400 

hypothesized that the reason why no recent bottleneck (see Figure 2) was detected in the 401 

monarchs was because the Zhan et al. dataset consists of monarchs collected before nadir of the 402 

monarch overwintering population in 2013-14.  To address this idea, we conducted demographic 403 

analyses on a dataset of D. plexippus genotypes from individuals collected post-201328 . This 404 

dataset consisted of WGS from 29 butterflies collected from the Western North American 405 

monarch population (which were genetically indistinguishable from Eastern North American 406 

monarchs)28 .  407 

Genome Assembly and Annotation 408 



 

 

Genome sequencing and assembly of A. syriaca:  409 

 Genomic DNA was prepared from one individual of Asclepias syriaca from Stroglach, 410 

Austria (46.66N, 14.47E) and sequenced using PacBio CLR technology on six SMRT cells. 411 

Illumina sequence was generated from genomic DNA on one lane of Hi-Seq 2 x 150 bp. Kmer 412 

analysis was performed using this Illumina sequence, Jellyfish29, and Genomescope31. Hi-C 413 

libraries were prepared using the Proximo Hi-C kit for plants (Phase Genomics) and sequenced 414 

on one lane of Illumina  2 x 150 bp. A. syriaca PacBio sequence was assembled using Falcon v 415 

2017.11.02-16.04 and falcon-kit 1.3.0 and the configuration file (fc_run.cfg)31. The assembly 416 

was corrected using the Illumina sequence and Pilon v1.23. Redundancy was removed using 417 

Purge Hapolotigs32. Hi-C was used to scaffold the contigs using 3D-DNA v 180419 33 and gaps 418 

were filled with LR_gapcloser34 and corrected PacBio reads. 419 

Genome annotation of A. syriaca: 420 

 For repeat identification and masking, LTR_retriever35 was used with outputs from 421 

LTRharvest36 and LTR_FINDER37 to identify long terminal repeat retrotransposons (LTRs). The 422 

LTR library was then used to hard mask the genome, and RepeatModeler version: open-1.0.1138 423 

was used to identify additional repetitive elements in the remaining unmasked segments of the 424 

genome. Protein-coding sequences were excluded using blastx v2.7.1+ 36,39 results in conjunction 425 

with the ProtExcluder.pl script from the ProtExcluder v1.2 package40. The libraries from 426 

RepeatModeler and LTR_retriever were then combined and used with RepeatMasker version: 427 

open-4.0.7 38 to produce the final masked version of the genome. 428 

 Libraries with an insert size of 350 bp were prepared from leaf RNA and sequenced on 429 

one lane of 2 x 100 bp Illumina Hi-Seq. RNA-seq reads were mapped to the genome with 430 

HISAT2 v2.2.0 41. Portcullis v 1.1.2 42 and Mikado v 1.2.2 43 were used to process and filter the 431 

resulting bam files. Augustus v 3.2.0 44 and Snap v 2006-07-28 45 were trained and implemented 432 

through the Maker v 2.31.10 pipeline46, with proteins from Swiss-Prot47 and processed RNA-seq 433 

added as evidence. Gene models were filtered with the following criteria: 1) at least one match 434 

found in the Trembl database (4-17-19)47 with an E-value less than 1e-20, 2) InterProScan 435 

matches to repeats were removed, 3) genes with an AED score of 1 and no InterPro domain were 436 

removed, and 4) single-exon genes with no InterPro domain were removed. Functional 437 

annotation and classification were performed using BLASTx v2.7.1+ 39 and InterProScan v5.36-438 

75.0 48. Both genome and annotation completeness were assessed by BUSCO v3.1.0 49 using the 439 

embryophyta lineage. 440 

 441 

SNP Calling 442 

Genotyping by sequencing (GBS) of the A. syriaca Core Range data set. 443 

Common milkweed plants collected from different places around US and Europe were 444 

germinated and cultivated in our greenhouse. Fresh collected tissue was flash frozen in liquid 445 

nitrogen. The DNA was extracted from the leaf of individuals using a CTAB (cetyltrimethyl 446 

ammonium bromide)-based extraction protocol (adapted from 50). The DNA was quantified 447 

using a CFX384 C1000 Real-Time thermal cycler (BioRad, Hercules, CA) and normalized to 448 

30–100 ng/ul using a GBFit Arise Pipetting System (Pacgen Inc., Irvine, CA). Quality checks 449 

were performed by agarose gel observation of 300 ng of undigested and HindIII digested DNA 450 

https://drive.google.com/file/d/1bptV7rydbtj0TU2h0vWmGJ6byMm5zD80/view?usp=sharing


 

 

per sample. Genotyping was performed following the GBS protocol51, using ApeKI as the 451 

restriction enzyme. The libraries were sequenced on a HiSeq 2500 system (Illumina Inc., USA) 452 

with the single-end mode and read length of 101 bp. 453 

Genotyping by sequencing (GBS) of the A. syriaca Broad Range data set. 454 

DNA was extracted from flash-frozen leaf samples using the Qiagen DNeasy Plant extraction kit. 455 

100ng of sample DNA was used for GBS library preparation using the ApeKI restriction 456 

enzyme, as above. 95 samples and a water control (blank) were pooled per multiplex and 457 

sequenced using 100bp single-end mode on the HiSeq 2500 at the University of Rochester 458 

Medical Center.  459 

Whole Genome Resequencing (WGR) of the A. syriaca Broad Range data set.  460 

DNA was extracted from A. syriaca using Qiagen DNeasy kit, libraries prepared using Illumina 461 

library DNA kit, and sequenced using Illumina HiSeq 2x150.  462 

SNP calling of the A. syriaca Core and Broad Range GBS data sets 463 

 Genotyping By Sequencing reads were demultiplexed using Stacks 2.2 52,53. Reads from 464 

each individual where then mapped against the A. syriaca genome using Bowtie2 2.3.2 54, using 465 

end-to-end alignment and the “--very-sensitive” alignment settings. Reads with a mapping 466 

quality lower than 5 were discarded using samtools 1.5 55. We then used Stacks in combination 467 

with custom scripts to call SNPs and to filter low-quality individuals and loci from our data set. 468 

The scripts will be deposited upon acceptance to Dryad. Briefly, several individuals in our data 469 

set had been identified as possible A. speciosa or A. syriaca x A. speciosa hybrids. Since A. 470 

syriaca and A. speciosa can be difficult to distinguish when they are not in flower, we did an 471 

initial clustering of our data using the find.clusters function implemented in adegenet 2.1.1 56,57 472 

in R 3.5.2 (R Core Team 2018). This identified several more putative A. speciosa individuals, 473 

which were removed. 474 

 Since A. syriaca can reproduce asexually, we also screened our data set for clones; i.e., 475 

different ramets of the same genet. To do so, we considered all pairs of individuals, calculating 476 

what percentage of their homozygous loci had identical SNP calls. Across all pairs of 477 

individuals, this distribution was bimodal. The vast majority of pairs were normally distributed 478 

around a sequence identity of 0.898, with a small number of comparisons clearly outside of this 479 

distribution, clustered around 0.999. Accordingly, we considered all pairs of individuals with a 480 

sequence identity greater than 0.96 to be clones. Where clones were found at the same site, we 481 

randomly selected a single exemplar, discarding all its clones from the data set. A few pairs of 482 

clones were found in different sites; in this case we discarded both members of the pair. 483 

 Combining the Broad Range and Core Range GBS Data Sets in subsequent analyses 484 

produced strong batch effects between the two data sets (see below), likely because they were 485 

sequenced on different machines, at different times, to different read depths. We therefore 486 

performed the following analyses separately for the two data sets. 487 

 After discarding A. speciosa, clones, and individuals for which relatively few loci (i.e., 488 

less than 80% of the total number of loci) had been sequenced, we then randomly downsampled 489 

the Core Range data set to include a maximum of 5 individuals per site, to homogenize sampling 490 

effort across the sites. Finally, we used Stacks to filter SNPs across these individuals, including 491 

SNPs with observed heterozygosity less than or equal to 0.6 and present in at least 80% of 492 

individuals. Where multiple SNPs were found at the same GBS locus, we randomly excluded all 493 



 

 

but one. To reduce linkage disequilibrium, we filtered SNPs so that each was at least 50 kb from 494 

its nearest neighbor. 495 

 We also used this data set, after excluding invasive individuals collected from Europe 496 

using vcftools 0.1.15 58, for demographic modelling. This data set was converted to DIYABC 497 

format using vcf2diyabc.py 59. 498 

Identifying batch effects in GBS data sets 499 

         We identified SNPs from the combined Cornell and W&M datasets using the same stacks 500 

pipeline described above. This resulted in 872 SNP markers from 181 A. syriaca individuals. 501 

These markers were then used in a STRUCTURE analysis identical to that described below, with 502 

the exception that we only analyzed possible numbers of clusters between K = 2 and K = 10. 503 

STRUCTURE results were processed and visualized using the same pipeline described below. 504 

         For many values of K, the differences between the STRUCTURE results for the Cornell 505 

data set and the W&M data set were subtle: for instance, for K = 2, Cornell individuals had 506 

approximately 25-35% ancestry from Cluster 1, while W&M individuals had around 35-45% 507 

ancestry from the same cluster. We therefore also used a second clustering method implemented 508 

in the adegenet 2.1.2 package (Jombart 2008, Jombart and Ahmed 2011) in R, which uses a K-509 

means approach to assign individuals to one of K clusters, with the appropriate K chosen based 510 

on the Bayesian Information Criterion. 511 

         Runs with K = 2 and K = 3 produced the two lowest BICs, which were nearly equal. Both 512 

runs produced similar results, with the cluster assignments almost exactly mirroring membership 513 

in the Cornell or W&M datasets (Table S4). The difference between the two is that at K = 3, 514 

some European individuals from the Cornell data set were split off from the remainder of the 515 

Cornell individuals. 516 

SNP Calling of the A. syriaca Broad Range WGR data set 517 

 We called SNPs using the Genome Analysis Toolkit (GATK) pipeline60-62. Reads from 518 

each individual were mapped against the A. syriaca genome using Bowtie2 2.3.2, with an 519 

expected range of inter-mate-pair distances of 100-2000 and the “--very-sensitive-local” 520 

alignment settings. Indicies of the genome were first built using both bowtie2 and samtools, and 521 

a sequence dictionary created using Picard 2.18.15 from the Genome Analysis Toolkit60-62. 522 

         We further used Picard to fix mate pair information, mark and remove duplicate reads, 523 

and replace read group names; we then used samtools to index the alignments for each 524 

resequenced individual. We then called polymorphisms for each individual with the 525 

HaplotypeCaller tool, then combined the outputs from each scaffold using GenomicsDBImport. 526 

We then used GenotypeGVCFs to do joint genotyping on all individuals simultaneously. Indels 527 

were removed with the SelectVariants tool, and the remaining SNPs were filtered using the 528 

VariantFiltration tool, discarding SNPs for which any of the following were true: quality by 529 

depth (QD) less than 2; phred-scaled p-value of Fisher’s Exact Test for strand bias (FS) greater 530 

than 60; root mean square of the mapping quality (MQ) less than 35; mapping quality rank sum 531 

test (MQRankSum) less than -12.5; read position rank sum test (ReadPosRankSum) less than -8. 532 

We also filtered out loci with greater than 5% missing data or a minimum read depth of less than 533 

5, as well as removing individual genotypes with a minimum quality 5 or less. Finally, SNPs 534 



 

 

were thinned to be 50 kb apart or more, so as to match the amount of thinning done for the GBS 535 

data set.  536 

SNP Calling of the D. plexippus WGR data set 537 

We used the whole genome sequencing data of Zhan et al. (2014) to gather genomic data from 538 

29 monarch butterflies collected in North America (which individual specimens we used are 539 

given in Table S5; we chose migratory individuals from the continental United States and 540 

Mexico, excluding non-migratory individuals from South Florida)27. We called SNPs using the 541 

pipeline described above, aligning reads from each individual to the D. plexippus genome of 542 

Zhan et al. (2011), GenBank accession GCA_000235995.2 63. SNPs were filtered using the same 543 

criteria as for the A. syriaca WGR data, except that SNPs were thinned to be one per contig of 544 

the D. plexippus genome in order to produce a roughly similar number of SNPs to those found in 545 

the A. syriaca data sets. Average read depth at genotyped SNPs was calculated for each of our 546 

datasets and are as follows: Broad Range GBS: 300; Core-range GBS: 217; WGR: 17; Danaus 547 

from Zhan et al (2014)27: 10; Danaus from Talla et al (2020)28: 12.  548 

Filtering of genotypes from the Talla et al. 2020 D. plexippus dataset 549 

We used the final set of SNP genotypes used by Talla et al. (2020)28, available at 550 

https://github.com/venta380/Monarch_genomics. From this data set, we chose the 29 Western 551 

North American monarch individuals. SNPs were filtered using the same parameters as used for 552 

the Zhan et al (2014) monarch data set27. 553 

QUANTIFICATION AND STATISTICAL ANALYSIS 554 

Population Genetic Analysis 555 

FST analysis and basic population genetic statistics 556 

 Using all three A. syriaca data sets, and the two D. plexippus data sets, we estimated 557 

several population genetic statistics in R, using the adegenet and hierfstat packages56,57,64. We 558 

assigned each individual to one of five broad geographic populations based on its location 559 

(Figure 1A). Population assignments are shown in Figure 1A. We tested whether this 560 

arrangement captured significant genetic structuring using an AMOVA test, using the pegas 561 

method65 as implemented in poppr 2.8.2 66 with 10,000 permutations. 562 

Population genetic statistics for each of the populations are shown in Tables 1 and 2 of 563 

the main text. The genetic differentiation of the subpopulations was low, but statistically 564 

significant for the GBS data sets (FST = 0.008 for Broad Range; 0.052 for Core Range; AMOVA 565 

p < 1*10-4 for both). For the Broad Range WGR data set, genetic differentiation was even lower, 566 

and not significant (Fst = -0.002, or effectively zero, AMOVA p = 0.47), possibly due to the 567 

smaller number of individuals in each population. In the Core Range GBS data set, the greatest 568 

pairwise FST was between the invasive European population and native populations; pairwise FST 569 

was lower between the northeast and southeast populations by a factor of 10. In the Broad Range 570 

GBS data set, the greatest pairwise FST was between the Northwest population and the two 571 

eastern populations, although even this was relatively low, at 0.02. Within each dataset, 572 

heterozygosity was relatively constant among populations, with the exception that both observed 573 

and expected heterozygosity were lower in Europe than in the other populations in the Core 574 

https://github.com/venta380/Monarch_genomics


 

 

Range data set, showing reduced genetic diversity in the invasive range of A. syriaca. The A. 575 

syriaca specimen chosen for genome sequencing was an invasive, European milkweed, on the 576 

logic that the invasion process had likely led to more inbreeding than is usual in other A. syriaca 577 

populations, and the reduced heterozygosity of this population suggests that this was indeed the 578 

case. The reduced heterozygosity is beneficial for genome assembly.  579 

 580 

STRUCTURE analysis 581 

 To examine clustering and admixture within the A. syriaca populations, we used 582 

STRUCTURE 2.3.4 67. We analyzed all three data sets using an admixture model within 583 

STRUCTURE and all possible values for the number of clusters (k) between 1 and 20; running 584 

10 replicates for each k value. For each run we did 1 million iterations beginning after an initial 585 

burn-in period of 100,000 iterations. We chose the best number of clusters using the Evanno 586 

method68 as implemented in Structure Harvester 0.6.94 69. We also used Structure Harvester to 587 

convert STRUCTURE output files for use with CLUMPP 1.1.2 70. We used CLUMPP to assign 588 

consistent cluster identities across our multiple replicates for each k value above 1, using the 589 

LargeKGreedy algorithm with 1000 random input orders and the G’ matrix similarity statistic. 590 

PCA analysis 591 

 To complement our STRUCTURE analysis, we also performed a PCA analysis to 592 

examine geographic distribution of genetic structure in a less parameterized way using the 593 

ade471,72 and adegenet56,57 packages in R. We first scaled each genotype using the scaleGen() 594 

function, replacing missing data with the mean allele frequency for that SNP, and then performed 595 

a Principle Components Analysis on these scaled allele frequencies. 596 

Applying the Evanno method to our STRUCTURE results resulted in an optimal number 597 

of k = 5 (Figure S2) for the Core Range Data Set. Examination of the STRUCTURE results 598 

shows a very similar pattern for all values between k = 2 and k = 5: a single cluster dominates all 599 

individuals from North America, and a second cluster is found in a number of invasive A. syriaca 600 

collected from Europe (Figure S2). Other clusters, when present, account for very little of the 601 

ancestry of any A. syriaca specimens. For the Broad Range data sets, the Evanno method 602 

selected k = 11 for the GBS data set and k = 2 for the WGR data set (Figure S2). However, the 603 

Evanno method is unable to consider k = 1 as the best cluster, since it uses changes in the 604 

likelihood of the data between k = x and k = x-1. Visualizing the cluster results showed patterns 605 

in which each genetic cluster was found in every individual to a similar extent, which suggests 606 

that there is minimal geographic structuring within the Broad Range data set (Figures S2).  607 

 608 

Demographic modelling 609 

We next used all five data sets (3 milkweed and 2 monarch) to estimate the recent demographic 610 

history of the two species. To investigate the recent demographic history of monarchs and 611 

common milkweed, we used an ABC-RF algorithm for model selection and parameter 612 

estimation. 613 

 As our observed data, we used the five monarch and milkweed data sets described above. 614 

Guided by the results of our STRUCTURE analysis, we treated A. syriaca as a single population. 615 

We simulated data sets using DIYABC 2.1.0 73 to test the following hypotheses (visualized in 616 

Figure 2): 617 



 

 

1. Have A. syriaca populations experienced a bottleneck within past decades, potentially 618 

due to the increased use of herbicide in crop fields as described by, e.g., Pleasants 619 

(2017)25? 620 

2. Have A. syriaca populations expanded in the past centuries, potentially due to the 621 

conversion of native forests and prairies to agriculture land, as suggest by, e.g., Brower 622 

(1995)11? 623 

3. Have A. syriaca populations expanded in prior millennia, potentially due to the retreat of 624 

the glaciers after the last glacial maximum23? 625 

Considering every possible combination of the three hypotheses produced 8 demographic 626 

scenarios (visualized in Figure 2). We used DIYABC to simulate 80,000 data sets across all 8 627 

demographic scenarios. For each scenario, population sizes were selected from uninformative 628 

prior distributions, while event times were chosen from uniform distributions. We chose event 629 

times to correspond to 1945-2015 for the recent bottleneck, 1751-1899 for the recent expansion, 630 

and 5-12 thousand years ago for the ancient expansion. A. syriaca plants flower in their second 631 

growing season74, so we assumed a 2 year generation time for this species. D. plexippus has 4-5 632 

generations per year, so we assumed a 0.2-0.25 year generation time for that species, which 633 

produces the values shown in Table Db. We outputted all 4 summary statistics calculated by 634 

DIYABC, which would be used for ABC-RF model selection, alongside the linear discriminant 635 

axes that were the combinations of those summary statistics that best distinguished the 636 

demographic models (one variable, “Proportion of zero values”, was invariant across our 637 

simulations since only variable SNPs were used; this variable was not used in the following 638 

analyses). We repeated this process 20 additional times, producing a total of 105 simulation sets, 639 

21 for each of our three milkweed and two monarch data sets. 640 

 Following Pudlo et al. (2016)12, and using the abcrf package in R, we performed a 641 

number of validations of our ABC-RF approach: We first tested the compatibility of our models 642 

with our observed data by projecting our observed data, along with the simulations, along the 643 

linear discriminant (LD) axes that best distinguished the 8 models given the set of summary 644 

statistics (Figure S2)  12,15. We then constructed a random forest of 1000 decision trees, each of 645 

which provided a prediction of which demographic model produced a given set of summary 646 

statistics. To test whether we had produced a sufficient number of simulations, we compared the 647 

error rate of this random forest to that of a second random forest constructed using only 80% of 648 

the 80,000 simulations. Finally, to test whether 1000 decision trees was a sufficient number, we 649 

calculated the prior error rate using forests of different size, from 40-1000 (Table S1). 650 

 Preliminary analyses showed that using the default settings for constructing the random 651 

forest produced substantial overfitting, so based on these analyses we reduced the maximum 652 

depth of each tree in the forest to 8 (for random forests to determine the overall model) or 16 (for 653 

random forests to determine the presence of a single demographic event) to minimize overfitting 654 

(results not shown).  655 

For each of our three milkweed and the two monarch data sets, we then produced 20 different 656 

random forests using 20 different simulation sets. For each random forest, we then measured its 657 

accuracy in predicting the training data set used to produce the random forest. We also measured 658 



 

 

its accuracy in predicting the 21st data set, which was our testing data set, to ensure that training 659 

and testing accuracy were similar (i.e., the model was not overfitting our data) (Table S2).  660 

We then fed our observed data set into these 20 random forests in order to estimate the best 661 

model and approximate its posterior probability. Because the posterior probability of any single 662 

model was low, we followed the same procedure to produce separate random forests to 663 

approximate posterior probabilities for each of the three hypotheses listed above, i.e., by 664 

grouping together all models that had a recent bottleneck vs all models that did not, etc. 665 

We then used the approach of Raynal et al. (2019), employing the ABC-RF approach to 666 

estimate parameter values15. We first used DIYABC to simulate 10,000 data sets for the 667 

single best demographic scenario. We then used this simulation set to estimate posterior 668 

medians and quantiles of a number of demographic parameters using ABC-RF with a 669 

maximum tree depth of 8. 670 
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