27 research outputs found

    Characteristics of a Green Turtle (Chelonia mydas) Assemblage in Northwestern Florida Determined During a Hypothermic Stunning Event

    Get PDF
    A hypothermic stunning event (i.e., cold-stunning event) during late Dec. 2000 and early Jan. 2001 involving an unprecedented number of sea turtles provided an opportunity to characterize the green turtle (Chelonia mydas) assemblage in St. Joseph Bay (Gulf County, Florida). In addition to 388 green turtles, the 401 cold-stunned turtles comprised 10 Kemp\u27s ridleys (Lepidochelys kempii) and three loggerheads (Caretta caretta). Most (337/401) of the turtles survived and were eventually released. To place this event in perspective, we categorize sea turtle cold-stunning events in the eastern United States as either acute or chronic. Acute cold-stunning events, like the one in St. Joseph Bay, occur only during unusually cold winters in shallow-water areas (\u3c 2m), where sea turtles are year-round residents. These are short-lived (\u3c 2 wk) events with low mortality rates (\u3c 30%) that affect principally green turtles. Chronic cold-stunning events occur every winter in areas where sea turtles are seasonal residents. These are long-lived (1-3 mo) events with high mortality rates (\u3e 60%) that affect primarily Kemp\u27s ridleys. All of the green turtles from St. Joseph Bay were neritic-phase juveniles, and the mean straight-line carapace length of this group was 36.6 cm (range = 25.0-75.3 cm, SD = 8.9). This assemblage of juvenile green turtles is the first documented along the northern Gulf of Mexico. Sequencing of mtDNA (mitochondrial DNA) from tissue samples taken from 255 of the green turtles revealed that about 81% were from the nesting populations in the United States (Florida) and Mexico (Yucatan). This assemblage is unusual in the United States because it does not have a substantial representation from the nesting population in Costa Rica (Tortuguero), the Atlantic\u27s largest green turtle nesting population. Based on necropsies of 51 of the green turtles, the sex ratio of this assemblage was female-biased (3.25 females: 1 male), which may be a result of warm incubation temperatures on the nesting beaches in Florida. The majority of the material found in the gastrointestinal tracts of the green turtles that died was turtle grass (Thalassia testudinum). This was the first time turtle grass has been identified as the primary diet of juvenile green turtles anywhere in the continental United States. Green turtles in St. Joseph Bay appear to have few direct threats, but the seagrass upon which these turtles primarily forage has suffered extensive damage from boat propellers

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study

    Get PDF
    BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Viral coinfections in hospitalized coronavirus disease 2019 patients recruited to the international severe acute respiratory and emerging infections consortium WHO clinical characterisation protocol UK study

    Get PDF
    Background We conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity. Methods Multiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged <1 year to 102 years old, recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK study. Comprehensive demographic, clinical, and outcome data were collected prospectively up to 28 days post discharge. Results A coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity. Conclusions Viral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward

    The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection

    Get PDF
    Background The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. Results Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. Conclusions These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions

    Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to SARS-CoV-2 infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished COVID-19 severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalised with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days post-symptom onset) or late (6-20 days post-symptom onset). Results Patients that survived severe COVID-19 showed IFN-dominated mucosal immune responses (IFN-γ, CXCL10 and CXCL13) early in infection. These early mucosal responses were absent in patients that would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by IL-2, IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal anti-viral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19

    Endangered Green Turtles (Chelonia mydas) of the Northern Mariana Islands: Nesting Ecology, Poaching, and Climate Concerns

    No full text
    Marine turtles in the western Pacific remain threatened by anthropogenic impacts, but the region lacks long-term biological data for assessing conservation status and trends. The Central West Pacific (CWP) population of green turtles (Chelonia mydas) was listed as Endangered by the U.S. in 2016, highlighting a need to fill existing data gaps. This study focuses on the subset of this population nesting in the Commonwealth of the Northern Mariana Islands (CNMI). Using 11 years of nesting data, we (i) estimate reproductive demographic parameters, (ii) quantify abundance and trends, and (iii) estimate the impacts of anthropogenic threats, such as poaching of nesting females and increasing sand temperatures. In 2006–2016, nesting beach surveys, identification tagging, and nest excavations were conducted on Saipan, and rapid assessments of nesting activity were conducted on Tinian and Rota. On Saipan, temperature data-loggers were deployed inside nests and evidence of poaching (adults and eggs) was recorded. This study documents year-round nesting with a peak in March–July. Nester abundance for the three islands combined was 11.9 ± 5.7 (mean ± standard deviation) females annually, with at least 62.8 ± 35.1 nests observed per year. For 39 tagged individuals, straight carapace length was 95.6 ± 4.5 cm, remigration interval was 4.6 ± 1.3 years, and somatic growth was 0.3 ± 0.2 cm/yr. Reproductive parameter estimates included clutch frequency of 7.0 ± 1.3 nests per female, inter-nesting interval of 11.4 ± 1.0 days, clutch size of 93.5 ± 21.4 eggs, incubation period of 56.7 ± 6.4 days, hatching success of 77.9 ± 27.0%, and emergence success of 69.6 ± 30.3%. Mean nest temperature of 30.9 ± 1.5°C was above the pivotal threshold of 29.0°C for temperature dependent sex determination, suggesting a female bias may already exist. Model results suggest (i) hatching success decreases and embryonic death increases when nests experience maximum temperatures beyond 34.4°C and 33.8°C, respectively, and (ii) embryonic death increases in nests with mean temperatures beyond 31.1°C. On Saipan, 32% of nesters were poached, reducing the annual population growth rate from 11.4 to 7.4%. This study provides the first comprehensive assessment of a nesting green turtle population in the Mariana Archipelago, as well as Micronesia, providing baseline data for the endangered CWP population. Our reproductive demographic data, abundance trends, and anthropogenic threat impact analyses are critical for endangered species management, including assessments of population status and fisheries impacts

    Population structure of Pacific green turtles:a new perspective from microsatellite DNA variation

    Get PDF
    This study builds upon the current understanding of green turtle population genetic structure in the Pacific that has largely been based on mitochondrial DNA (mtDNA), by examining nuclear DNA (nDNA) diversity, regional connectivity, and male-mediated gene flow. A total of 1,111 nesting green turtle samples were analyzed with 10 microsatellite markers from 20 Pacific rookeries. Population differentiation (FST) was significant (p &lt;0.05) in all but 8 of 190 pairwise rookery comparisons. Pairwise FST values and discriminant analysis of principal components (DAPC) revealed a defined East-West split consistent with mtDNA studies. Additionally, isolation-by-distance was evaluated with estimated effective migration surfaces (EEMS). The data indicated structure throughout the Pacific rookeries largely in agreement with stock structure defined by mtDNA studies, except for some areas on the Central American and Australian continental shelves, providing evidence of possible male-mediated gene flow. The series of analyses performed did indicate that male-mediated gene flow has likely occurred where breeding migration corridors of separate populations overlap with courtship areas. This may occur primarily along the margins of continents, including along Mexico and Central America in the East Pacific. Our study provides an ocean-wide baseline nDNA dataset for green turtle rookeries in the Pacific and reexamines the current thinking regarding the role of male turtles in the population dynamics of management units (MU) and to what extent nuclear gene flow occurs among designated MUs.</p
    corecore