44 research outputs found

    What are the most effective interventions to improve physical performance in pre-frail and frail adults? A systematic review of randomised control trials

    Get PDF
    Background: With life expectancy continuing to rise in the United Kingdom there is an increasing public health focus on the maintenance of physical independence among all older adults. Identifying interventions that improve physical outcomes in pre-frail and frail older adults is imperative. Methods: A systematic review of the literature 2000 to 2017 following PRISMA guidelines and registered with PROSPERO (no. CRD42016045325). Results: Ten RCT trials fulfilled selection criteria and quality appraisal. The study quality was moderate to good. Interventions included physical activity; nutrition, physical activity combined with nutrition. Interventions that incorporated one or more physical activity components significantly improved physical outcomes in pre-frail and/or frail older adults. Conclusions: Physical activity interventions are key to maintaining independence in pre-frail and frail older adults. A lack of consensus regarding the definition of frailty, and an absence of core measures to assess this means any attempt to create an optimal intervention will be impeded. This absence may ultimately impact on the ability of older and frail adults to live well and for longer in the community

    Development of a novel scheme for long-term body temperature monitoring: a review of benefits and applications

    Full text link
    Body temperature is a health or disease marker that has been in clinical use for centuries. The threshold currently applied to define fever, with small variations, is 38 °C. However, current approaches do not provide a full picture of the thermoregulation process and its correlation with disease. This paper describes a new non-invasive body temperature device that improves the understanding of the pathophysiology of diseases by integrating a variety of temperature data from different body locations. This device enables to gain a deeper insight into fever, endogenous rhythms, subject activity and ambient temperature to provide anticipatory and more efficient treatments. Its clinical use would be a big step in the overcoming of the anachronistic febrile/afebrile dichotomy and walking towards a system medicine approach to certain diseases. This device has already been used in some clinical applications successfully. Other possible applications based on the device features and clinical requirements are also described in this paper.Cuesta Frau, D.; Varela Entrecanales, M.; Valor Pérez, R.; Vargas, B. (2015). Development of a novel scheme for long-term body temperature monitoring: a review of benefits and applications. Journal of Medical Systems. 39(4):1-7. doi:10.1007/s10916-015-0209-3S17394Gai, M., Merlo, I., Dellepiane, S., Cantaluppi, V., Leonardi, G., Fop, F., Guarena, C., Grassi, G., and Biancore, L., Glycemic pattern in diabetic patients on hemodialysis: Continuous Glucose Monitoring (CGM) analysis. Blood Purif. 38(1):68–73 , 2014.Kondziella, D., Friberg, C.K., Wellwood, I., Reiffurth, C., Fabricius, M., and Dreier, J.P.: Continuous EEG monitoring in aneurysmal subarachnoid hemorrhage: A systematic review. Neurocrit. Care (2014)Ciccone, A., Celani, M.G., Chiaramonte, R., Rossi, C., and Righetti, E., Continuous versus intermittent physiological monitoring for acute stroke. Cochrane Database Syst. Rev. 31, 2013.Kushimoto, S., Yamanouchi, S., Endo, T., Sato, T., Nomura, R., Fujita, M., Kudo, D., Omura, T., Miyagawa, N., and Sato, T., Body temperature abnormalities in non-neurological critically ill patients: A review of the literature. J. Intensive Care 2, 2014.Mc Callum, L., and Higgings, D., Measuring body temperature. Nursing Times 108:20–22, 2012.Varela, M., Ruiz-Esteban, R., Martinez-Nicolas, A., Cuervo-Arango, A., Barros, C., and Delgado, E.G., Catching the spike and tracking the flow: Holter-temperature monitoring in patients admitted in a general internal medicine ward. Int. J. Clin. Pract. 65(12):1283–1288, 2011.Lopes, F., Peres, D., Bross, A., Melot, C., and Vincent, J.L., Serial evaluation of the SOFA score to predict outcome in critically ill patients. J. Am. Med. Assoc. 286:1754–1758, 2001.Vincent, J.L., and Moreno, R., Clinical review: Scoring systems in the critically ill. Crit. Care, 14, 2010.Sund-Levander, M., and Grodzinsky, E., Time for a change to assess and evaluate body temperature in clinical practice. Int. J. Nurs. Pract. 15:241–249, 2009.Cuesta-Frau, D., Varela, M., Aboy, M., and Miro, P., Description of a portable wireless device for body temperature acquisition and analysis. Sensors 9(10):7648–7663, 2009.Varela, M., Cuesta-Frau, D., Madrid, J.A., Churruca, J., Miro-Matinez, P., Ruiz, R., and Marinez, C., Holter monitoring of central peripheral temperature: Possible uses and feasibility study in outpatient settings. J. Clin. Monit. Comput. 4(23):209–216, 2009.Jordan, J., Miro, P., Cuesta-Frau, D., Varela, M., and Vargas B.: Aplicacion de analisis multivariante para la deteccion de estados prefebriles en pacientes ingresados (in Spanish), XXXIV Congreso Nacional de Estadistica e Investigacion Operativa, Castellon (Spain) (2013)Richman, J., and Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6):H2039–2049, 2000.Young, P., Saxena, M., Eastwood, G.M., Bellomo, R., and Beasley, R., Fever and fever management among intensive care patients with known or suspected infection: A multicentre prospective cohort study. Crit. Care Resusc. 13:97–102 , 2011.Drewry, A.M., Fuller, B.M., Bailey, T.C., and Hotchkiss, R.S., Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: A case-control study. Crit. Care,17, 2013.Musher, D., Fainstein, V., Young, E., and Pruett, T., Fever patterns. Their lack of significance. Arch. Intern. Med. 139(11):1225–8, 1979.Varela, M., Calvo, M., Chana, M., Gomez-Mestre, I., Asensio, R., and Galdos, P., Clinical implications of temperature curve complexity in critically ill patients. Crit. Care Med. 33(12):2764–2771, 2005.Varela, M., Churruca, J., Gonzalez, A., Martin, A., Ode, J., and Galdos, P., Temperature curve complexity predicts survival in critically ill patients. Am. J. Respir. Crit. Care Med. 174(3):290–298, 2006.Cuesta-Frau, D., Varela, M., Miro, P., Galdos, P., Abasolo, D., Hornero, R., and Aboy, M., Predicting survival in critical patients by use of body temperature regularity measurement based on Approximate Entropy. Med. Biol. Eng. Computing 45:671–678, 2007.Mackiowak, P. Temperature regulation and the pathogenesis of fever, Principles and Practice of Infectious Diseases, pp. 765–778. New York: Churchill Livingston Elsevier, 2010.Cherbuin N., and Brinkman C., Cognition is cool: Can hemispheric activation be assessed by tympanic membrane thermometry? Brain Cogn. 54:228–231, 2004

    Thermography and thermoregulation of the face

    Get PDF
    BACKGROUND: Although clinical diagnosis of thermoregulation is gaining in importance there is no consistent evidence on the value of thermography of the facial region. In particular there are no reference values established with standardised methods. METHODS: Skin temperatures were measured in the facial area at 32 fixed measuring sites in 26 health subjects (7–72 years) with the aid of a contact thermograph (Eidatherm). A total of 6 measurements were performed separately for the two sides of the face at intervals of equal lengths (4 hours) over a period of 24 hours. Thermoregulation was triggered by application of a cold stimulus in the region of the ipsilateral ear lobe. RESULTS: Comparison of the sides revealed significant asymmetry of face temperature. The left side of the face showed a temperature that was on the average 0.1°C lower than on the right. No increase in temperature was found following application of the cold stimulus. However, a significant circadian rhythm with mean temperature differences of 0.7°C was observed. CONCLUSION: The results obtained should be seen as an initial basis for compiling an exact thermoprofile of the surface temperature of the facial region that takes into account the circadian rhythm, thus closing gaps in studies on physiological changes in the temperature of the skin of the face

    Predicting mortality of residents at admission to nursing home: A longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing numbers of deaths occur in nursing homes. Knowledge of the course of development over the years in death rates and predictors of mortality is important for officials responsible for organizing care to be able to ensure that staff is knowledgeable in the areas of care needed. The aim of this study was to investigate the time from residents' admission to Icelandic nursing homes to death and the predictive power of demographic variables, health status (health stability, pain, depression and cognitive performance) and functional profile (ADL and social engagement) for 3-year mortality in yearly cohorts from 1996-2006.</p> <p>Methods</p> <p>The samples consisted of residents (N = 2206) admitted to nursing homes in Iceland in 1996-2006, who were assessed once at baseline with a Minimum Data Set (MDS) within 90 days of their admittance to the nursing home. The follow-up time for survival of each cohort was 36 months from admission. Based on Kaplan-Meier analysis (log rank test) and non-parametric correlation analyses (Spearman's rho), variables associated with survival time with a p-value < 0.05 were entered into a multivariate Cox regression model.</p> <p>Results</p> <p>The median survival time was 31 months, and no significant difference was detected in the mortality rate between cohorts. Age, gender (HR 1.52), place admitted from (HR 1.27), ADL functioning (HR 1.33-1.80), health stability (HR 1.61-16.12) and ability to engage in social activities (HR 1.51-1.65) were significant predictors of mortality. A total of 28.8% of residents died within a year, 43.4% within two years and 53.1% of the residents died within 3 years.</p> <p>Conclusion</p> <p>It is noteworthy that despite financial constraints, the mortality rate did not change over the study period. Health stability was a strong predictor of mortality, in addition to ADL performance. Considering these variables is thus valuable when deciding on the type of service an elderly person needs. The mortality rate showed that more than 50% died within 3 years, and almost a third of the residents may have needed palliative care within a year of admission. Considering the short survival time from admission, it seems relevant that staff is trained in providing palliative care as much as restorative care.</p

    The burden of respiratory infections among older adults in long-term care:a systematic review

    Get PDF
    BACKGROUND: Respiratory infections among older adults in long-term care facilities (LTCFs) are a major global concern, yet a rigorous systematic synthesis of the literature on the burden of respiratory infections in the LTCF setting is lacking. To address the critical need for evidence regarding the global burden of respiratory infections in LTCFs, we assessed the burden of respiratory infections in LTCFs through a systematic review of the published literature. METHODS: We identified articles published between April 1964 and March 2019 through searches of PubMed (MEDLINE), EMBASE, and the Cochrane Library. Experimental and observational studies published in English that included adults aged ≥60 residing in LTCFs who were unvaccinated (to identify the natural infection burden), and that reported measures of occurrence for influenza, respiratory syncytial virus (RSV), or pneumonia were included. Disagreements about article inclusion were discussed and articles were included based on consensus. Data on study design, population, and findings were extracted from each article. Findings were synthesized qualitatively. RESULTS: A total of 1451 articles were screened for eligibility, 345 were selected for full-text review, and 26 were included. Study population mean ages ranged from 70.8 to 90.1 years. Three (12%) studies reported influenza estimates, 7 (27%) RSV, and 16 (62%) pneumonia. Eighteen (69%) studies reported incidence estimates, 7 (27%) prevalence estimates, and 1 (4%) both. Seven (27%) studies reported outbreaks. Respiratory infection incidence estimates ranged from 1.1 to 85.2% and prevalence estimates ranging from 1.4 to 55.8%. Influenza incidences ranged from 5.9 to 85.2%. RSV incidence proportions ranged from 1.1 to 13.5%. Pneumonia prevalence proportions ranged from 1.4 to 55.8% while incidence proportions ranged from 4.8 to 41.2%. CONCLUSIONS: The reported incidence and prevalence estimates of respiratory infections among older LTCF residents varied widely between published studies. The wide range of estimates offers little useful guidance for decision-making to decrease respiratory infection burden. Large, well-designed epidemiologic studies are therefore still necessary to credibly quantify the burden of respiratory infections among older adults in LTCFs, which will ultimately help inform future surveillance and intervention efforts

    Parents experiences of investigations and interventions by Child Healthcare, Child and Adolescent Psychiatry and Child and Youth Habilitation

    No full text
    This study examines parents experiences of support, investigation and treatment from child healthcare/psychiatry and habilitation in children with ESSENCE symptoms (neurodevelopmental symptoms). Data were collected through focus interviews, with 13 parents. A conventional qualitative analysis revealed four main categories: confidence, information, competence and collaboration, affecting parents. While waiting for an investigation parents experience anxiety, frustration, lack of information and confidence and doubts about their parenting ability, which also affects the child. The categories were interpreted using Bronfenbrenners bioecological model to illustrate the effects on the familys interaction with the context. Parents demand a greater insight and participation in the ongoing process and improved collaboration between the various professionalsFunding Agencies|FUTURUM, Region Joenkoeping County [910161, 910441]; Futurum - Akademin foer Haelsa och Vard, Region Joenkoepings laens [910161, 910441, 964569, 964576]</p

    Human Thermal Model Evaluation using the Johnson Space Center Human Thermal Database

    No full text
    corecore