10 research outputs found

    Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer

    Get PDF
    We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures

    Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach

    Full text link
    Exact diagonalization results are reported for the lowest rotational band of N=6 electrons in strong magnetic fields in the range of high angular momenta 70 <= L <= 140 (covering the corresponding range of fractional filling factors 1/5 >= nu >= 1/9). A detailed comparison of energetic, spectral, and transport properties (specifically, magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies, and exponents of current-voltage power law) shows that the recently discovered rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)] provide a superior description compared to the composite-fermion/Jastrow-Laughlin ones.Comment: Extensive clarifications were added (see new footnotes) regarding the difference between the rotating Wigner molecule and the bulk Wigner crystal; also regarding the influence of an external confining potential. 12 pages. Revtex4 with 6 EPS figures and 5 tables . For related papers, see http://www.prism.gatech.edu/~ph274c

    1/f noise and mechanisms of the conductivity in carbon nanotube bundles

    No full text
    Experimental results are reported of the investigation of conductivity mechanisms in metallic single-wall carbon nanotube (SWCNT) bundles in a wide temperature range from 4.2 K to 300 K. The temperature dependence of the resistance and noise parameters – the logarithmic slope of the current dependence of noise as well as the normalized current noise – are compared. Remarkable changes in noise characteristics are registered at temperatures typical of the transition from hopping conductivity to Luttinger liquid conductivity and the transition from Luttinger liquid conductivity to diffusion conductivity. In the first transition region, the slope of the normalized noise level of the current changes significantly as a function of temperature. In the region of diffusion conductivity, a stronger variation of the normalized noise level is revealed. These changes in noise properties are correlated with changes in the transport characteristics of SWCNT bundles that allow us to adequately explain the mechanisms of conductivity in the system.

    Magnetic Carbon

    No full text
    The discovery of nanostructured forms of molecular carbon has led to renewed interest in the varied properties of this element. Both graphite and C 60 can be electron-doped by alkali metals to become superconducting; transition temperatures of up to 52 K have been attained by field-induced hole-doping of C 60 (ref. 2). Recent experiments and theoretical studies have suggested that electronic instabilities in pure graphite may give rise to superconducting and ferromagnetic properties, even at room temperature. Here we report the serendipitous discovery of strong magnetic signals in rhombohedral C 60. Our intention was to search for superconductivity in polymerized C 60; however, it appears that our high-pressure, high-temperature polymerization process results in a magnetically ordered state. The material exhibits features typical of ferromagnets: saturation magnetization, large hysteresis and attachment to a magnet at room temperature. The temperature dependences of the saturation and remanent magnetization indicate a Curie temperature near 500 K.4136857716718Hebard, A.F., Superconductivity at 18 K in potassium-doped C 60 (1991) Nature, 350, pp. 600-601Schön, J.H., Kloc, C., Batlogg, B., Superconductivity at 52 K in hole-doped C 60 (2000) Nature, 408, pp. 549-552Kopelevich, Y., Esquinazi, P., Torres, J.H.S., Moehlecke, S., Ferromagnetic- and superconducting-like behavior of graphite (2000) J. Low Temp. Phys., 119, pp. 691-702Kempa, H., Magnetic-field-driven superconductor-insulator-type transition in graphite (2000) Solid State Commun., 115, pp. 539-542González, J., Guinea, F., Vozmediano, M.A.H., Electron-electron interactions in graphene sheets (2001) Phys. Rev. B, 63, pp. 1344211-1344218Harigaya, K., The mechanism of magnetism in stacked nanographite: Theoretical study (2001) J. Phys. Condens. Matter, 13, pp. 1295-1302Narymbetov, B., Origin of ferromagnetic exchange interactions in a fullerene-organic compound (2000) Nature, 407, pp. 883-883Allemand, P.M., Organic molecular soft ferzomagnetism in a fullerene C 60 (1991) Science, 253, pp. 301-303Mrzel, A., Ferromagnetism in a cobaltocene-doped fallerene derivative below 19 K due to unpaired spins only on fullerene molecules (1998) Chem. Phys. Lett., 298, pp. 329-334Lobach, A.S., C 60H 18. C 60H 36 and C 70H 36 fullerene hydrides: Study by methods of IR, NMR, XPS, EELS and magnetochemistry (1998) Fullerene Sci. Technol., 6, pp. 375-391Shul'ga, Y.M., Magnetic properties of C 60Pd n fullerides (1998) Mol. Cryst. Liq. Cryst., 10, pp. 201-206Ovchinnikov, A.A., Shamovsky, I.L., The structure of the ferromagnetic phase of carbon (1991) J. Mol. Struct. (Theochem), 83, pp. 133-140Miller, J.S., Epstein, A.J., Molecule-based magnets - An overview (2000) Mater. Res. Soc. Bull., 25, pp. 21-28Kahashi, M., Discovery of a quasi-1D organic ferromagnet, P-NPNN (1991) Phys. Rev. Lett., 67, pp. 746-748Du, G., Joo, J., Epstein, A.J., Miller, J.S., Anomalous charge transport phenomena in molecular-based magnet V (TCNE) x·y(solvent) (1993) J. Appl. Phys., 73, pp. 6566-6568Iwasa, Y., New phases of C 60 synthesised at high pressure (1994) Science, 264, pp. 1570-1572Núñez-Regneiro, M., Marques, L., Hodeau, J.L., Perroux, M., Polymerized fullerite structures (1995) Phys. Rev. Lett., 74, pp. 278-281Sundqvist, B., Fullerenes under high pressures (1999) Adv. Phys., 48, pp. 1-134Makarova, T.L., Anisotropic metallic properties of highly-oriented C 60 polymer (2001) Synth. Met., 121, pp. 1099-1100Makarova, T.L., Electrical properties of two-dimensional fullerene matrices (2001) Carbon, 39, pp. 2203-2209Makarova, T.L., (1999) Fullerenes Vol. 7, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, 7, pp. 628-639. , (eds Kadish, K M., Guldi, D. M. & Kamat, P. V.) (Proceedings series PV 99-12, Electrochemical Society, Pennington, New Jersey)Makarova, T.L., Conductivity of two-dimensional C 60 polymers (2000) Mol. Cryst. Liq. Cryst. C, 13, pp. 151-156Davydov, V.A., Spectroscopic study of pressure-polymerized phases of C 60 (2000) Phys. Rev. B, 61, pp. 11936-11945Luo, W.L., Wang, H., Ruoff, R.C., Cioslowski, J., Phelps, S., Susceptibility discontinuity in single-crystal C 60 (1994) Phys. Rev. Lett., 73, pp. 186-188Haddon, R.C., Experimental and theoretical determination of the magnetic susceptibility of C 60 and C 70 (1991) Nature, 350, pp. 46-47Wang, X.K., Chang, R.P.H., Patashinski, A., Ketterson, J.B., Magnetic susceptibility of buckytubes (1994) J. Mater. Res., 9, pp. 1578-1582Panich, M., Shames, A.I., Nakajima, T., On paramagnetism in fluorinated graphite: EPR and solid state NMR study (2001) J. Phys. Chem. Solids, 62, pp. 959-964Saito, T., Akita, Y., Tanaka, K., Magnetic susceptibility of the one-dimensional polymeric phase of RbC 60 (2000) Phys. Rev. B, 61, pp. 16091-16096Pakker, S., Forro, L., Mihaly, L., Janossy, A., Orthorhombic A 1C 60 - A conducting linear alkali fulleride polymer (1994) Solid State Commun., 90, pp. 349-352Xu, C.H., Scuseria, G.E., Theoretical predictions for a 2 -dimensional rhombohedral phase of solid C 60 (1995) Phys. Rev. Lett., 74, pp. 274-27

    Cytomegalovirus infection of the central nervous system in patients with AIDS: diagnosis by DNA amplification from cerebrospinal fluid.

    No full text
    Abstract A nested polymerase chain reaction (PCR) was evaluated for the detection of cytomegalovirus (CMV) DNA in cerebrospinal fluid (CSF). CSF and serum samples from 19 AIDS patients with intracerebral CMV infection diagnosed at autopsy were retrospectively examined. As controls, CSF and serum samples from 15 AIDS patients with only extracerebral CMV involvement at autopsy, from 10 AIDS patients without CMV infection at autopsy, and from 10 anti-human immunodeficiency virus-negative patients without ongoing CMV infection, were studied. CMV DNA was detected from patients with intracerebral CMV infection in 9 of 9, 5 of 6, and 1 of 4 CSF samples collected, respectively, 1-30, 30-90, and 90-300 days before death. Twelve of 13 sera from these patients were CMV PCR-positive. None of the control patients had CMV DNA in CSF. PCR was positive in 6 of 8 sera from AIDS patients with only extracerebral CMV infection and in serum from 1 AIDS patient without CMV involvement at autopsy. CMV PCR on CSF is highly sensitive and specific. It should be considered a rapid and reliable diagnostic method for CMV infection of the central nervous system

    High-pressure behaviors of carbon nanotubes

    No full text
    In this paper, we have reviewed the experimental and theoretical studies on pressure-induced polygonization, ovalization, racetrack–shape deformation, and polymerization of carbon nanotubes (CNTs). The corresponding electronic, optical, and mechanical changes accompanying these behaviors have been discussed. The transformations of armchair (n, n) CNT bundles (n = 2, 3, 4, 6, and 8) under hydrostatic or nonhydrostatic pressure into new carbons, including recently proposed superhard bct-C₄, Cco-C₈, and B-B1AL2R2 carbon phases have also been demonstrated. Given the diversity of CNTs from various chiralities, diameters, and arrangements, pressure-induced CNT polymerization provides a promising approach to produce numerous novel metastable carbons exhibiting unique electronic, optical, and mechanical characteristics.Розглянуто експериментальні та теоретичні дослідження з індукованою тиском полігонізації, овалізації, деформації у формі бігової доріжки і полімеризації вуглецевих нанотрубок (ВНТ). Обговорено відповідні електронні, оптичні і механічні зміни, що супроводжують ці процеси. Також продемонстровано перетворення в ВНТ у формі крісла (n, n), зібраних в пучок (n = 2, 3, 4, 6 і 8) під гідростатичним або негідростатичним тиском в нові вуглецеві алотропи, в тому числі недавно запропоновані надтверді bct-C₄, Cco-C₈ і B-B1AL2R2-вуглецеві фази. Різноманітність ВНТ з різними хіральністю, діаметрами та упаковками, а також полімеризація ВНТ, викликана тиском, забезпечує перспективний підхід для отримання численних нових метастабільних вуглецевих фаз, що демонструють унікальні електронні, оптичні і механічні характеристики.Рассмотрены экспериментальные и теоретические исследования по индуцированной давлением полигонизации, овализации, деформации в форме беговой дорожки и полимеризации углеродных нанотрубок (УНТ). Обсуждены соответствующие электронные, оптические и механические изменения, сопровождающие эти процессы. Также продемонстрированы преобразования в УНТ в форме кресла (n, n), собранных в пучок (n = 2, 3, 4, 6 и 8) под гидростатическим или негидростатическим давлением в новые углеродные аллотропы, в том числе недавно предложенные сверхтвердые bct-C₄, Cco-C₈ и B-B1AL2R2-углеродные фазы. Разнообразие УНТ с различными хиральностью, диаметрами и упаковками, а также полимеризация УНТ, вызванная давлением, обеспечивает перспективный подход для получения многочисленных новых метастабильных углеродных фаз, демонстрирующих уникальные электронные, оптические и механические характеристики
    corecore