761 research outputs found
Orbital Configurations and Magnetic Properties of Double-Layered Antiferromagnet CsCuClBr
We report the single-crystal X-ray analysis and magnetic properties of a new
double-layered perovskite antiferromagnet, CsCuClBr. This
structure is composed of CuClBr double layers with elongated
CuClBr octahedra and is closely related to the SrTiO
structure. An as-grown crystal has a singlet ground state with a large
excitation gap of K, due to the strong
antiferromagnetic interaction between the two layers. CsCuClBr
undergoes a structural phase transition at K accompanied
by changes in the orbital configurations of Cu ions. Once a
CsCuClBr crystal is heated above , its magnetic
susceptibility obeys the Curie-Weiss law with decreasing temperature even below
and does not exhibit anomalies at . This implies that in
the heated crystal, the orbital state of the high-temperature phase remains
unchanged below , and thus, this orbital state is the metastable
state. The structural phase transition at is characterized as an
order-disorder transition of Cu orbitals.Comment: 6pages. 6figures, to appear in J. Phys. Soc. Jpn. Vol.76 No.
Ab Initio Calculation of Impurity Effects in Copper Oxide Materials
We describe a method for calculating, within density functional theory, the
electronic structure associated with typical defects which substitute for Cu in
the CuO2 planes of high-Tc superconducting materials. The focus is primarily on
Bi2Sr2CaCu2O8, the material on which most STM measurements of impurity
resonances in the superconducting state have been performed. The magnitudes of
the effective potentials found for Zn, Ni and vacancies on the in-plane Cu
sites in this host material are remarkably consistent with phenomenological
fits of potential scattering models to STM resonance energies. The effective
potential ranges are quite short, of order 1 A with weak long range tails, in
contrast to some current models of extended potentials which attempt to fit STM
data. For the case of Zn and Cu vacancies, the effective potentials are
strongly repulsive, and states on the impurity site near the Fermi level are
simply removed. The local density of states (LDOS) just above the impurity is
nevertheless found to be a maximum in the case of Zn and a local minimum in
case of the vacancy, in agreement with experiment. The Zn and Cu vacancy
patterns are explained as due to the long-range tails of the effective impurity
potential at the sample surface. The case of Ni is richer due to the Ni atom's
strong hybridization with states near the Fermi level; in particular, the short
range part of the potential is attractive, and the LDOS is found to vary
rapidly with distance from the surface and from the impurity site. We propose
that the current controversy surrounding the observed STM patterns can be
resolved by properly accounting for the effective impurity potentials and
wave-functions near the cuprate surface. Other aspects of the impurity states
for all three species are discussed.Comment: 37 pp. pdf including figures, submitted to Phys. Rev.
Water Ice and Dust in the Innermost Coma of Comet 103P/Hartley 2
On November 4th, 2010, the Deep Impact eXtended Investigation (DIXI)
successfully encountered comet 103P/Hartley 2, when it was at a heliocentric
distance of 1.06 AU. Spatially resolved near-IR spectra of comet Hartley 2 were
acquired in the 1.05-4.83 micron wavelength range using the HRI-IR
spectrometer. We present spectral maps of the inner ~10 kilometers of the coma
collected 7 minutes and 23 minutes after closest approach. The extracted
reflectance spectra include well-defined absorption bands near 1.5, 2.0, and
3.0 micron consistent in position, bandwidth, and shape with the presence of
water ice grains. Using Hapke's radiative transfer model, we characterize the
type of mixing (areal vs. intimate), relative abundance, grain size, and
spatial distribution of water ice and refractories. Our modeling suggests that
the dust, which dominates the innermost coma of Hartley 2 and is at a
temperature of 300K, is thermally and physically decoupled from the
fine-grained water ice particles, which are on the order of 1 micron in size.
The strong correlation between the water ice, dust, and CO2 spatial
distribution supports the concept that CO2 gas drags the water ice and dust
grains from the nucleus. Once in the coma, the water ice begins subliming while
the dust is in a constant outflow. The derived water ice scale-length is
compatible with the lifetimes expected for 1-micron pure water ice grains at 1
AU, if velocities are near 0.5 m/s. Such velocities, about three order of
magnitudes lower than the expansion velocities expected for isolated 1-micron
water ice particles [Hanner, 1981; Whipple, 1951], suggest that the observed
water ice grains are likely aggregates.Comment: 51 pages, 12 figures, accepted for publication in Icaru
Recommended from our members
Divergent drivers of leaf trait variation within species, among species, and among functional groups.
Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage
Lunar multispectral mosaics from Galileo's second Earth-Moon flyby
Galileo's Solid-State Imaging (SSI) experiment acquired about 800 images of the Moon from the second Earth-Moon flyby (EM2) in December of 1992. Ten major sequences were acquired; each consists of mosaics of the entire or nearly entire visible and illuminated surface from each viewing geometry in at least six spectral filters (effective wavelengths for the Moon of 420, 564, 660, 756, 890, and 990 nm). The geometries of LUNMOS numbers 3, 4, 5, and 6 were designed to provide stereo data at the best possible resolutions. The purpose of this abstract is to describe the sequences, calibration, processing, and mosaicking, and to present a set of color products in a poster session
Predicate Abstraction for Linked Data Structures
We present Alias Refinement Types (ART), a new approach to the verification
of correctness properties of linked data structures. While there are many
techniques for checking that a heap-manipulating program adheres to its
specification, they often require that the programmer annotate the behavior of
each procedure, for example, in the form of loop invariants and pre- and
post-conditions. Predicate abstraction would be an attractive abstract domain
for performing invariant inference, existing techniques are not able to reason
about the heap with enough precision to verify functional properties of data
structure manipulating programs. In this paper, we propose a technique that
lifts predicate abstraction to the heap by factoring the analysis of data
structures into two orthogonal components: (1) Alias Types, which reason about
the physical shape of heap structures, and (2) Refinement Types, which use
simple predicates from an SMT decidable theory to capture the logical or
semantic properties of the structures. We prove ART sound by translating types
into separation logic assertions, thus translating typing derivations in ART
into separation logic proofs. We evaluate ART by implementing a tool that
performs type inference for an imperative language, and empirically show, using
a suite of data-structure benchmarks, that ART requires only 21% of the
annotations needed by other state-of-the-art verification techniques
Superconductivity and Stoichiometry in the BSCCO-family Materials
We report on magnetization, c-axis and ab-plane resistivity, critical
current, electronic band structure and superconducting gap properties. Bulk
measurements and photoemission data were taken on similar samples.Comment: 4 pages, latex, to be published in Journal of Superconductivity. two
figures available from Jian Ma at [email protected]
First mineralogical maps of 4 Vesta
Before Dawn arrived at 4 Vesta only very low spatial resolution (~50 km) albedo and color maps were available from HST data. Also ground-based color and spectroscopic data were utilized as a first attempt to map Vesta’s mineralogical diversity [1-4]. The VIR spectrometer [5] onboard Dawn has ac-quired hyperspectral data while the FC camera [6] ob-tained multi-color data of the Vestan surface at very high spatial resolutions, allowing us to map complex geologic, morphologic units and features. We here re-port about the results obtained from a preliminary global mineralogical map of Vesta, based on data from the Survey orbit. This map is part of an iterative map-ping effort; the map is refined with each improvement in resolution
A randomised controlled trial to assess the effectiveness of a single session of nurse administered massage for short term relief of chronic non-malignant pain
Background: Massage is increasingly used to manage chronic pain but its benefit has not been clearly established. The aim of the study is to determine the effectiveness of a single session of nurse-administered massage for the short term relief of chronic non-malignant pain and anxiety.
Methods: A randomised controlled trial design was used, in which the patients were assigned to a massage or control group. The massage group received a 15 minute manual massage and the control group a 15 minute visit to talk about their pain. Adult patients attending a pain relief unit with a diagnosis of chronic pain whose pain was described as moderate or severe were eligible for
the study. An observer blind to the patients' treatment group carried out assessments immediately before (baseline), after treatment and 1, 2, 3 and 4 hours later. Pain was assessed using 100 mm visual analogue scale and the McGill Pain Questionnaire. Pain Relief was assessed using a five point verbal rating scale. Anxiety was assessed with the Spielberger short form State-Trait Anxiety
Inventory.
Results: 101 patients were randomised and evaluated, 50 in the massage and 51 in the control group. There were no statistically significant differences between the groups at baseline interview. Patients in the massage but not the control group had significantly less pain compared to baseline immediately after and one hour post treatment. 95% confidence interval for the difference in mean pain reduction at one hour post treatment between the massage and control groups is 5.47 mm to 24.70 mm. Patients in the massage but not the control group had a statistically significant reduction in anxiety compared to baseline immediately after and at 1 hour post treatment.
Conclusion: Massage is effective in the short term for chronic pain of moderate to severe intensity
Composition of the L5 Mars Trojans: Neighbors, not Siblings
Mars is the only terrestrial planet known to have Tro jan (co-orbiting)
asteroids, with a confirmed population of at least 4 objects. The origin of
these objects is not known; while several have orbits that are stable on
solar-system timescales, work by Rivkin et al. (2003) showed they have
compositions that suggest separate origins from one another. We have obtained
infrared (0.8-2.5 micron) spectroscopy of the two largest L5 Mars Tro jans, and
confirm and extend the results of Rivkin et al. (2003). We suggest that the
differentiated angrite meteorites are good spectral analogs for 5261 Eureka,
the largest Mars Trojan. Meteorite analogs for 101429 1998 VF31 are more varied
and include primitive achondrites and mesosiderites.Comment: 14 manuscript pages, 1 table, 6 figures. To be published in Icarus.
See companion paper 0709.1921 by Trilling et a
- …