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Abstract

Scraped-surface heat exchangers (SSHEs) are extensively used in a wide vari-
ety of industrial settings where the continuous processing of fluids and fluid-like
materials is involved. The steady non-isothermal flow of a Newtonian fluid with
temperature-dependent viscosity in a narrow-gap SSHE when a constant tem-
perature difference is imposed across the gap between the rotor and the stator
is investigated. The mathematical model is formulated and the exact analytical
solutions for the heat and fluid flow of a fluid with a general dependence of vis-
cosity on temperature for a general blade shape are obtained. These solutions are
then presented for the specific case of an exponential dependence of viscosity on
temperature. Asymptotic methods are employed to investigate the behaviour of
the solutions in several special limiting geometries and in the limits of weak and
strong thermoviscosity. In particular, in the limit of strong thermoviscosity (i.e.
strong heating or cooling and/or strong dependence of viscosity on temperature)
the transverse and axial velocities become uniform in the bulk of the flow with
boundary layers forming either just below the blade and just below the stationary
upper wall or just above the blade and just above the moving lower wall. Results
are presented for the most realistic case of a linear blade which illustrate the effect
of varying the thermoviscosity of the fluid and the geometry of the SSHE on the
flow.

Keywords: Scraped-surface heat exchanger, temperature-dependent viscosity, thermo-
viscosity, lubrication approximation, asymptotic methods
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1 Introduction

Scraped-surface heat exchangers (SSHEs) are extensively used in a wide variety of in-
dustrial settings where the continuous processing of fluids and fluid-like materials is
involved. They are often used in the pharmaceutical and chemical industries (for exam-
ple, in dewaxing oils and producing paints); however, they are most commonly found
within the food manufacturing sector, where they are used for mixing and heating or
cooling foodstuffs during processes such as sterilisation, crystallisation and gelatinisa-
tion. Unlike the simpler plate heat exchangers which are commonly used for low viscosity
process fluids, SSHEs are designed to deal with the problems that arise when process-
ing very viscous products. Foodstuffs such as margarine, ice-cream, chocolate, sauces,
spreads, peanut butter, cream, caramel, purées, soups, salad dressings, yoghurt and jam
are all routinely processed using SSHEs. The short article by Smith [1] gives a good
introduction to the applicability of and differences between plate heat exchangers and
SSHEs.

An SSHE basically consists of a cylindrical rotating shaft (the “rotor”) within a
concentric hollow stationary cylinder (the “stator”) so as to form an annular region along
which the process fluid is pumped. The stator acts as the heat-transfer surface, and it is
normally enclosed within another cylindrical tube which provides a gap through which
a heating or cooling service fluid (for example, steam or ammonia) passes. Attached
to the rotor are a number of pivoted blades each of which scrapes the heat-transfer
surface, removing processed fluid and hence allowing unprocessed fluid to come closer
to the stator. A cut-away schematic of a typical SSHE is shown in Fig. 1. For maximum
efficiency the stator is manufactured from a material with a high heat-transfer coefficient
(such as nickel) though it is usually coated with a hard chrome-plated finish in order
to protect it from the scraping action of the blades. The blades themselves are usually
made from stainless steel; however, plastic ones are used for certain special applications
(and in these applications the chrome plating is not necessarily required) [1]. In a
typical SSHE there are usually either two or four blades located periodically around the
rotor, and usually these extend the whole way down the length of the device, though
sometimes they are axially staggered in order to improve mixing. More advanced designs
of SSHE include features such as holes in the blades (which reduce power consumption),
oval stators (which reduce “channelling” in which fluid passes through the exchanger
relatively unprocessed), and non-centrally mounted shafts (which enhance mixing and
prevent material from building up on the underside of the blades).

The rotating scraper blades serve several purposes which are particularly beneficial
in food processing. As we have already described, their main benefit is that they improve
the heat transfer between the stator and the process fluid by continually replacing the
fluid closest to the stator. This ensures that the fluid is more evenly processed, thereby
reducing the chances of it having temperature inhomogeneities when it exits the SSHE
(essential for processes such as sterilisation). Since the stator is being scraped, the
problem of decreased efficiency in heat transfer due to food deposits accumulating on the
heat-transfer surface is also avoided, which means that the SSHE can be run continuously
for longer periods of time. The blades also serve to mix the material, which often helps
to produce a more desirable consistent quality to the texture and taste of the product.
In the manufacture of ice-cream, for example, the action of the blades helps to blend
the fluid, air and ice crystals that are formed on the cooled stator surface, to produce
a smooth consistency. This combination of mixing the fluid while heating or cooling
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also means that high temperature gradients can be utilised without compromising the
product.

On the downside, the more complex structure of an SSHE makes it a more expen-
sive capital investment than some conventional heat exchangers and so, as a result, food
manufacturers are naturally interested in being able to optimise their production runs to
reduce operating costs. For these reasons, much experimental and theoretical research
has been carried out on a variety of types of SSHE using different operating conditions
and fluid rheologies. Due to the complicated nature of the heating/cooling and mixing
process, there are several factors that need to be taken into account in order to develop
a fuller understanding of the flow within an SSHE. First, the geometry and operating
parameters of the SSHE will obviously play a major role, and properties such as device
dimensions, rotation speeds, blade design and flow rates need to be carefully consid-
ered in order to maximise efficiency and create the desired conditions within the heat
exchanger. Secondly, the flow is three-dimensional (comprising a transverse flow driven
by the moving rotor and blades and a pressure-driven axial flow) and in certain circum-
stances it can be complicated by the formation of vortices (see Trommelen and Beek [2],
Härröd [3] and Dumont, Fayolle and Legrand [4]). The flow is also non-isothermal and
will typically involve conduction, convection and viscous dissipation within the process
fluid; moreover, the thermal characteristics of the service fluid may be significant. The
other major factors that must be taken into account are the rheological characteristics of
the process fluid. As previously mentioned, SSHEs are typically used for highly viscous
fluids; however, the fluids that are processed are often non-Newtonian, inhomogeneous,
viscoplastic, viscoelastic, contain particulates, possess temperature-dependent viscosi-
ties, and/or undergo phase changes during the cycle through the device. Clearly this
wide range of fluid properties will lead to a variety of flow behaviour. Hall-Taylor [5]
gives a general overview of SSHE applications in food processing and the various factors
that need to be taken into account.

A search of the literature reveals a fairly extensive body of experimental research on
SSHEs. Flow of a non-Newtonian fluid under isothermal conditions has been investi-
gated by, for example, Russell, Burmester and Winch [6], Wang, Walton and McCarthy
[7] and Stranzinger, Feigl and Windhab [8]. Heat-transfer mechanisms have been stud-
ied by Trommelen, Beek and Van de Westelaken [9] and Qin, Chen and Russell [10],
amongst others, and power consumption has been analysed by Trommelen and Beek
[11]. In order to analyse fully a mathematical model for heat and fluid flow in an SSHE
it is ultimately necessary to resort to numerical methods. Sun et al. [12] and Baccar and
Abid [13, 14] performed numerical simulations involving fluid flow and heat transfer in
the context of SSHEs, while related work by Sun et al. [15] investigated isothermal flow
of shear-thinning fluids in lid-driven cavities in the presence of an axial throughflow.
Although these numerical approaches are useful in that they provide a more detailed
description of the behaviour, they can fail to elucidate the subtle interplay that the
various device parameters and fluid properties can have on the solutions. In order to
develop a better understanding of some of the processes occurring within an SSHE some
recent work has concentrated on specific aspects of the problem that can be studied an-
alytically. Fitt and Please [16] modelled isothermal flow of a shear-thinning fluid in a
simplified model of a narrow-gap SSHE which allowed them to determine the optimal
power distribution between rotation and pumping. Duffy, Wilson and Lee [17] developed
a mathematical model for isothermal flow of a Newtonian fluid in a narrow-gap SSHE
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and obtained analytical expressions for the velocities, pressures and volume fluxes, and
for the forces on the device. The latter authors also calculated the possible equilibrium
positions of the blades and found that the blades can make the desired contact with the
stator when their pivots are located sufficiently close to the end of the blades. In an ac-
companying paper Fitt, Lee and Please [18] investigated the phenomenon of channelling
of a Newtonian fluid in a simplified model of a narrow-gap SSHE. Very recently Ro-
driguez Pascual et al. [19] visualised the flow within a laboratory-scale SSHE and found
qualitative agreement with numerical simulations obtained using a lattice-Boltzmann
discretization to solve the Navier–Stokes equations, and a Lagrangian approach to par-
ticle tracking. For further information on experimental and theoretical work on SSHEs
the reader is referred to the extensive literature reviews by Härröd [20] (published over
20 years ago in 1986) and Rao and Hartel [21] (published much more recently in 2006).

The present work extends the isothermal analysis of Duffy et al. [17] to investigate
the steady non-isothermal flow of a Newtonian fluid with temperature-dependent vis-
cosity in a narrow-gap SSHE when a constant temperature difference is imposed across
the gap between the rotor and the stator. In particular, we formulate a mathematical
model and obtain the exact analytical solutions for the heat and fluid flow of a fluid
with a general dependence of viscosity on temperature for a general blade shape. These
solutions are then analysed for the specific case of an exponential dependence of viscosity
on temperature and illustrated for the most realistic case of a linear blade.

2 The Mathematical Model

2.1 Formulation of the Model

Consider the steady flow of a Newtonian fluid with temperature-dependent viscosity
in an SSHE such as that shown in Fig. 1 when a constant temperature difference is
imposed across the gap between the rotor and the stator. The three-dimensional flow
within such a device is composed of a transverse flow driven by the relative motion of
the rotor and the stator and an axial flow driven by an imposed axial pressure gradient.
In the present work we consider a narrow-gap SSHE, a common type of SSHE in which
the annular gap between the rotor and the stator is thin relative to the circumferential
length of the device. According to information supplied by Chemtech International
Ltd (Reading, UK), a representative SSHE of this type has an axial length, D, of 2
m, a rotor circumference of approximately 427 mm, an annular gap, H , of 9 mm and
uses two blades each of whose length, L, is roughly 35 mm. These values correspond
to a small transverse aspect ratio of ǫ = H/L ≃ 0.3, suggesting that the problem
of determining the transverse heat and fluid flow within such a device can be made
analytically tractable by employing a lubrication approximation. At leading order in
the limit of small transverse aspect ratio the problem for the transverse flow is that
of flow in a parallel-sided channel containing a periodic array of angled blades each of
which makes contact with the lower wall (i.e. the stator). The blades are not, however,
connected to this wall, but are attached by rods and pins to the upper wall (i.e. the
rotor). In reality it is the rotor and the attached blades that move while the stator
remains fixed; however, since fluid inertia is typically negligible in practice, a Galilean
shift may be implemented so that we can consider the simpler (but entirely equivalent)
situation in which the lower wall moves and the upper wall and the attached blades are

5



fixed. For simplicity in the present work we will neglect the effects of gravity; however,
it is straightforward to include it in the axial pressure gradient if the SSHE is mounted
with the axis vertical, as is often the case in practice. The viscosity of the fluid µ is
taken to be a known function of temperature T , i.e. µ = µ(T ). A temperature difference
is imposed across the gap between the rotor and stator, and the transport of heat in
the fluid is assumed to be conduction dominated (i.e. we neglect convection and viscous
dissipation). We assume that the blades are perfect thermal conductors and hence that
both temperature and heat flux are continuous across them. As previously mentioned,
the blades are often manufactured from stainless steel, which has a reasonably high
thermal conductivity and, since the blades are relatively thin, it is reasonable to assume
that they are perfect thermal conductors. However, for the special applications in which
plastic blades are used it would be more appropriate to model them as perfect thermal
insulators, and this case may be analysed in a future publication. The fluid velocity
satisfies no-slip and no-penetration conditions on all solid boundaries, and the pressure
is continuous throughout the channel.

Figure 2 shows the geometry of the leading order mathematical model and defines
the Cartesian coordinates Oxyz used to describe position within the channel. A repre-
sentative blade is situated between x = 0 and x = L and its shape is represented by
the equation y = h(x) satisfying h(0) = 0 (so that it scrapes the moving lower wall
at x = 0), 0 < h(x) < H for 0 < x < L and 0 < h(L) 6 H (so that it lies strictly
below the stationary upper wall y = H except possibly at x = L), where H denotes
the width of the channel. It is convenient to divide the flow domain into three regions:
region 1 lies between the blade and the lower wall and hence occupies 0 6 x < L and
0 < y < h, region 2 lies between the blade and the upper wall and hence occupies
0 6 x < L and h < y < H, while region 3 is the space between the blades and hence
occupies L 6 x < L+ l and 0 < y < H . This structure is repeated periodically in x with
a period of L + l, and so henceforth we need only consider the section of the channel
between x = 0 and x = L + l containing one of each of the three regions. As described
previously, we consider the situation in which the upper wall and the attached blades
remain stationary while the lower wall moves in the positive x direction with velocity
U . The mathematical model will be solved for a general blade shape h; however, in Sec.
5 we will consider the most realistic case of a linear blade given by h = αx, where the
constant α (satisfying 0 6 α 6 ǫ = H/L) is the slope of the blade. The fluid is subject
to a constant axial pressure gradient −G and a constant temperature difference across
the channel, the latter caused by prescribing the temperature T to be T = T0 on y = 0
and T = TH on y = H .

In respect to a real SSHE, the width H , period L + l and speed U are given by
H = R2 − R1, L + l = 2πR1/N and U = ωR1, where R1 and R2 are the radii of the
rotor and stator, respectively, N is the number of blades in a cross-section of the SSHE,
and ω is the angular speed of the rotor.

The velocities, pressures, transverse volume fluxes (per unit length in the axial di-
rection), temperatures and the axial volume flux are denoted by uk(x, y)i + vk(x, y)j +
wk(x, y)k, Pk(x, y, z), Qk, Tk(x, y) and Q, respectively, where the subscripts k = 1, 2, 3
denote quantities in each of the three regions.
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We non-dimensionalise and scale the variables appearing in the model according to

x = Lx∗, y = Hy∗, z =
µ0UL

GH2
z∗, h = Hh∗, l = Ll∗,

uk = Uu∗
k, vk =

UH

L
v∗

k, wk =
GH2

µ0
w∗

k,

Pk =
µ0UL

H2
P ∗

k , Qk = UHQ∗
k, Q =

GH3L

µ0

Q∗,

µ = µ0µ
∗, Tk = T0 + (TH − T0)T

∗
k ,

(1)

where µ0 = µ(T0). In the specific case of a linear blade, we scale the blade slope
according to α = ǫα∗ = Hα∗/L, where 0 6 α∗ 6 1. In non-dimensional variables region
1 occupies 0 6 x∗ < 1, 0 < y∗ < h∗, region 2 occupies 0 6 x∗ < 1, h∗ < y∗ < 1, and
region 3 occupies 1 6 x∗ < 1 + l∗, 0 < y∗ < 1. For simplicity, we immediately drop
the superscript stars and henceforth all variables are non-dimensional and scaled unless
stated otherwise.

Provided that both the reduced Reynolds number ǫ2Re = ǫ2ρUL/µ0 = o(1) and the
reduced Péclet number ǫ2Pe = ǫ2ρcpUL/k = o(1), where ρ, cp and k are the constant
density, specific heat and thermal conductivity of the fluid, respectively, are small in the
limit of small transverse aspect ratio, ǫ = H/L → 0, then at leading order the governing
mass-conservation, Navier–Stokes and temperature equations yield

∂uk

∂x
+

∂vk

∂y
= 0, (2)

∂Pk

∂x
=

∂

∂y

(
µ

∂uk

∂y

)
,

∂Pk

∂y
= 0,

∂Pk

∂z
= −1 =

∂

∂y

(
µ

∂wk

∂y

)
, (3)

∂2Tk

∂y2
= 0, (4)

subject to the boundary conditions

u1 = 1 on y = 0
T1 = 0 on y = 0
u1 = 0 on y = h−



 for 0 6 x < 1, (5)

u2 = 0 on y = h+

u2 = 0 on y = 1
T2 = 1 on y = 1



 for 0 6 x < 1, (6)

u3 = 1 on y = 0
T3 = 0 on y = 0
u3 = 0 on y = 1
T3 = 1 on y = 1





for 1 6 x < 1 + l, (7)

T1 = T2 and
∂T1

∂y
=

∂T2

∂y
on y = h for 0 6 x < 1, (8)

P2(x = 0) = P3(x = 1 + l), P1(x = 1) = P2(x = 1) = P3(x = 1), (9)

together with vk = wk = 0 (k = 1, 2, 3) on all solid boundaries.
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2.2 General Solution of the Model

It is easily shown that integrating (4) subject to the appropriate temperature boundary
conditions contained in (5)–(8) gives the simple linear temperature distribution

Tk = T = y, (10)

in each of the three regions, so that µ = µ(y) everywhere. Equations (3b) and (3c) yield

Pk = −z + pk, (11)

where pk = pk(x) (k = 1, 2, 3) is the contribution to the pressure due to the transverse
flow, and hence the governing equations for uk and wk may be written as

∂

∂y

(
µ

∂uk

∂y

)
=

dpk

dx
,

∂

∂y

(
µ

∂wk

∂y

)
= −1. (12)

Finally, for simplicity in what follows, we introduce the constants p0 and pL such that
the continuity-of-pressure conditions (9) may be written as

p2(x = 0) = p3(x = 1 + l) = p0, p1(x = 1) = p2(x = 1) = p3(x = 1) = pL. (13)

2.2.1 Solution for the Transverse (i.e. the x and y) Flow

Solving (12a) for the x velocities uk subject to the no-slip conditions on the lower
boundaries of regions 1, 2 and 3 contained in (5)–(7) gives

u1 = 1 + p1x

∫ y

0

ỹ

µ(ỹ)
dỹ + A1(x)

∫ y

0

1

µ(ỹ)
dỹ, (14)

u2 = p2x

∫ y

h

ỹ

µ(ỹ)
dỹ + A2(x)

∫ y

h

1

µ(ỹ)
dỹ, (15)

u3 = 1 + p3x

∫ y

0

ỹ

µ(ỹ)
dỹ + A3(x)

∫ y

0

1

µ(ỹ)
dỹ, (16)

where Ak = Ak(x) (k = 1, 2, 3) are arbitrary functions of x and the x subscripts denote
x derivatives. Imposing the no-slip conditions at the upper boundaries of regions 1, 2
and 3 contained in (5)–(7) determines the Ak to be

A1 = −
1 + p1xJ11

J10
, A2 = −

p2xJ21

J20
, A3 = −

1 + p3xJ31

J30
, (17)

with Jkn (k = 1, 2, 3) denoting the integrals

J1n =

∫ h

0

ỹn

µ(ỹ)
dỹ, J2n =

∫ 1

h

ỹn

µ(ỹ)
dỹ, J3n =

∫ 1

0

ỹn

µ(ỹ)
dỹ. (18)

Note that J1n + J2n = J3n, where J1n and J2n depend on x (via the blade shape h),
whereas J3n is independent of x. The transverse volume fluxes Qk are then given by

Q1 =

∫ h

0

u1 dy, Q2 =

∫ 1

h

u2 dy, Q3 =

∫ 1

0

u3 dy, (19)
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and hence

Q1 = h + p1x

∫ h

0

ỹ(h − ỹ)

µ(ỹ)
dỹ + A1

∫ h

0

h − ỹ

µ(ỹ)
dỹ =

J11 + p1x(J
2
11 − J10J12)

J10

, (20)

Q2 = p2x

∫ 1

h

ỹ(1 − ỹ)

µ(ỹ)
dỹ + A2

∫ 1

h

1 − ỹ

µ(ỹ)
dỹ =

p2x(J
2
21 − J20J22)

J20
, (21)

Q3 = 1 + p3x

∫ 1

0

ỹ(1 − ỹ)

µ(ỹ)
dỹ + A3

∫ 1

0

1 − ỹ

µ(ỹ)
dỹ =

J31 + p3x(J
2
31 − J30J32)

J30
. (22)

Since the flow is steady the Qk are independent of x. Since the blade makes contact
with the lower wall, the transverse volume flux in region 1 must be zero, i.e. Q1 = 0.
Moreover, global conservation of mass then implies that the transverse volume fluxes in
regions 2 and 3 must be equal, i.e. Q2 = Q3 = Q, say. Equations (20)–(22) may then
be rearranged to obtain expressions for the pressure gradients, namely

p1x = −
J11

J2
11 − J10J12

, p2x =
QJ20

J2
21 − J20J22

, p3x =
QJ30 − J31

J2
31 − J30J32

. (23)

Note that p1x and p2x are functions of x (via the blade shape h), whereas p3x is inde-
pendent of x. Finally, using the continuity-of-pressure conditions (13) we may integrate
the expressions for the pressure gradients p2x and p3x given in (23b) and (23c) to yield
two expressions for the pressure difference p0 − pL, namely

p0 − pL = −

∫ 1

0

QJ20

J2
21 − J20J22

dx =
l(QJ30 − J31)

J2
31 − J30J32

, (24)

which yield the transverse volume flux

Q =
lJ31

lJ30 + (J2
31 − J30J32)

∫ 1

0

J20

J2
21 − J20J22

dx

. (25)

The final solutions for uk are obtained by substituting the expressions for the pkx given
in (23) with the value of Q given by (25) into (14)–(16) using (17).

Once the solutions for uk are known, the corresponding solutions for the y velocities
vk may be obtained if required from (2) subject to the no-penetration conditions vk = 0
on all solid boundaries. These solutions are omitted for brevity.

2.2.2 Solution for the Axial (i.e. the z) Flow

Solving (12b) for the axial (i.e. the z) velocities wk subject to the no-slip conditions
wk = 0 on all solid boundaries gives

w1 =
J11

J10

∫ y

0

1

µ(ỹ)
dỹ −

∫ y

0

ỹ

µ(ỹ)
dỹ, (26)

w2 =
J21

J20

∫ y

h

1

µ(ỹ)
dỹ −

∫ y

h

ỹ

µ(ỹ)
dỹ, (27)

w3 =
J31

J30

∫ y

0

1

µ(ỹ)
dỹ −

∫ y

0

ỹ

µ(ỹ)
dỹ. (28)
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The axial volume flux across the section 0 6 x < 1 + l and 0 < y < 1 is then given by

Q =

∫ 1

0

∫ h

0

w1 dy dx +

∫ 1

0

∫ 1

h

w2 dy dx +

∫ 1+l

1

∫ 1

0

w3 dy dx, (29)

which reduces to

Q =

∫ 1

0

J10J20(J12 + J22) − J10J
2
21 − J20J

2
11

J10J20

dx +
l(J30J32 − J2

31)

J30

. (30)

2.3 Exponential Dependence of Viscosity on Temperature

In order to proceed much further it is necessary to specify the functional form of the
dependence of viscosity µ on temperature T , and hence for the remainder of the present
work we will focus on the specific case of an exponential dependence of viscosity on
temperature given (in dimensional variables) by

µ(T ) = µ0 exp

[
−λ(T − T0)

µ0

]
, (31)

where µ0 = µ(T0) and the sign of the constant λ (= −dµ/dT |T=T0
) determines whether

the fluid is heat-thinning (λ > 0) or heat-thickening (λ < 0). Making use of (1) and
recalling from (10) that Tk = T = y we may express (31) in non-dimensional form as

µ = e−V T = e−V y, (32)

where

V =
λ(TH − T0)

µ0
(33)

is a non-dimensional measure of the variation of viscosity with temperature known as
the thermoviscosity number (see, for example, Wilson and Duffy [22]).

Substituting (32) into (14)–(16) using (17) yields

u1 =
p1x

[
heV h − yeV y − (h − y)eV (y+h)

]
+ V (eV h − eV y)

V (eV h − 1)
, (34)

u2 =
p2x

[
(1 − h)eV (h+1) − (1 − y)eV (y+1) − (y − h)eV (y+h)

]

V (eV − eV h)
, (35)

u3 =
p3x

[
eV − yeV y − (1 − y)eV (y+1)

]
+ V (eV − eV y)

V (eV − 1)
. (36)

Plots of the uk will be given in Sec. 5 for the most realistic case of a linear blade. The
transverse volume fluxes (20)–(22) are then given in terms of the pressure gradients by

Q1 =
p1x

[
V 2h2eV h − (eV h − 1)2

]
+ V 2

[
(V h − 1)eV h + 1

]

V 3(eV h − 1)
, (37)

Q2 =
p2x

[
V 2(1 − h)2eV (h+1) − (eV h − eV )2

]

V 3(eV − eV h)
, (38)
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Q3 =
p3x

[
V 2eV − (eV − 1)2

]
+ V 2

[
(V − 1)eV + 1

]

V 3(eV − 1)
. (39)

From (23a) (equivalent to setting Q1 = 0 in (37)) the pressure gradient in region 1 is
given by

p1x =
V 2

[
(V h − 1)eV h + 1

]

(eV h − 1)2 − V 2h2eV h
, (40)

which may be substituted into (34) to give

u1 =
V

[
(V h−1)eV h+1

][
heV h−yeV y−(h−y)eV (y+h)

]
+
[
(eV h−1)2−V 2h2eV h

]
(eV h−eV y)

[(eV h − 1)2 − V 2h2eV h] (eV h − 1)
.

(41)
By specifying a specific form for the blade shape h it is, in principle, possible to obtain
an explicit expression for the pressure in region 1 by direct integration of (40). It is
worth noting at this point that the pressure gradient (40) has a singularity at x = 0
where p1x → ∞ as x → 0+. In particular, if the blade is locally linear near x = 0 like
h ∼ αx then we may show that

p1x ∼
6

α2x2
−

2V

αx
→ ∞, p1 ∼ −

6

α2x
−

2V ln x

α
→ −∞,

∂u1

∂y

∣∣∣∣
y=0

∼ −
4

αx
+ V → −∞,

∂u1

∂y

∣∣∣∣
y=h

∼
2

αx
+ V → ∞

(42)

as x → 0+, meaning that the forces on the blade and the lower wall y = 0, along with the
moment on the blade about the pivot, are all infinite, implying that an infinite amount
of power would be required to rotate the rotor. This issue is discussed in detail by Duffy
et al. [17], who show that the singularities can be alleviated in a number of physically
plausible ways by incorporating additional physical effects, such as shear-thinning fluid
behaviour, slip at the boundaries or cavitation, into the model, and hence we do not
need to pursue it further here.

From (23b) and (23c) (equivalent to setting Q2 = Q3 = Q in (38) and (39)) the
pressure gradients in regions 2 and 3 are given by

p2x =
QV 3(eV − eV h)

V 2(1 − h)2eV (h+1) − (eV − eV h)2
, (43)

p3x =
V 2

[
QV (eV − 1) − (V − 1)eV − 1

]

V 2eV − (eV − 1)2
, (44)

and (24) yields two expressions for the pressure difference p0 − pL, namely

p0 − pL = −QV 3I =
lV 2

[
QV (eV − 1) − (V − 1)eV − 1

]

V 2eV − (eV − 1)2
, (45)

where the integral I is defined as

I =

∫ 1

0

eV − eV h

V 2(1 − h)2eV (h+1) − (eV − eV h)2
dx. (46)

From (25) the transverse volume flux is given by

Q =
l
[
(V − 1)eV + 1

]

V {I [V 2eV − (eV − 1)2] + l(eV − 1)}
. (47)
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By examining each of the terms in (47) it is relatively straightforward to verify that
Q > 0 and Q < 1 for any blade shape h and all values of l (> 0) and V , with Q → 1 as
l → ∞ and V → ∞, i.e. that the transverse volume flux lies in the range 0 6 Q < 1.
Note that in the special case V = 0 Duffy et al. [17] showed that the more restrictive
condition 0 6 Q < 1/2 holds.

Substituting (32) into (26)–(28) yields

w1 =
(h − y)eV (y+h) + yeV y − heV h

V (eV h − 1)
, (48)

w2 =
(y − h)eV (y+h) + (1 − y)eV (y+1) − (1 − h)eV (h+1)

V (eV − eV h)
, (49)

w3 =
(1 − y)eV (y+1) + yeV y − eV

V (eV − 1)
, (50)

which satisfy wk > 0 in the appropriate regions. Plots of the wk will be given in Sec. 5
for the most realistic case of a linear blade. From (30) the axial volume flux across the
section 0 6 x < 1 + l and 0 < y < 1 is given by

Q =
1

V 3

∫ 1

0

{
(eV h − 1)2 − V 2h2eV h

eV h − 1
+

(eV − eV h)2 − V 2(1 − h)2eV (h+1)

eV − eV h

}
dx

+
l
[
(eV − 1)2 − V 2eV

]

V 3(eV − 1)
. (51)

3 Special Limiting Cases of the Geometry

The general solutions described in Sec. 2 above are valid for any blade shape y = h(x)
satisfying h(0) = 0, 0 < h(x) < 1 for 0 < x < 1 and 0 < h(1) 6 1 and for all values
of the blade separation length l (> 0) and the thermoviscosity number V . In Sec. 4 we
will analyse the asymptotic behaviour of the solutions in the limits of weak and strong
thermoviscosity; however before doing this it is of interest to study the behaviour in
various special limiting cases of the geometry.

3.1 The Special Case h(x) ≡ 0

In the special case h(x) ≡ 0 the blade lies flat against the moving lower wall, removing
region 1 from the problem and shielding region 2 from the direct effect of the lower
wall (although it still feels an indirect effect via the flow generated in region 3). Setting
h(x) ≡ 0 in (46) yields

I =
eV − 1

V 2eV − (eV − 1)2
, (52)

and hence from (47) the transverse volume flux is given by

Q =
l
[
(V − 1)eV + 1

]

V (l + 1)(eV − 1)
. (53)

Substituting (53) into (43) and (44) yields the pressure gradients in regions 2 and 3,
namely

p2x = −
lV 2

[
(V − 1)eV + 1

]

(l + 1) [(eV − 1)2 − V 2eV ]
, (54)
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p3x =
V 2

[
(V − 1)eV + 1

]

(l + 1) [(eV − 1)2 − V 2eV ]
, (55)

and substituting (53) into (35) and (36) yields the x velocities in regions 2 and 3 (omitted
for brevity). Substituting h(x) ≡ 0 into (49) yields the axial velocity

w2 =

[
(1 − y)eV + y

]
eV y − eV

V (eV − 1)
, (56)

(with w3 still given by (50)), and substituting into (51) yields the axial volume flux

Q =
(l + 1)

[
(eV − 1)2 − V 2eV

]

V 3(eV − 1)
. (57)

Note that in this case, but not in general, the transverse flow in region 2 is rectilinear
(like it always is in region 3) and hence the pressure gradient in region 2 is independent
of x (like it always is in region 3).

3.2 The Special Case h(1) = 1

In the special case h(1) = 1 the right-hand end of the blade makes contact with the
stationary upper wall and completely blocks the channel. Since the fluid cannot pass
over the blade, the transverse volume flux in regions 2 and 3 must be zero (like that in
region 1) so that Q2 = Q3 = Q = 0. The form of the solution in region 1 is unaffected,
but setting Q = 0 in (43) and (44) the pressure gradients in regions 2 and 3 are given
by

p2x = 0, p3x = −
V 2

[
(V − 1)eV + 1

]

V 2eV − (eV − 1)2
. (58)

Substituting (58) into (35) and (36) yields u2 = 0 and

u3 =

{
(V y + 1)(eV − 1) + V [V (1 − y) − 1] eV

}
eV y − (eV − V − 1)eV

V 2eV − (eV − 1)2
, (59)

while the axial velocities wk and the axial volume flux Q are still given by (48)–(51).
Note that since region 2 is entirely shielded from the effect of the moving lower wall,
there is no transverse flow in this region in this case.

3.3 The Special Case l = 0

In the special case l = 0 there is no separation between adjacent blades, eliminating
region 3 from the problem. Since region 2 is again completely shielded from the moving
lower wall, the transverse volume flux in region 2 is zero, i.e. Q2 = Q = 0. The form of
the solution in region 1 is again unaffected, but (35) and (43) yield p2x = 0 and u2 = 0
in region 2. The axial velocities w1 and w2 are still given by (48) and (49), while the
axial volume flux Q is given by (51) with l = 0. Note that there is again no transverse
flow in region 2 in this case.

13



3.4 The Limit l → ∞

In the limit l → ∞ the separation between adjacent blades becomes infinitely large and
the problem becomes that of a single blade in an infinitely long channel. From (47) the
leading order behaviour of the transverse volume flux in the limit l → ∞ is independent
of the shape of the blade, specifically

Q ∼
(V − 1)eV + 1

V (eV − 1)
= O(1). (60)

The form of the solution in region 1 is again unaffected, but substituting (60) into (35)
and (43) yields

p2x ∼
V 2

[
(V − 1)eV + 1

]
(eV − eV h)

(eV − 1) [V 2(1 − h)2eV (h+1) − (eV − eV h)2]
(61)

and

u2 ∼
V

[
(V − 1)eV + 1

] [
(1 − h)eV (h+1) − (1 − y)eV (y+1) − (y − h)eV (y+h)

]

(eV − 1) [V 2(1 − h)2eV (h+1) − (eV − eV h)2]
. (62)

Substituting (60) into (36) and (44) yields p3x = o(1) and

u3 ∼
eV − eV y

eV − 1
. (63)

In fact, expanding (47) to next order reveals that

p3x ∼ −
IV 2

[
(V − 1)eV + 1

]

l(eV − 1)
= O(l−1) → 0. (64)

The axial velocities wk are still given by (48)–(50), while from (51) the leading order
axial volume flux is independent of the shape of the blade and is given by

Q ∼
l
[
(eV − 1)2 − V 2eV

]

V 3(eV − 1)
= O(l) → ∞. (65)

4 The Limits of Weak and Strong Thermoviscosity

Effects

In Secs 2 and 3 we derived and analysed explicit solutions for the heat and fluid flow
in the present mathematical model of a narrow-gap SSHE. Unfortunately, in general,
several of the expressions are rather cumbersome and some or all of the integrals involved
may need to be evaluated numerically, making it difficult to understand fully the effect of
the governing parameters on the behaviour of the solutions. In order to help to elucidate
the effect of thermoviscosity on the solutions (and in order to provide useful analytical
checks on the numerical results presented in Sec. 5), in this section we describe the
behaviour of the solutions in the asymptotic limits of weak and strong thermoviscosity.
Small thermoviscosity (i.e. the limit V → 0) corresponds to a weak heating or cooling of
the rotor relative to the stator and/or a weak dependence of viscosity on temperature.
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Large positive thermoviscosity (i.e. the limit V → ∞) corresponds to a strong heating
of the rotor relative to the stator for a heat thinning fluid or a strong cooling of the
rotor relative to the stator for a heat thickening fluid and/or a strongly heat thinning
fluid when the rotor is heated relative to the stator or a strongly heat thickening fluid
when the rotor is cooled relative to the stator, with the corresponding meanings for
large negative thermoviscosity (i.e. the limit V → −∞).

4.1 Small Thermoviscosity V → 0

In the special case V = 0 (corresponding to the rotor and the stator being at the
same temperature and/or no dependence of viscosity on temperature) we recover the
appropriate versions of the isothermal solutions obtained by Duffy et al. [17]. In this
subsection we investigate the effect of weak thermoviscosity by obtaining the regular
small V expansions about these solutions.

Expanding (40) and (41) for small V yields

p1x =
6

h2
−

2

h
V + O(V 2) (66)

and

u1 =
(h − 3y)(h − y)

h2
+

y(h − 2y)(h − y)

h2
V + O(V 2), (67)

and hence

p1 − pL =

∫ x

1

6

h(x̃)2
dx̃ −

(∫ x

1

2

h(x̃)
dx̃

)
V + O(V 2). (68)

Expanding (43) and (44) gives

p2x = −
12Q0

(1 − h)3
+

6 [Q0(h + 1) − 2Q1]

(1 − h)3
V + O(V 2), (69)

p3x = 6(1 − 2Q0) + 2(3Q0 − 6Q1 − 1)V + O(V 2), (70)

where we have written Q = Q0+Q1V +O(V 2), and expanding (45) yields two expressions
for the pressure difference p0 − pL, namely

p0 − pL = 12Q0I0 − 6 [Q0I1 + (Q0 − 2Q1)I0] V + O(V 2), (71)

p0 − pL = 6l(1 − 2Q0) + 2l(3Q0 − 6Q1 − 1)V + O(V 2), (72)

where In denotes the integral

In =

∫ 1

0

hn

(1 − h)3
dx. (73)

Expanding (47) reveals that the transverse volume flux is given by

Q =
l

2(l + I0)
+

l(l + I0 + 3I1)

12(l + I0)2
V + O(V 2). (74)

Substituting (74) into (69) and (70) and integrating yields

p2 − pL = −
6lK0

l + I0
+

l [3(l + I0)K1 + (2l + 2I0 − 3I1)K0]

(l + I0)2
V + O(V 2), (75)
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p3 − pL =
6I0(x − 1)

l + I0

−
[l(2I0 + 3I1) + 2I2

0 ] (x − 1)

(l + I0)2
V + O(V 2), (76)

where Kn denotes the integral

Kn =

∫ x

1

h(x̃)n

[1 − h(x̃)]3
dx̃. (77)

Substituting (75) and (76) into (35) and (36) yields

u2 =
3l(y − h)(1 − y)

(l + I0)(1 − h)3
−

l [(l + I0)(2h − 4y + 1) − 3I1] (1 − y)(y − h)

2(l + I0)2(1 − h)3
V + O(V 2), (78)

u3 =
[l + I0 − 3yI0] (1 − y)

l + I0

+
[l2 + (3I0 − 4yI0 + 3I1)l + 2I2

0 (1 − 2y)] y(1 − y)

2(l + I0)2
V +O(V 2).

(79)
Expanding (48)–(50) for small V it is straightforward to show that

w1 =
y(h − y)

2
+

y(h − y)(4y + h)

12
V + O(V 2), (80)

w2 =
(1 − y)(y − h)

2
+

(1 − y)(y − h)(4y + h + 1)

12
V + O(V 2), (81)

w3 =
y(1 − y)

2
+

y(1 − y)(4y + 1)

12
V + O(V 2), (82)

and hence from (51) that the axial volume flux is given by

Q =
1

12

[
1 +

∫ 1

0

(3h2 − 3h + 1) dx

]
+

1

24

[
l +

∫ 1

0

(2h3 − 2h + 1) dx

]
V + O(V 2). (83)

4.2 Large Positive Thermoviscosity V → ∞

At leading order in the limit of large positive thermoviscosity, V → ∞, equation (40)
yields

p1x ∼ V 3he−V h, (84)

and hence the leading order pressure in region 1 is given by

p1 − pL ∼ V 3

∫ x

1

h(x̃)e−V h(x̃) dx̃, (85)

while from (41) the x velocity in region 1 is given by

u1 ∼ 1 − [V (V h − 1)(h − y) + 1]e−V (h−y). (86)

From (47) the leading order transverse volume flux is given by

Q ∼
l

l + 1
= O(1). (87)

Expanding (43) and (44) yields

p2x ∼ −
lV 3

(l + 1)eV
, p3x ∼

V 3

(l + 1)eV
, (88)
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and hence the leading order pressures in regions 2 and 3 are

p2 − pL ∼
lV 3(1 − x)

(l + 1)eV
, p3 − pL ∼

V 3(x − 1)

(l + 1)eV
, (89)

while from (35) and (36) the x velocities in regions 2 and 3 are given by

u2 ∼
lV 2(1 − y)e−V (1−y)

l + 1
, u3 ∼ 1 −

[l + 1 + V (V − 1)(1 − y)]e−V (1−y)

l + 1
. (90)

Expanding (48)–(50) yields the axial velocities

w1 ∼
(h − y)eV y

V
, w2 ∼

(1 − y)eV y

V
, w3 ∼

(1 − y)eV y

V
, (91)

and hence from (51) the leading order axial volume flux is

Q ∼
(l + 1)eV

V 3
= O

(
eV

V 3

)
→ ∞. (92)

Figure 3 shows sketches of the asymptotic solutions for the x velocities in each of the
three regions given by (86) and (90) highlighting the magnitude of the velocity in the
different parts of the flow. In all three regions the viscosity is an exponentially decreasing
function of y, and hence in each region the bulk of the fluid has an exponentially larger
viscosity than that near its upper boundary. Hence in each region the bulk of the
fluid moves as a rigid body with the velocity of its lower boundary (namely u1 = 1,
u2 = 0 and u3 = 1) with an appropriate boundary layer just below its upper boundary.
In region 1 the transverse volume flux is zero and there is a boundary layer of width
O(V −1) just below the blade in which there is backwards flow (i.e. u1 < 0) with velocity
O(V ), resulting in a negative O(1) volume flux in the boundary layer which is equal
and opposite to the positive O(1) volume flux in the bulk of the region. In regions 2
and 3 there are boundary layers of width O(V −1) just below the stationary upper wall
in which there is forwards flow with velocity O(V ) in region 2 and backwards flow with
velocity O(V ) in region 3, resulting in an O(1) transverse volume flux.

Figure 4 shows the corresponding sketches of the asymptotic solutions for the axial
(i.e. the z) velocities in each of the three regions given by (91). The axial velocities have
rather similar behaviour to that of the x velocities, namely that in each region the bulk
of the fluid is stationary (namely w1 = w2 = w3 = 0) with an appropriate boundary
layer of width O(V −1) just below its upper boundary in which there is forwards flow
with velocity O(V −2eV h) just below the blade in region 1 and forwards flow with velocity
O(V −2eV ) just below the stationary upper wall in regions 2 and 3, resulting in a large
O(V −3eV ) axial volume flux.

In particular, Figs 3 and 4 show that in the limit of large positive thermoviscosity the
fastest flow occurs in boundary layers where the viscosity is lowest in each region (i.e.
just below the blade and just below the stationary upper wall) in which the x velocity
is O(V ) larger than the velocity of the moving lower wall driving the transverse flow,
and in which all of the axial flow occurs. Note that since the x and the axial velocities
in the boundary layers grow unboundedly with V , hitherto neglected inertial effects will
always eventually become significant in this limit.
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4.3 Large Negative Thermoviscosity V → −∞

At leading order in the limit of large negative thermoviscosity, V → −∞, equation (40)
yields

p1x ∼ V 2, (93)

and hence the leading order pressure in region 1 is given by

p1 − pL ∼ −V 2(1 − x), (94)

while from (41) the x velocity in region 1 is given by

u1 ∼ (1 − |V |y)e−|V |y. (95)

From (47) the leading order transverse volume flux is given by

Q ∼
l

|V |Ĩ
, (96)

where Ĩ is the leading order term in the expansion of I given by (46) as V → −∞, i.e.

Ĩ =

∫ 1

0

e|V |h dx. (97)

Note that in the most realistic case of a linear blade h = αx we have Ĩ ∼ eα|V |/α|V |
and hence Q ∼ lαe−α|V | = O(e−α|V |) → 0+. Expanding (43) and (44) yields

p2x ∼ −
lV 2e|V |h

Ĩ
, p3x ∼ V 2, (98)

and hence the leading order pressures in regions 2 and 3 are

p2 − pL ∼ −
lV 2

Ĩ

∫ x

1

e|V |h(x̃) dx̃, p3 − pL ∼ V 2(x − 1), (99)

while from (35) and (36) the x velocities in regions 2 and 3 are given by

u2 ∼
l|V |(y − h)e−|V |(y−h)

Ĩ
, u3 ∼ (1 − |V |y)e−|V |y. (100)

Expanding (48)–(50) yields the axial velocities

w1 ∼
ye−|V |y

|V |
, w2 ∼

(y − h)e−|V |y

|V |
, w3 ∼

ye−|V |y

|V |
, (101)

and hence from (51) the leading order axial volume flux is

Q ∼
l + 1

|V |3
= O(|V |−3) → 0+. (102)

Figure 5 shows sketches of the asymptotic solutions for the x velocities in each
of the three regions given by (95) and (100) again highlighting the magnitude of the
velocity in the different parts of the flow. In contrast to the situation discussed in Sec.
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4.2, in all three regions the viscosity is an exponentially increasing function of y, and
hence in each region the bulk of the fluid has an exponentially larger viscosity than
that near its lower boundary. Hence in each region the bulk of the fluid is stationary
(namely u1 = u2 = u3 = 0) with an appropriate boundary layer just above its lower
boundary. In region 1 the transverse volume flux is zero and there is a boundary layer
of width O(|V |−1) just above the moving lower wall in which there is both forwards and
backwards flow with velocity O(1), resulting in zero net volume flux in the boundary
layer. In regions 2 and 3 there are boundary layers of width O(|V |−1) just above the

lower boundary in which there is forwards flow with velocity O(Ĩ −1) just above the
blade in region 2 and forwards and backwards flow with velocity O(1) just above the

moving lower wall in region 3, resulting in an O(|V |−1Ĩ −1) transverse volume flux. Note
that in this limit the maximum magnitudes of the backwards flows in regions 1 and 3
approach the same O(1) values, namely u1 ∼ u3 ∼ −e−2.

Figure 6 shows the corresponding sketches of the asymptotic solutions for the axial
(i.e. the z) velocities in each of the three regions given by (101). The axial velocities again
have rather similar behaviour to that of the x velocities, namely that in each region the
bulk of the fluid is stationary (namely w1 = w2 = w3 = 0) with an appropriate boundary
layer of width O(|V |−1) just above its lower boundary in which there is forwards flow
with velocity O(V −2) just above the moving lower wall in regions 1 and 3 and forwards
flow with velocity O(V −2e−|V |h) just above the blade in region 2, resulting in a small
O(|V |−3) axial volume flux.

In particular, Figs 5 and 6 show that in the limit of large negative thermoviscosity all
of the transverse and axial flow occurs in boundary layers where the viscosity is lowest
in each region (i.e. just above the blade and just above the moving lower wall).

5 General Results and Discussion

In this section we describe the behaviour of the solutions for a fluid with an exponential
dependence of viscosity on temperature described in Sec. 2.3 for a wide range of param-
eter values. Where appropriate, comparisons are made with the asymptotic solutions in
the limits of weak and strong thermoviscosity described in Sec. 4.

In order to calculate the solutions we need to prescribe the blade shape and, as
indicated earlier, we consider the most realistic case of a linear blade given by h = αx,
with slope α satisfying 0 6 α 6 1.

Figures 7–12 show plots of the pressure differences pk − pL as functions of x, the x
velocities uk as functions of y, and the axial velocities wk as functions of y, for a range
of positive values of the thermoviscosity number V (Figs 7, 9 and 11) and a range of
negative values of V (Figs 8, 10 and 12) in the case α = 0.5 and l = 1. In all of these
figures the solid curves are the exact solutions obtained in Sec. 2.3, and the dashed
curves are the small V asymptotic solutions described in Sec. 4.1 and the large positive
and negative V asymptotic solutions described in Secs 4.2 and 4.3, respectively.

When V = 0 the viscosity is constant over the entire channel (µ ≡ 1) and we recover
the appropriate versions of the isothermal solutions obtained by Duffy et al. [17] given
in Sec. 4.1 in which both the x and the axial velocities are parabolic in y.

As V increases from zero the viscosity becomes more and more strongly decreasing
with y across the channel, and Figs 7, 9 and 11 show how the x and the axial velocities
become progressively more uniform in the bulk of the flow with thin boundary layers
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forming just below the blade and just below the stationary upper wall, until ultimately
the large positive V asymptotic solutions described in Sec. 4.2 are attained in the limit
V → ∞. Similarly, as V decreases from zero the viscosity becomes more and more
strongly increasing with y across the channel, and Figs 8, 10 and 12 show how the x
and the axial velocities become progressively more uniform in the bulk of the flow with
thin boundary layers forming just above the blade and just above the moving lower
wall, until ultimately the large negative V asymptotic solutions described in Sec. 4.3
are attained in the limit V → −∞. In particular, Figs 7–12 show that the small V
solutions are in good agreement with the exact solutions for values as large as |V | = 1,
while the large positive V solutions are in good agreement with the exact solutions for
values as small as V = 25 and the large negative V solutions are in good agreement
with the exact solutions for values as small in magnitude as V = −25, albeit with a
non-uniformity in the solution for p1 near x = 0 due to the singularity discussed in Sec.
2.3.

Figure 13 shows the transverse volume flux Q given by (47) plotted as a function
of V for a range of values of α in the case l = 1. In particular, Fig. 13(b) shows that
the solutions are in good agreement with the asymptotic solutions in the limits V → 0,
V → ∞ and V → −∞ given by (74), (87) and (96), respectively. Figure 13 shows that Q
is a monotonically increasing function of V satisfying Q = O(e−α|V |) → 0+ as V → −∞
and Q ∼ l/(l+1) = O(1) as V → ∞ for fixed α, and a monotonically decreasing function
of α for fixed V . Figure 14 shows the axial volume flux Q given by (51) plotted as a
function of V for a range of values of α in the case l = 1. In particular, Fig. 14(b) shows
that the solutions are in good agreement with the asymptotic solutions in the limits
V → 0, V → ∞ and V → −∞ given by (83), (92) and (102), respectively. Figure 14
shows that Q is a monotonically increasing function of V satisfying Q = O(|V |−3) → 0+

as V → −∞ and Q = O(V −3eV ) → ∞ as V → ∞ for fixed α. Figure 14 clearly
shows that Q is relatively insensitive to the value of α, but what is not so immediately
apparent from Fig. 14 is that Q is not a monotonically decreasing function of α for fixed
V . In the case V = 0 Duffy et al. [17] showed that Q takes its minimum value when
α = αm(0) = 3/4. In general, the minimum value of Q occurs at α = αm(V ) where, for
example, αm(−3) ≃ 0.61 and αm(3) ≃ 0.85.

Figure 15 shows the transverse volume flux Q given by (47) plotted as a function
of V for a range of values of l in the case α = 0.5. Figure 15 shows that Q is a
monotonically increasing function of V satisfying Q = O(e−α|V |) → 0+ as V → −∞ and
Q ∼ l/(l + 1) = O(1) as V → ∞ for fixed l, and a monotonically increasing function of
l for fixed V . Finally, Fig. 16 shows the axial volume flux Q given by (51) plotted as a
function of V for a range of values of l in the case α = 0.5. Figure 16 shows that Q is
a monotonically increasing function of V satisfying Q = O(|V |−3) → 0+ as V → −∞
and Q = O(V −3eV ) → ∞ as V → ∞ for fixed l, and a linearly increasing function of l
for fixed V .

In particular, Figs 13 and 15 show that provided that the right-hand end of the
blade is not too close to the stationary upper wall and that the blades are not too close
together (i.e. provided that α is not too close to 1 and l is not too small) then there is
a fairly narrow range of values of V , roughly −10 . V . 20, over which the transverse
volume flux varies rapidly with V .
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6 Conclusions

In the present work we investigated the steady non-isothermal flow of a Newtonian
fluid with temperature-dependent viscosity in a narrow-gap SSHE when a constant
temperature difference is imposed across the gap between the rotor and the stator.
In Sec. 2 we formulated the mathematical model and obtained the exact analytical
solutions for the heat and fluid flow of a fluid with a general dependence of viscosity
on temperature for a general blade shape. These solutions were then presented for
the specific case of an exponential dependence of viscosity on temperature. In Sec.
3 asymptotic methods were employed to investigate the behaviour of the solutions in
several special limiting geometries, while in Sec. 4 they were used to investigate the
behaviour of the solutions in the limits of weak and strong thermoviscosity. In Sec. 5
we presented results for the most realistic case of a linear blade which illustrated the
effect of varying the thermoviscosity of the fluid and the geometry of the SSHE on
the flow. In particular, we found that as V increases from zero the viscosity becomes
more and more strongly decreasing with y across the channel, and the x and the axial
velocities become progressively more uniform in the bulk of the flow with boundary
layers forming just below the blade and just below the stationary upper wall, until
ultimately the large positive V asymptotic solutions described in Sec. 4.2 are attained
in the limit V → ∞ in which the transverse volume flux is O(1) and the axial volume
flux is O(V −3eV ). Similarly, as V decreases from zero the viscosity becomes more and
more strongly increasing with y across the channel, and the x and the axial velocities
become progressively more uniform in the bulk of the flow with boundary layers forming
just above the blade and just above the moving lower wall, until ultimately the large
negative V asymptotic solutions described in Sec. 4.3 are attained in the limit V → −∞
in which the transverse volume flux is O(e−α|V |) and the axial volume flux is O(|V |−3).
Furthermore, we showed that the maximum possible value of the transverse volume flux
Q = 1 is attained in the limits V → ∞ and l → ∞, and that provided that α is not
too close to 1 and l is not too small then there is a fairly narrow range of values of V ,
roughly −10 . V . 20, over which Q varies rapidly with V .

While the present work represents a significant advance on the isothermal analy-
sis of Duffy et al. [17], there are evidently several ways in which the work could be
further developed. In particular, it would be of some practical interest to develop the
corresponding analysis for thermally insulating blades. Duffy et al. [17] calculated the
possible equilibrium positions of the blades in the isothermal case, and it would also
be of interest to investigate the influence of thermal effects on these results. Although
not included in the present model, viscous dissipation may well be significant in a real
SSHE and it would therefore be valuable to include it in future models. In practice
there is almost certainly some leakage of fluid under the blades, and so it would be of
considerable interest to develop a model for this leakage and its effect on the overall heat
and fluid flow within an SSHE. In a similar vein, in practice both the blades and the
stator are slowly worn away by the scraping action of the blades, and so periodically the
SSHE has to be taken out of service while the blades are replaced and/or the stator is
re-coated. It would therefore be of great practical value to develop mathematical models
for blade wear which could predict the most cost-effective moment to replace the blades.
These and other related open questions indicate that SSHEs will remain the subject of
active scientific research for a considerable time to come.
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Figure 1: Cut-away schematic of a typical SSHE.
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Figure 2: The geometry of the leading order mathematical model.
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Figure 3: Sketches of the asymptotic solutions for the x velocities in each of the three
regions given by (86) and (90) in the limit V → ∞.
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Figure 7: Plots of (a) the pressure difference p1−pL as a function of x, (b) the x velocity
u1 at x = 0.5, and (c) the axial velocity w1 at x = 0.5, in region 1 for a range of positive
values of the thermoviscosity number V in the case α = 0.5 and l = 1. The solid curves
are the exact solutions obtained in Sec. 2.3, and the dashed curves are the small V
asymptotic solutions obtained in Sec. 4.1 and the large positive V asymptotic solutions
obtained in Sec. 4.2.
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Figure 8: Plots of (a) the pressure difference p1−pL as a function of x, (b) the x velocity
u1 at x = 0.5, and (c) the axial velocity w1 at x = 0.5, in region 1 for a range of negative
values of the thermoviscosity number V in the case α = 0.5 and l = 1. The solid curves
are the exact solutions obtained in Sec. 2.3, and the dashed curves are the small V
asymptotic solutions obtained in Sec. 4.1 and the large negative V asymptotic solutions
obtained in Sec. 4.3.
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Figure 9: Plots of (a) the pressure difference p2−pL as a function of x, (b) the x velocity
u2 at x = 0.5, and (c) the axial velocity w2 at x = 0.5, in region 2 for a range of positive
values of the thermoviscosity number V in the case α = 0.5 and l = 1. The solid curves
are the exact solutions obtained in Sec. 2.3, and the dashed curves are the small V
asymptotic solutions obtained in Sec. 4.1 and the large positive V asymptotic solutions
obtained in Sec. 4.2.
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Figure 10: Plots of (a) the pressure difference p2 − pL as a function of x, (b) the x
velocity u2 at x = 0.5, and (c) the axial velocity w2 at x = 0.5, in region 2 for a range
of negative values of the thermoviscosity number V in the case α = 0.5 and l = 1. The
solid curves are the exact solutions obtained in Sec. 2.3, and the dashed curves are the
small V asymptotic solutions obtained in Sec. 4.1 and the large negative V asymptotic
solutions obtained in Sec. 4.3.
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Figure 11: Plots of (a) the pressure difference p3 − pL as a function of x, (b) the x
velocity u3 for 1 6 x < 1 + l, and (c) the axial velocity w3 for 1 6 x < 1 + l, in region
3 for a range of positive values of the thermoviscosity number V in the case α = 0.5
and l = 1. The solid curves are the exact solutions obtained in Sec. 2.3, and the dashed
curves are the small V asymptotic solutions obtained in Sec. 4.1 and the large positive
V asymptotic solutions obtained in Sec. 4.2.
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Figure 12: Plots of (a) the pressure difference p3 − pL as a function of x, (b) the x
velocity u3 for 1 6 x < 1 + l, and (c) the axial velocity w3 for 1 6 x < 1 + l, in region
3 for a range of negative values of the thermoviscosity number V in the case α = 0.5
and l = 1. The solid curves are the exact solutions obtained in Sec. 2.3, and the dashed
curves are the small V asymptotic solutions obtained in Sec. 4.1 and the large negative
V asymptotic solutions obtained in Sec. 4.3.
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Figure 13: Plot of the transverse volume flux Q given by (47) as a function of the
thermoviscosity number V for (a) α = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.96, 0.97,
0.98, 0.985, 0.99, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999, 1 and (b)
α = 0.1, 0.5, 0.9 in the case l = 1. In (b) the solid curves are the exact solutions obtained
in Sec. 2.3, and the dashed curves are the small V asymptotic solutions obtained in Sec.
4.1 and the large positive and negative V asymptotic solutions obtained in Secs 4.2 and
4.3.
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Figure 14: Plot of the axial volume flux Q given by (51) as a function of the thermovis-
cosity number V for (a) α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and (b) α = 0.1,
0.5, 0.9 in the case l = 1. In (b) the solid curves are the exact solutions obtained in
Sec. 2.3, and the dashed curves are the small V asymptotic solutions obtained in Sec.
4.1 and the large positive and negative V asymptotic solutions obtained in Secs 4.2 and
4.3.
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Figure 15: Plot of the transverse volume flux Q given by (47) as a function of the
thermoviscosity number V for blade separation lengths (a) l = 0, 0.1, 0.25, 0.5, 0.75, 1,
2.5, 5, 7.5, 10, 25, 50, 100, 1 × 104, 1 × 106, 1 × 108, 1 × 1010, ∞ and (b) l = 0.1, 1, 10
in the case α = 0.5. In (b) the solid curves are the exact solutions obtained in Sec. 2.3,
and the dashed curves are the small V asymptotic solutions obtained in Sec. 4.1 and
the large positive and negative V asymptotic solutions obtained in Secs 4.2 and 4.3.
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Figure 16: Plot of the axial volume flux Q given by (51) as a function of the thermovis-
cosity number V for blade separation lengths (a) l = 0, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5,
10, 25, 50, 100 and (b) l = 0.1, 1, 10 in the case α = 0.5. In (b) the solid curves are the
exact solutions obtained in Sec. 2.3, and the dashed curves are the small V asymptotic
solutions obtained in Sec. 4.1 and the large positive and negative V asymptotic solutions
obtained in Secs 4.2 and 4.3.
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