260 research outputs found

    Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance

    Get PDF
    We tested the hypothesis that Eucalyptus globulus Labill. genotypes that are more resistant to dry environments might also exhibit higher cold tolerances than drought-sensitive plants. The effect of low temperatures was evaluated in acclimated and unacclimated ramets of a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of E. globulus. We studied the plants’ response via leaf gas exchanges, leaf water and osmotic potentials, concentrations of soluble sugars, several antioxidant enzymes and leaf electrolyte leakage. Progressively lowering air temperatures (from 24/16 to 10/ 2 C, day/night) led to acclimation of both clones. Acclimated ramets exhibited higher photosynthetic rates, stomatal conductances and lower membrane relative injuries when compared to unacclimated ramets. Moreover, low temperatures led to significant increases of soluble sugars and antioxidant enzymes activity (glutathione reductase, ascorbate peroxidase and superoxide dismutases) of both clones in comparison to plants grown at control temperature (24/16 C). On the other hand, none of the clones, either acclimated or not, exhibited signs of photoinhibition under low temperatures and moderate light. The main differences in the responses to low temperatures between the two clones resulted mainly from differences in carbon metabolism, including a higher accumulation of soluble sugars in the drought-resistant clone CN5 as well as a higher capacity for osmotic regulation, as compared to the droughtsensitive clone ST51. Although membrane injury data suggested that both clones had the same inherent freezing tolerance before and after cold acclimation, the results also support the hypothesis that the droughtresistant clone had a greater cold tolerance at intermediate levels of acclimation than the drought-sensitive clone. A higher capacity to acclimate in a short period can allow a clone to maintain an undamaged leaf surface area along sudden frost events, increasing growt

    Adiabatic Transfer of Electrons in Coupled Quantum Dots

    Full text link
    We investigate the influence of dissipation on one- and two-qubit rotations in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with adiabatically varying parameters. For weak dissipation, we solve a master equation, compare with direct perturbation theory, and derive an expression for the `fidelity loss' during a simple operation that adiabatically moves an electron between two coupled dots. We discuss the possibility of visualizing coherent quantum oscillations in electron `pump' currents, combining quantum adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the role of intermediate charge states has been discussed recently, we apply our formalism to calculate the fidelity loss due to charge tunneling between two dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.

    Incidence, Risk Factors, and Outcomes of Patients Who Develop Mucosal Barrier Injury-Laboratory Confirmed Bloodstream Infections in the First 100 Days after Allogeneic Hematopoietic Stem Cell Transplant

    Get PDF
    Importance: Patients undergoing hematopoietic stem cell transplant (HSCT) are at risk for bloodstream infection (BSI) secondary to translocation of bacteria through the injured mucosa, termed mucosal barrier injury-laboratory confirmed bloodstream infection (MBI-LCBI), in addition to BSI secondary to indwelling catheters and infection at other sites (BSI-other). Objective: To determine the incidence, timing, risk factors, and outcomes of patients who develop MBI-LCBI in the first 100 days after HSCT. Design, Setting, and Participants: A case-cohort retrospective analysis was performed using data from the Center for International Blood and Marrow Transplant Research database on 16875 consecutive pediatric and adult patients receiving a first allogeneic HSCT from January 1, 2009, to December 31, 2016. Patients were classified into 4 categories: MBI-LCBI (1481 [8.8%]), MBI-LCBI and BSI-other (698 [4.1%]), BSI-other only (2928 [17.4%]), and controls with no BSI (11768 [69.7%]). Statistical analysis was performed from April 5 to July 17, 2018. Main Outcomes and Measures: Demographic characteristics and outcomes, including overall survival, chronic graft-vs-host disease, and transplant-related mortality (only for patients with malignant disease), were compared among groups. Results: Of the 16875 patients in the study (9737 [57.7%] male; median [range] age, 47 [0.04-82] years) 13686 (81.1%) underwent HSCT for a malignant neoplasm, and 3189 (18.9%) underwent HSCT for a nonmalignant condition. The cumulative incidence of MBI-LCBI was 13% (99% CI, 12%-13%) by day 100, and the cumulative incidence of BSI-other was 21% (99% CI, 21%-22%) by day 100. Median (range) time from transplant to first MBI-LCBI was 8 (<1 to 98) days vs 29 (<1 to 100) days for BSI-other. Multivariable analysis revealed an increased risk of MBI-LCBI with poor Karnofsky/Lansky performance status (hazard ratio [HR], 1.21 [99% CI, 1.04-1.41]), cord blood grafts (HR, 2.89 [99% CI, 1.97-4.24]), myeloablative conditioning (HR, 1.46 [99% CI, 1.19-1.78]), and posttransplant cyclophosphamide graft-vs-host disease prophylaxis (HR, 1.85 [99% CI, 1.38-2.48]). One-year mortality was significantly higher for patients with MBI-LCBI (HR, 1.81 [99% CI, 1.56-2.12]), BSI-other (HR, 1.81 [99% CI, 1.60-2.06]), and MBI-LCBI plus BSI-other (HR, 2.65 [99% CI, 2.17-3.24]) compared with controls. Infection was more commonly reported as a cause of death for patients with MBI-LCBI (139 of 740 [18.8%]), BSI (251 of 1537 [16.3%]), and MBI-LCBI plus BSI (94 of 435 [21.6%]) than for controls (566 of 4740 [11.9%]). Conclusions and Relevance: In this cohort study, MBI-LCBI, in addition to any BSIs, were associated with significant morbidity and mortality after HSCT. Further investigation into risk reduction should be a clinical and scientific priority in this patient population

    Prostate cancer and Hedgehog signalling pathway

    Get PDF
    [Abstract] The Hedgehog (Hh) family of intercellular signalling proteins have come to be recognised as key mediators in many fundamental processes in embryonic development. Their activities are central to the growth, patterning and morphogenesis of many different regions within the bodies of vertebrates. In some contexts, Hh signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens in the regulation of cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hh proteins raise many intriguing questions about their mode of action. Various studies have now demonstrated the function of Hh signalling in the control of cell proliferation, especially for stem cells and stem-like progenitors. Abnormal activation of the Hh pathway has been demonstrated in a variety of human tumours. Hh pathway activity in these tumours is required for cancer cell proliferation and tumour growth. Recent studies have uncovered the role for Hh signalling in advanced prostate cancer and demonstrated that autocrine signalling by tumour cells is required for proliferation, viability and invasive behaviour. Thus, Hh signalling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    HIV-Specific T Cells Generated from Naive T Cells Suppress HIV In Vitro and Recognize Wide Epitope Breadths

    Get PDF
    The Berlin Patient represents the first and only functional HIV cure achieved by hematopoietic stem cell transplant (HSCT). In subsequent efforts to replicate this result, HIV rebounded post-HSCT after withdrawal of antiretroviral therapy. Providing HIV-specific immunity through adoptive T cell therapy may prevent HIV rebound post-HSCT by eliminating newly infected cells before they can seed systemic infection. Adoptive T cell therapy has demonstrated success in boosting Epstein-Barr virus and cytomegalovirus-specific immunity post-HSCT, controlling viral reactivation. However, T cell immunotherapies to boost HIV-specific immunity have been limited by single-epitope specificity and minimal persistence or efficacy in vivo. To improve this strategy, we sought to generate allogeneic HIV-specific T cells from human leukocyte antigen (HLA)-A02+ HIV-negative adult or cord blood donors. We focused on HLA-A02+ donors due to well-characterized epitope restrictions observed in HIV+ populations. We show that multi-antigen HIV-specific T cells can be generated from naive T cells of both cord blood and adults using a reproducible good manufacturing practice (GMP)-grade protocol. This product lysed antigen-pulsed targets and suppressed active HIV in vitro. Interestingly, these cells displayed broad epitope recognition despite lacking recognition of the common HLA-A02-restricted HIV epitope Gag SL9. This first demonstration of functional multi-antigen HIV-specific T cells has implications for improving treatment of HIV through allogeneic HSCT. Patel et al. demonstrate the ability to generate HIV-specific T cells from HIV-seronegative adults and cord blood with a good-manufacturing-practice-compliant strategy. These immunotherapies are multi-antigen specific, display cytotoxicity, and suppress HIV in vitro, providing a promising platform for adoptive T cell therapy in a post-transplant setting

    Measurement of the Mass Splittings between the bbˉχb,J(1P)b\bar{b}\chi_{b,J}(1P) States

    Full text link
    We present new measurements of photon energies and branching fractions for the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the chi_b states are determined from the measured radiative photon energies. The ratio of mass splittings between the chi_b substates, r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information on the nature of the bbbar confining potential. We find r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world average, but more consistent with the theoretical expectation that r(1P)<r(2P); i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore