46 research outputs found
Pediatric diabetes training for healthcare professionals in Europe: Time for change.
BACKGROUND: Training for healthcare professionals (HCPs) in Europe who care for children and young people (CYP) with type 1 diabetes and their families is variable depending on the country. Building on the work of SWEET (Better control in Pediatric and Adolescent diabeteS: Working to crEate CEnTers of Reference) and using the German Certified Diabetes Educators (CDEs) curriculum, a European collaboration of pediatric diabetes experts aimed to (1) establish current core elements that should be included in a pediatric diabetes education training course and (2) create a template for a European CDE's training curriculum. METHODS: A qualitative methodology incorporating a survey questionnaire, focus group discussions, individual semi-structured interviews and workshops was employed to explore participants' experiences and opinions. HCPs-pediatric consultants, diabetes nurses, dietitians and psychologists, national and local diabetes leads, academic and education leads and children, and young people with diabetes and families took part in the study. The total number of participants equaled 186. RESULTS: A template for a European Certified Diabetes Educator Curriculum (EU-CDEC) was developed based on the themes that emerged from the participants' expertise and experiences. This provides a model for HCPs' pediatric diabetes training provision. CONCLUSIONS: There is a severe shortage of high quality, standardized training for HCPs across the majority of European countries. Lack of trained HCPs for CYP with diabetes will result in the delivery of suboptimal care and impact on health, wellbeing and clinical and psychological outcomes. The EU-CDEC template can be used to increase access to high quality training provision for all HCPs across Europe and worldwide
The Effect of Body Size on Countermovement Jump Kinetics in Children aged 7 to 11 years
The purpose this study was to examine the effect of body size oncountermovement jump (CMJ)kinetics in children.Participants(n = 160) aged 7-11 years, divided equally by sex and into primary school year groups(years 3, 4, 5 and 6), each performedone CMJ on aforce platform. The variables bodyweight(BW), peak force (Fmax), in-jump minimum force (IMF), in-jump vertical force range (IFR) and basic rate of force development (BRFD)wereattained from the force-time history and then subsequently scaled to account for body size. A significant age, sex and interaction effect werefound for theabsolutevariables BW, IMF, Fmaxand IFR (P 0.05). No significant age or sex differences were observed for normalised or allometrically scaled values(P > 0.05). The results indicate thatgirls and boys can be grouped together but that body size must be accounted for to enable accurate conclusions to be drawn independent of growth.Bodysizesignificantlyeffects the representation of CMJ kinetic results and therefore, future studies should report both absolute and scaled values.Future research should developan age-appropriate criterion method for children in order to determine processed CMJ variables to further investigate neuromuscular performance of children
The current landscape of European registries for rare endocrine conditions
Objective
To identify cross-border international registries for rare endocrine conditions that are led from Europe and to understand the extent of engagement with these registries within a network of reference centres (RCs) for rare endocrine conditions.
Methods
Database search of international registries and a survey of RCs in the European Reference Network for rare endocrine conditions (Endo-ERN) with an overall response rate of 82%.
Results
Of the 42 conditions with orphacodes currently covered within Endo-ERN, international registries exist for 32 (76%). Of 27 registries identified in the Orphanet and RD-Connect databases, Endo-ERN RCs were aware of 11 (41%). Of 21 registries identified by the RC, RD-Connect and Orphanet did not have a record of 10 (48%). Of the 29 glucose RCs, the awareness and participation rate in an international registry was highest for rare diabetes at 75 and 56% respectively. Of the 37 sex development RCs, the corresponding rates were highest for disorders of sex development at 70 and 52%. Of the 33 adrenal RCs, the rates were highest for adrenocortical tumours at 68 and 43%. Of the 43 pituitary RCs, the rates were highest for pituitary adenomas at 43 and 29%. Of the 31 genetic tumour RCs, the rates were highest for MEN1 at 26 and 9%. For the remaining conditions, awareness and participation in registries was less than 25%.
Conclusion
Although there is a need to develop new registries for rare endocrine conditions, there is a more immediate need to improve the awareness and participation in existing registries.This publication is part of the project ‘777215/EuRRECa’ which has received funding from the European Union’s Health Programme (2014–2020)
Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease
Brachypodium distachyon, a small annual grass with seed storage globulins as primary protein reserves was used in our study to analyse the toxic nature of non-prolamin seed storage proteins related to celiac disease. The main storage proteins of B. distachyon are the 7S globulin type proteins and the 11S, 12S seed storage globulins similar to oat and rice. Immunoblot analyses using serum samples from celiac disease patients were carried out followed by the identification of immune-responsive proteins using mass spectrometry. Serum samples from celiac patients on a gluten-free diet, from patients with Crohn's disease and healthy subjects, were used as controls. The identified proteins with intense serum-IgA reactivity belong to the 7S and 11-12S seed globulin family. Structure prediction and epitope predictions analyses confirmed the presence of celiac disease-related linear B cell epitope homologs and the presence of peptide regions with strong HLA-DQ8 and DQ2 binding capabilities. These results highlight that both MHC-II presentation and B cell response may be developed not only to prolamins but also to seed storage globulins. This is the first study of the non-prolamin type seed storage proteins of Brachypodium from the aspect of the celiac disease
Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis
Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man
Artificially low cortical bone mineral density in Turner syndrome is due to the partial volume effect
We aimed to show that the decrease in the cortical bone mineral density (BMD) in the radius in Turner syndrome (TS) is artificially caused by the partial volume effect. We confirmed that the partial volume effect-corrected cortical BMD is not decreased in TS compared to in the healthy controls. Other factors are responsible for the increased fracture rate in TS. Introduction Decreased cortical bone mineral density (BMD) has been reported in Turner syndrome (TS), using peripheral quantitative computerised tomography, and it is perceived as one of the major factors leading to increased fracture risk. We tested the hypothesis that low cortical BMD in the radius is caused artificially by the partial volume effect. Methods A cross-sectional study was conducted at the university hospital referral centre between March and October 2013. Thirty-two participants with TS who consented to the study were included (mean age 15.3 +/- 3.2 years). We assessed the cortical BMD in the radius as well as the tibia, where the cortex is thicker compared with the radius. Results Whereas the cortical BMD was decreased in the radius (mean +/- SD Z-score -0.6 +/- 1.5, p = 0.037), it was increased in the tibia (mean Z-score 0.83 +/- 1.0, p < 0.001). After correcting the cortical BMD for the partial volume effect, the mean Z-score was normal in the radius in TS (0.4 +/- 1.3, p = 0.064). The corrected cortical BMD values were similar in the radius and tibia (1108 +/- 52 vs. 1104 +/- 48, group difference p = 0.75). Conclusions The cortical BMD is not decreased in TS. The partial volume effect is responsible for previous findings of decreased cortical BMD in the radius. Altered bone geometry or other factors rather than low cortical BMD likely play a role in the increased fracture risk in TS
In Silico Trials of an Open-Source Android-Based Artificial Pancreas: A New Paradigm to Test Safety and Efficacy of Do-It-Yourself Systems
Objective: Safety data on Do-It-Yourself Artificial Pancreas Systems are missing. The most widespread in Europe is the AndroidAPS implementation of the OpenAPS algorithm. We used the UVA/Padova Type 1 Diabetes Simulator to in silico test safety and efficacy of this algorithm in different scenarios. Methods: We tested five configurations of the AndroidAPS algorithm differing in aggressiveness and patient's interaction with the system. All configurations were tested with insulin sensitivity variation of ±30%. The most promising configurations were tested in real-life scenarios: over- and underestimated bolus by 50%, bolus delivered 15 min before meal, and late bolus delivered 15 min after meal. Continuous Glucose Monitoring (CGM) time in ranges (TIRs) metrics were used to assess the glycemic control. Results: In silico testing showed that open-source closed-loop system AndroidAPS works effectively and safely. The best results were reached if AndroidAPS algorithm worked with microboluses and when half of calculated bolus was issued (mean glycemia 131 mg/dL, SD 27 mg/dL, TIR 91%, time between 54 and 70 mg/dL <1%, and low blood glucose index even <1). The meal bolus over- and underestimation as well as late bolus did not affect the TIR and, importantly, the time between 54 and 70 mg/dL. Conclusion: In silico testing proved that AndroidAPS implementation of the OpenAPS algorithm is safe and effective, and it showed a great potential to be tested in prospective home setting study