695 research outputs found
Stationary States in Bistable System Driven by L\'evy Noise
We study the properties of the probability density function (PDF) of a
bistable system driven by heavy tailed white symmetric L\'evy noise. The shape
of the stationary PDF is found analytically for the particular case of the
L\'evy index \alpha = 1 (Cauchy noise). For an arbitrary L\'evy index we employ
numerical methods based on the solution of the stochastic Langevin equation and
space fractional kinetic equation. In contrast with the bistable system driven
by Gaussian noise, in the L\'evy case the positions of maxima of the stationary
PDF do not coincide with the positions of minima of the bistable potential. We
provide a detailed study of the distance between the maxima and the minima as a
function of the potential's depth and L\'evy noise parameters.Comment: Accepted to EPJS
A direction finding technique for the ULF electromagnetic source
International audienceA technique of direction finding is proposed, which can be applied to the magnetic-dipole type source located in the conductive ground. To distinguish a weak ULF source signal from the natural noise a network of multicomponent magnetometers is supposed to be used. The data obtained by the ground-based stations is processed in such a way that a set of partial derivatives of the magnetic perturbations due to the source are found. Comparing these derivatives with theoretical formulae makes it possible, in principle, to find the ULF source parameters such as the distance and amplitude. Averaging the data and a special procedure are proposed in order to exclude random fluctuations in the magnetic moment orientation and to avoid hydrogeological and other local factors
Determination of chemical composition of the atmosphere of Venus by the interplanetary station ''Venera-4''
Venera-4 observation of chemical composition of Venus atmospher
Measurements of the composition of aerosol component of Venusian atmosphere with Vega 1 lander, preliminary data
Preliminary investigation of mass spectra of gaseous products of pyrolyzed Venusian cloud particles collected and analyzed by the complex device of mass-spectrometer and collector pyrolyzer on board Vega 1 lander revealed the presence of heavy particles in the upper cloud layer. Based on 64 amu peak (SO2+), an estimate of the lower limit of the sulfuric acid aerosol content at the 62 to 54 km heights of approximately 2.0 mg/cu m is obtained. A chlorine line (35 and 37 amu) is also present in the mass spectrum with a lower limit of the chlorine concentration of approximately 0.3 mg/ cu m
Excitation of the ionospheric resonance cavity by neutral winds at middle latitudes
International audienceA new mechanism for the ionospheric Alfvén resonator (IAR) excitation at middle latitudes is considered. It is shown that the ionosphere wind system in this region is capable of sustaining the generation of geomagnetic perturbations that can be detected by ground magnetometers. The general IAR dispersion relation describing the linear coupling of the shear Alfvén and fast magnetosonic/compressional modes is obtained. The dependence of the IAR eigenfrequencies and damping rates on the perpendicular wave number and on the ground conductivity during the day- and nighttime conditions is analyzed both analytically and numerically. In order to demonstrate the IAR excitation by neutral winds the power spectra of the geomagnetic perturbation on the ground surface are calculated. Furthermore, it is found that Kolmogorov spectra of the ionospheric turbulent neutral winds and the IAR eigenfrequencies lie in the same frequency range that make it possible to enhance the IAR excitation. The relevance of the developed theoretical model to the ground-based observations is stressed
Evolution and global collapse of trapped Bose condensates under variations of the scattering length
We develop the idea of selectively manipulating the condensate in a trapped
Bose-condensed gas, without perturbing the thermal cloud. The idea is based on
the possibility to modify the mean field interaction between atoms (scattering
length) by nearly resonant incident light or by spatially uniform change of the
trapping magnetic field. For the gas in the Thomas-Fermi regime we find
analytical scaling solutions for the condensate wavefunction evolving under
arbitrary variations of the scattering length . The change of from
positive to negative induces a global collapse of the condensate, and the final
stages of the collapse will be governed by intrinsic decay processes.Comment: 4 pages, LaTeX, other comments are at
http://WWW.amolf.nl/departments/quantumgassen/TITLE.HTM
Spatial and Wavenumber Resolution of Doppler Reflectometry
Doppler reflectometry spatial and wavenumber resolution is analyzed within
the framework of the linear Born approximation in slab plasma model. Explicit
expression for its signal backscattering spectrum is obtained in terms of
wavenumber and frequency spectra of turbulence which is assumed to be radially
statistically inhomogeneous. Scattering efficiency for both back and forward
scattering (in radial direction) is introduced and shown to be inverse
proportional to the square of radial wavenumber of the probing wave at the
fluctuation location thus making the spatial resolution of diagnostics
sensitive to density profile. It is shown that in case of forward scattering
additional localization can be provided by the antenna diagram. It is
demonstrated that in case of backscattering the spatial resolution can be
better if the turbulence spectrum at high radial wavenumbers is suppressed. The
improvement of Doppler reflectometry data localization by probing beam focusing
onto the cut-off is proposed and described. The possibility of Doppler
reflectometry data interpretation based on the obtained expressions is shown.Comment: http://stacks.iop.org/0741-3335/46/114
Stabilization of the number of Bose-Einstein condensed atoms in evaporative cooling via three-body recombination loss
The dynamics of evaporative cooling of magnetically trapped Rb atoms
is studied on the basis of the quantum kinetic theory of a Bose gas. We carried
out the quantitative calculations of the time evolution of conventional
evaporative cooling where the frequency of the radio-frequency magnetic field
is swept exponentially. This "exponential-sweep cooling" is known to become
inefficient at the final stage of the cooling process due to a serious
three-body recombination loss. We precisely examine how the growth of a
Bose-Einstein condensate depends on the experimental parameters of evaporative
cooling, such as the initial number of trapped atoms, the initial temperature,
and the bias field of a magnetic trap. It is shown that three-body
recombination drastically depletes the trapped Rb atoms as the system
approaches the quantum degenerate region and the number of condensed atoms
finally becomes insensitive to these experimental parameters. This result
indicates that the final number of condensed atoms is well stabilized by a
large nonlinear three-body loss against the fluctuations of experimental
conditions in evaporative cooling.Comment: 7 pages, REVTeX4, 8 eps figures, Phys. Rev A in pres
Study of electromagnetic emissions associated with seismic activity in Kamchatka region
International audienceA review of data processing of electromagnetic emission observation collected at the Complex Geophysical Observatory Karimshino (Kamchatka peninsula) during the first 5 months (July?November, 2000) of its operation is given. The main goal of this study addresses the detection of the phenomena associated with Kamchatka seismic activity. The following observations have been conducted at CGO: variations of ULF/ELF magnetic field, geoelectric potentials (telluric currents), and VLF signals from navigation radio transmitters. The methods of data processing of these observations are discussed. The examples of the first experimental results are presented
- …
