267 research outputs found

    Transgenic Interventions in Peanut Crop Improvement

    Get PDF
    Legumes rank third in world crop production in which the major constraint to crop productivity is attributed to biotic and abiotic stress. Peanut, also knows as groundnut (arachis hypogaea L.) is a major oilseed crop in the world, both for oil and as a protein source. Host plant resistance provides the most effective and economic option to manage stress tolerance in peanut which is also time consuming involving expensive agronomic practices. However , for many biotice and abiotic stresses, effective resistance gene(s) in cultivated peanut have not been identified. Success in breeding for better adapted varieties to biotic/abiotic stresses depend upon the combined efforts of various research domains like plant and cell physiology, molecular biology, genetics and breeding. Moreover, availability of known genotypes with natural resistance to stresses is a prerequisite for the successful breeding program. With a few exceptions, crop improvement in peanut programs through conventional breeding has received little progress

    Isolation and Functional Characterization of a Novel Seed-Specific Promoter Region from Peanut

    Get PDF
    The importance of using tissue-specific promoters in the genetic transformation of plants has been emphasized increasingly. Here, we report the isolation of a novel seed-specific promoter region from peanut and its validation in Arabidopsis and tobacco seeds. The reported promoter region referred to as groundnut seed promoter (GSP) confers seed-specific expression in heterologous systems, which include putative promoter regions of the peanut (Arachis hypogaea L.) gene 8A4R19G1. This region was isolated, sequenced, and characterized using gel shift assays. Tobacco transgenics obtained using binary vectors carrying uidA reporter gene driven by GSP and/or cauliflower mosaic virus 35S promoters were confirmed through polymerase chain reaction (PCR), RT-PCR, and computational analysis of motifs which revealed the presence of TATA, CAAT boxes, and ATG signals. This seed-specific promoter region successfully targeted the reporter uidA gene to seed tissues in both Arabidopsis and tobacco model systems, where its expression was confirmed by histochemical analysis of the transgenic seeds. This promoter region is routinely being used in the genetic engineering studies in legumes aimed at targeting novel transgenes to the seeds, especially those involved in micronutrient enhancement, fungal resistance, and molecular pharming

    Small-angle neutron scattering studies on water soluble complexes of poly(ethylene glycol)-based cationic random copolymer and SDS

    Get PDF
    The interaction of cationic random copolymers of methoxy poly(ethylene glycol) monomethacrylate and (3-(methacryloylamino)propyl) trimethylammonium chloride with oppositely charged surfactant, sodium dodecyl sulphate, and the influence of surfactant association on the polymer conformation have been investigated by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCPSDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were analysed using the log-normal distribution of the polydispersed spherical aggregate model for the local structure in these complexes. For all the systems the median radius and the polydispersity were found to be in the range of 20 ± 2 Å and 0.6 ± 0.05, respectively

    Live birth rate is associated with oocyte yield and number of biopsied and suitable blastocysts to transfer in preimplantation genetic testing (PGT) cycles for monogenic disorders and chromosomal structural rearrangements

    Get PDF
    OBJECTIVES: To investigate whether live birth (LB) is associated with oocyte yield and number of biopsied and suitable blastocyst to transfer following preimplantation genetic testing (PGT) for monogenic disorders (PGT-M) and chromosomal structural rearrangements (PGT-SR). STUDY DESIGN: All couples underwent controlled ovarian stimulation, blastocyst biopsy, vitrification and transfer of suitable embryo(s) in a frozen embryo transfer (FET) cycle. RESULTS: Of 175 couples who underwent PGT treatment, 249 oocytes retrievals were carried out and 230 FET were subsequently undertaken. 122/230 (53%, 95% CI 47–59) FET resulted in a LB and 16/230 (7%, 95% CI 4–11) have resulted in ongoing pregnancies. 21/230 (9%, 95% CI 6–14) FET resulted in miscarriage and 69/230 (30%, 95% CI 24–36) concluded with failed implantation. Two (1%, 95% CI 0–3) transfers underwent termination for congenital malformation, with no evidence of misdiagnosis by prenatal testing. The relationship between number of oocytes retrieved and number of blastocysts biopsied and suitable embryos to transfer were significant (p = 0.00; Incidence rate ratio (IRR) 1.05; 95% 1.04–1.06; p = 0.00; IRR 1.04; 95%, 1.03–1.06), respectively. The number of oocytes collected (p = 0.007; OR 1.06; 95% CI 1.01–1.10), the number of blastocysts biopsied (p = 0.001; OR 1.14; 95% 95% CI 1.06–1.23) and the number of suitable embryos to transfer (p = 0.00; OR 1.38; 95% CI 1.17–1.64) were all significantly associated with the odds of achieving a LB. There is a 14% and 38% increased chance of a LB per additional blastocyst biopsied and suitable embryo to transfer, respectively. CONCLUSIONS: PGT-M and PGT-SR outcomes are significantly associated with egg yield, number of blastocysts to biopsy and suitable embryos to transfer

    The Biosynthesis of Capuramycin-type Antibiotics: Identification of the A-102395 Biosynthetic Gene Cluster, Mechanism of Self-Resistence, and Formation of Uridine-5\u27-Carboxamide

    Get PDF
    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5\u27-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5\u27-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5\u27-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures

    Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken

    Get PDF
    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis

    PDMS microfluidics developed for polymer based photonic biosensors

    Get PDF
    In this work, advances in the fabrication technology and functional analysis of a polymer microfluidic system-as a significant part of a developed polymer photonic biosensor-are reported. Robust and cost-effective microfluidics in PDMS including sample preparation functions is designed and realized by using SU-8 moulding replica. Surface modification strategies using Triton X-100 and PDMS-PEO and their effect on device sealing and non-specific protein adsorption are investigated by contact angle measurement and in situ fluorescence microscopy. © 2014 Springer-Verlag Berlin Heidelberg
    corecore