1,409 research outputs found

    Women perceive less peer recognition than men controlling for actual peer recognition

    Get PDF
    Gaining recognition from peers is important for students’ development of physics identity – the extent to which they view themselves as a physics person (Carlone & Johnson, 2007; Hazari, Sonnert, Sadler, & Shanahan, 2010). Previous research, however, has found gender differences in both perceived and actual recognition: men perceive significantly more recognition from others (perceived recognition) than women (Hazari, Sadler, & Sonnert, 2013) and men receive significantly more nominations for being strong in their physics course from peers (actual recognition) than women (Bloodhart, Balgopal, Casper, Sample McMeeking, & Fischer, 2020). These findings suggest a few possible relationships between gender, perceived recognition, and actual recognition, each of which suggests different implications. For example, it could be that men perceive more recognition than women on aggregate because men and women have similar perceived recognition from peers at every level of actual recognition, but men receive more actual recognition than women. Such a relationship would imply that instructors must create more gender equity in actual recognition, for instance by providing more ways for women to gain recognition from peers. Alternatively, men might perceive more recognition than women at every level of actual recognition. This relationship would imply that either men over-estimate their actual recognition or women under-estimate their actual recognition, or a combination of the two. The instructional implication in this case would be to ensure that all students appropriately perceive recognition from peers. We designed a study to determine these relationships using survey responses from students in introductory physics courses. We performed multiple different regression analyses relating gender, actual recognition from peers, and perceived recognition from peers. The best model revealed that controlling for actual recognition, women perceive significantly lower recognition from their peers than men (the second hypothesis above). These findings suggest that in order to decrease the gender difference in perceived peer recognition, and subsequently in physics identity, it is not sufficient to increase women’s actual recognition from peers. Instead, instructors must teach all students to appropriately acknowledge and internalize different forms of peer recognition in their physics courses, for example by teaching about intellectual humility (Sundstrom & Cardetti, 2021). REFERENCES Bloodhart, B., Balgopal, M. M., Casper, A. M. A., Sample McMeeking, L. B., & Fischer, E. V. (2020). Outperforming yet undervalued: Undergraduate women in STEM. PLoS One, 15(6), e0234685. Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of successful women of color: Science identity as an analytic lens. Journal of Research in Science Teaching, 44(8), 1187-1218. Hazari, Z., Sadler, P. M., & Sonnert, G. (2013). The science identity of college students: Exploring the intersection of gender, race, and ethnicity. Journal of College Science Teaching, 42(5), 82-91. Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M. C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978-1003. Sundstrom, M., & Cardetti, F. (2021). Exploring the introductory physics classroom through the lens of intellectual humility: Handling what you do not know. Physical Review Physics Education Research, 17(2), 020135

    Bias in peer recognition does not explain differences in how men and women perceive their recognition in undergraduate physics courses

    Full text link
    Gaining recognition as a physics person from peers is an important contributor to undergraduate students' persistence in physics courses and intentions to pursue a physics career. Previous research has separately demonstrated that women perceive less peer recognition than men (perceived recognition) in their physics courses and that women receive fewer nominations from their peers as strong in their physics course than men (received recognition). The relationship between perceived and received peer recognition, however, is not well understood. We conduct a large-scale, quantitative study of over 1,600 students enrolled in introductory physics courses at eight different institutions, including one Historically Black College or University and one Hispanic-Serving Institution. We use sophisticated statistical methods to directly compare student gender, perceived recognition, and received recognition, controlling for other student demographics and course-level variability. Results show with high precision that, for students receiving the same amount of recognition, and having the same race or ethnicity, academic year, and major, women report significantly lower perceived recognition than men. This study provides direct evidence that instructional interventions should target perceived recognition, rather than the ways in which students recognize their peers, such that all students appropriately internalize their peer recognition

    The GSFC Mark-2 three band hand-held radiometer

    Get PDF
    A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results

    Deathcore, creativity, and scientific thinking

    Get PDF
    Background Major scientific breakthroughs are generally the result of materializing creative ideas, the result of an inductive process that sometimes spontaneously and unexpectedly generates a link between thoughts and/or objects that did not exist before. Creativity is the cornerstone of scientific thinking, but scientists in academia are judged by metrics of quantification that often leave little room for creative thinking. In many scientific fields, reductionist approaches are rewarded and new ideas viewed skeptically. As a result, scientific inquiry is often confined to narrow but safe disciplinary ivory towers, effectively preventing profoundly creative explorations that could yield unexpected benefits. This paper argues how apparently unrelated fields specifically music and belief systems can be combined in a provocative allegory to provide novel perspectives regarding patterns in nature, thereby potentially inspiring innovation in the natural, social and other sciences. The merger between basic human tensions such as those embodied by religion and music, for example the heavy metal genre of deathcore, may be perceived as controversial, challenging, and uncomfortable. However, it is an example of moving the thinking process out of unconsciously established comfort zones, through the connection of apparently unrelated entities. We argue that music, as an auditory art form, has the potential to enlighten and boost creative thinking in science. Metal, as a fast evolving and diversifying extreme form of musical art, may be particularly suitable to trigger surprising associations in scientific inquiry. This may pave the way for dealing with questions about what we don´t know that we don´t know in a fast-changing planet

    What topics of peer interactions correlate with student performance in physics courses?

    Full text link
    Research suggests that interacting with more peers about physics course material is correlated with higher student performance. Some studies, however, have demonstrated that different topics of peer interactions may correlate with their performance in different ways, or possibly not at all. In this study, we probe both the peers with whom students interact about their physics course and the particular aspects of the course material about which they interacted in six different introductory physics courses: four lecture courses and two lab courses. Drawing on methods in social network analysis, we replicate prior work demonstrating that, on average, students who interact with more peers in their physics courses have higher final course grades. Expanding on this result, we find that students discuss a wide range of aspects of course material with their peers: concepts, small-group work, assessments, lecture, and homework. We observe that in the lecture courses, interacting with peers about concepts is most strongly correlated with final course grade, with smaller correlations also arising for small-group work and homework. In the lab courses, on the other hand, small-group work is the only interaction topic that significantly correlates with final course grade. We use these findings to discuss how course structures (e.g., grading schemes and weekly course schedules) may shape student interactions and add nuance to prior work by identifying how specific types of student interactions are associated (or not) with performance.Comment: Submitted to European Journal of Physic

    The metabolic syndrome adds utility to the prediction of mortality over its components: The Vietnam Experience Study

    Get PDF
    Background\ud The metabolic syndrome increases mortality risk. However, as “non-affected” individuals may still have up to two risk factors, the utility of using three or more components to identify the syndrome, and its predictive advantage over individual components have yet to be determined.\ud \ud Methods\ud Participants, male Vietnam-era veterans (n = 4265) from the USA, were followed-up from 1985/1986 for 14.7 years (61,498 person-years), and all-cause and cardiovascular disease deaths collated. Cox's proportional-hazards regression was used to assess the effect of the metabolic syndrome and its components on mortality adjusting for a wide range of potential confounders.\ud \ud Results\ud At baseline, 752 participants (17.9%) were identified as having metabolic syndrome. There were 231 (5.5%) deaths from all-causes, with 60 from cardiovascular disease. After adjustment for a range of covariates, the metabolic syndrome increased the risk of all-cause, HR 2.03, 95%CI 1.52, 2.71, and cardiovascular disease mortality, HR 1.92, 95%CI 1.10, 3.36. Risk increased dose-dependently with increasing numbers of components. The increased risk from possessing only one or two components was not statistically significant. The adjusted risk for four or more components was greater than for only three components for both all-cause, HR 2.30, 95%CI 1.45, 3.66 vs. HR 1.70, 95%CI 1.11, 2.61, and cardiovascular disease mortality, HR 3.34, 95%CI 1.19, 9.37 vs. HR 2.81, 95%CI 1.07, 7.35. The syndrome was more informative than the individual components for all-cause mortality, but could not be assessed for cardiovascular disease mortality due to multicollinearity. Hyperglycaemia was the individual strongest parameter associated with mortality.\ud \u

    TAMMiCol: Tool for analysis of the morphology of microbial colonies.

    Get PDF
    Many microbes are studied by examining colony morphology via two-dimensional top-down images. The quantification of such images typically requires each pixel to be labelled as belonging to either the colony or background, producing a binary image. While this may be achieved manually for a single colony, this process is infeasible for large datasets containing thousands of images. The software Tool for Analysis of the Morphology of Microbial Colonies (TAMMiCol) has been developed to efficiently and automatically convert colony images to binary. TAMMiCol exploits the structure of the images to choose a thresholding tolerance and produce a binary image of the colony. The images produced are shown to compare favourably with images processed manually, while TAMMiCol is shown to outperform standard segmentation methods. Multiple images may be imported together for batch processing, while the binary data may be exported as a CSV or MATLAB MAT file for quantification, or analysed using statistics built into the software. Using the in-built statistics, it is found that images produced by TAMMiCol yield values close to those computed from binary images processed manually. Analysis of a new large dataset using TAMMiCol shows that colonies of Saccharomyces cerevisiae reach a maximum level of filamentous growth once the concentration of ammonium sulfate is reduced to 200 ÎĽM. TAMMiCol is accessed through a graphical user interface, making it easy to use for those without specialist knowledge of image processing, statistical methods or coding

    The emergence of convergence

    Get PDF
    Science is increasingly a collaborative pursuit. Although the modern scientific enterprise owes much to individuals working at the core of their field, humanity is increasingly confronted by highly complex problems that require the integration of a variety of disciplinary and methodological expertise. In 2016, the U.S. National Science Foundation launched an initiative prioritizing support for convergence research as a means of “solving vexing research problems, in particular, complex problems focusing on societal needs.” We discuss our understanding of the objectives of convergence research and describe in detail the conditions and processes likely to generate successful convergence research. We use our recent experience as participants in a convergence workshop series focused on resilience in the Arctic to highlight key points. The emergence of resilience science over the past 50 years is presented as a successful contemporary example of the emergence of convergence. We close by describing some of the challenges to the development of convergence research, such as timescales and discounting the future, appropriate metrics of success, allocation issues, and funding agency requirements

    Ultrafast depolarization of the fluorescence in a conjugated polymer

    Get PDF
    The effect of the extent of pi electron conjugation on the primary photophysics in semiconducting polymers is reported. A rapid depolarization of photoluminescence and transient absorption, which indicates a reorientation of the transition dipole moment by similar to 30 degrees on a sub-100 fs time scale, is observed in the fully conjugated polymer poly[2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] (MEH-PPV). In contrast, partially conjugated polymers exhibit a much slower depolarization. The results reveal rapid changes of exciton delocalization in the fully conjugated MEH-PPV driven by structural relaxation

    A Method to Detect Discontinuities in Census Data

    Get PDF
    The distribution of pattern across scales has predictive power in the analysis of complex systems. Discontinuity approaches remain a fruitful avenue of research in the quest for quantitative measures of resilience because discontinuity analysis provides an objective means of identifying scales in complex systems and facilitates delineation of hierarchical patterns in processes, structure, and resources. However, current discontinuity methods have been considered too subjective, too complicated and opaque, or have become computationally obsolete; given the ubiquity of discontinuities in ecological and other complex systems, a simple and transparent method for detection is needed. In this study, we present a method to detect discontinuities in census data based on resampling of a neutral model and provide the R code used to run the analyses. This method has the potential for advancing basic and applied ecological research
    • …
    corecore