21,498 research outputs found
Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity
Scraped-surface heat exchangers (SSHEs) are extensively used in a wide variety of industrial settings where the continuous processing of fluids and fluid-like materials is involved. The steady non-isothermal flow of a Newtonian fluid with temperature-dependent viscosity in a narrow-gap SSHE when a constant temperature difference is imposed across the gap between the rotor and the stator is investigated. The mathematical model is formulated and the exact analytical solutions for the heat and fluid flow of a fluid with a general dependence of viscosity on temperature for a general blade shape are obtained. These solutions are then presented for the specific case of an exponential dependence of viscosity on temperature. Asymptotic methods are employed to investigate the behaviour of the solutions in several special limiting geometries and in the limits of weak and strong thermoviscosity. In particular, in the limit of strong thermoviscosity (i.e., strong heating or cooling and/or strong dependence of viscosity on temperature) the transverse and axial velocities become uniform in the bulk of the flow with boundary layers forming either just below the blade and just below the stationary upper wall or just above the blade and just above the moving lower wall. Results are presented for the most realistic case of a linear blade which illustrate the effect of varying the thermoviscosity of the fluid and the geometry of the SSHE on the flow
Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCox)11.9Si1.1
The NaZn13-type compounds La(Fe1–xCox)11.9Si1.1 (x=0.04, 0.06, 0.08) were successfully synthesized, in which the Si content is the limit that can be reached by arc-melting technique. TC is tunable from 243 to 301 K with Co doping from x=0.04 to 0.08. Great magnetic entropy change S in a wide temperature range from ~230 to ~320 K has been observed. The adiabatic temperature change Tad upon changing magnetic field was also directly measured. Tad of sample x=0.06 reaches ~2.4 K upon a field change from 0 to 1.1 T. The temperature hysteresis upon phase transition is small, ~1 K, for all samples. The influence of Co doping on itinerant electron metamagnetic transition and magnetic entropy change is discussed. ©2005 American Institute of Physics.published_or_final_versio
Functional diversity of marine ecosystems after the Late Permian mass extinction event
Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic
Gamma oscillation in functional brain networks is involved in the spontaneous remission of depressive behavior induced by chronic restraint stress in mice
Additional file 1: Table S1. Statistical results of the cross-correlation in Fig. 2c
The long-term impact of the MEMA kwa Vijana adolescent sexual and reproductive health intervention: effect of dose and time since intervention exposure.
BACKGROUND: Despite recent decreases in HIV incidence in many sub-Saharan African countries, there is little evidence that specific behavioural interventions have led to a reduction in HIV among young people. Further and wider-scale decreases in HIV require better understanding of when behaviour change occurs and why. The MEMA kwa Vijana adolescent sexual and reproductive health intervention has been implemented in rural Mwanza, Tanzania since 1999. A long-term evaluation in 2007/8 found that the intervention improved knowledge, attitudes to sex and some reported risk behaviours, but not HIV or HSV2 prevalence. The aim of this paper was to assess the differential impact of the intervention according to gender, age, marital status, number of years of exposure and time since last exposure to the intervention. METHODS: In 2007, a cross-sectional survey was conducted in the 20 trial communities among 13,814 young people (15-30 yrs) who had attended intervention or comparison schools between 1999 and 2002. Outcomes for which the intervention had an impact in 2001 or 2007 were included in this subgroup analysis. Data were analysed using cluster-level methods for stratified cluster-randomised trials, using interaction tests to determine if intervention impact differed by subgroup. RESULTS: Taking into account multiplicity of testing, concurrence with a priori hypotheses and consistency within the results no strong effect-modifiers emerged. Impact on pregnancy knowledge and reported attitudes to sex increased with years of exposure to high-quality intervention. CONCLUSIONS: The desirable long-term impact of the MEMA kwa Vijana intervention did not vary greatly according to the subgroups examined. This suggests that the intervention can have an impact on a broad cross-section of young people in rural Mwanza. TRIAL REGISTRATION: ClinicalTrials.gov NCT00248469
Quantum anti-Zeno effect without wave function reduction
We study the measurement-induced enhancement of the spontaneous decay (called
quantum anti-Zeno effect) for a two-level subsystem, where measurements are
treated as couplings between the excited state and an auxiliary state rather
than the von Neumann's wave function reduction. The photon radiated in a fast
decay of the atom, from the auxiliary state to the excited state, triggers a
quasi-measurement, as opposed to a projection measurement. Our use of the term
"quasi-measurement" refers to a "coupling-based measurement". Such frequent
quasi-measurements result in an exponential decay of the survival probability
of atomic initial state with a photon emission following each
quasi-measurement. Our calculations show that the effective decay rate is of
the same form as the one based on projection measurements. What is more
important, the survival probability of the atomic initial state which is
obtained by tracing over all the photon states is equivalent to the survival
probability of the atomic initial state with a photon emission following each
quasi-measurement to the order under consideration. That is because the
contributions from those states with photon number less than the number of
quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure
Persistence of magnetic field driven by relativistic electrons in a plasma
The onset and evolution of magnetic fields in laboratory and astrophysical
plasmas is determined by several mechanisms, including instabilities, dynamo
effects and ultra-high energy particle flows through gas, plasma and
interstellar-media. These processes are relevant over a wide range of
conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion
in stars. The disparate temporal and spatial scales where each operates can be
reconciled by scaling parameters that enable to recreate astrophysical
conditions in the laboratory. Here we unveil a new mechanism by which the flow
of ultra-energetic particles can strongly magnetize the boundary between the
plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro
Tesla in astrophysical conditions). The physics is observed from the first
time-resolved large scale magnetic field measurements obtained in a laser
wakefield accelerator. Particle-in-cell simulations capturing the global plasma
and field dynamics over the full plasma length confirm the experimental
measurements. These results open new paths for the exploration and modelling of
ultra high energy particle driven magnetic field generation in the laboratory
Anomaly and a QCD-like phase diagram with massive bosonic baryons
We study a strongly coupled lattice gauge theory with two flavors of
quarks, invariant under an exact symmetry which is the same as QCD with
two flavors of quarks without an anomaly. The model also contains a coupling
that can be used to break the symmetry and thus mimic the QCD
anomaly. At low temperatures and small baryon chemical potential
the model contains massless pions and massive bosonic baryons similar to QCD
with an even number of colors. In this work we study the phase
diagram of the model and show that it contains three phases : (1) A chirally
broken phase at low and , (2) a chirally symmetric baryon superfluid
phase at low and high , and (3) a symmetric phase at high . We
find that the nature of the finite temperature chiral phase transition and in
particular the location of the tricritical point that seperates the first order
line from the second order line is affected significantly by the anomaly.Comment: 22 pages, 16 figures, 5 tables, references adde
The RN/CFT Correspondence Revisited
We reconsidered the quantum gravity description of the near horizon extremal
Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS/CFT
correspondence. We found that, for pure electric case, the right moving central
charge of dual 1D CFT is which is different from the previous result of left moving sector obtained by warped AdS/CFT description. We
discussed the discrepancy in these two approaches and examined novel properties
of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include
Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality
We study lattice effects in strongly coupled systems of fermions at a finite
density described by a holographic dual consisting of fermions in
Anti-de-Sitter space in the presence of a Reissner-Nordstrom black hole. The
lattice effect is encoded by a periodic modulation of the chemical potential
with a wavelength of order of the intrinsic length scales of the system. This
corresponds with a highly complicated "band structure" problem in AdS, which we
only manage to solve in the weak potential limit. The "domain wall" fermions in
AdS encoding for the Fermi surfaces in the boundary field theory diffract as
usually against the periodic lattice, giving rise to band gaps. However, the
deep infrared of the field theory as encoded by the near horizon AdS2 geometry
in the bulk reacts in a surprising way to the weak potential. The hybridization
of the fermions bulk dualizes into a linear combination of CFT1 "local quantum
critical" propagators in the bulk, characterized by momentum dependent
exponents displaced by lattice Umklapp vectors. This has the consequence that
the metals showing quasi-Fermi surfaces cannot be localized in band insulators.
In the AdS2 metal regime, where the conformal dimension of the fermionic
operator is large and no Fermi surfaces are present at low T/\mu, the lattice
gives rise to a characteristic dependence of the energy scaling as a function
of momentum. We predict crossovers from a high energy standard momentum AdS2
scaling to a low energy regime where exponents found associated with momenta
"backscattered" to a lower Brillioun zone in the extended zone scheme. We
comment on how these findings can be used as a unique fingerprint for the
detection of AdS2 like "pseudogap metals" in the laboratory.Comment: 42 pages, 5 figures; v2, minor correction, to appear in JHE
- …
