301 research outputs found
Effectiveness of computer-based auditory training in improving the perception of noise-vocoded speech
Five experiments were designed to evaluate the effectiveness of “high-variability” lexical training in improving the ability of normal-hearing subjects to perceive noise-vocoded speech that had been spectrally shifted to simulate tonotopic misalignment. Two approaches to training were implemented. One training approach required subjects to recognize isolated words, while the other training approach required subjects to recognize words in sentences. Both approaches to training improved the ability to identify words in sentences. Improvements following a single session (lasting 1–2 h) of auditory training ranged between 7 and 12 %pts and were significantly larger than improvements following a visual control task that was matched with the auditory training task in terms of the response demands. An additional three sessions of word- and sentence-based training led to further improvements, with the average overall improvement ranging from 13 to 18 %pts. When a tonotopic misalignment of 3 mm rather than 6 mm was simulated, training with several talkers led to greater generalization to new talkers than training with a single talker. The results confirm that computer-based lexical training can help overcome the effects of spectral distortions in speech, and they suggest that training materials are most effective when several talkers are included
Head orientation benefit to speech intelligibility in noise for cochlear implant users and in realistic listening conditions
Cochlear implant (CI) users suffer from elevated speech-reception thresholds and may rely on lip reading. Traditional measures of spatial release from masking quantify speech-reception-threshold improvement with azimuthal separation of target speaker and interferers and with the listener facing the target speaker. Substantial benefits of orienting the head away from the target speaker were predicted by a model of spatial release from masking. Audio-only and audio-visual speech-reception thresholds in normal-hearing (NH) listeners and bilateral and unilateral CI users confirmed model predictions of this head-orientation benefit. The benefit ranged 2–5 dB for a modest 30� orientation that did not affect the lip-reading benefit. NH listeners’ and CI users’ lip-reading benefit measured 3 and 5 dB, respectively. A head-orientation benefit of �2 dB was also both predicted and observed in NH listeners in realistic simulations of a restaurant listening environment. Exploiting the benefit of head orientation is thus a robust hearing tactic that would benefit both NH listeners and CI users in noisy listening conditions
Real-Time Contrast Enhancement to Improve Speech Recognition
An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated. The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise. Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners with sensorineural hearing loss
Glue ear, hearing loss and IQ:an association moderated by the child's home environment
BACKGROUND: Glue ear or otitis media with effusion (OME) is common in children and may be associated with hearing loss (HL). For most children it has no long lasting effects on cognitive development but it is unclear whether there are subgroups at higher risk of sequelae. OBJECTIVES: To examine the association between a score comprising the number of times a child had OME and HL (OME/HL score) in the first four/five years of life and IQ at age 4 and 8. To examine whether any association between OME/HL and IQ is moderated by socioeconomic, child or family factors. METHODS: Prospective, longitudinal cohort study: the Avon Longitudinal Study of Parents and Children (ALSPAC). 1155 children tested using tympanometry on up to nine occasions and hearing for speech (word recognition) on up to three occasions between age 8 months and 5 years. An OME/HL score was created and associations with IQ at ages 4 and 8 were examined. Potential moderators included a measure of the child's cognitive stimulation at home (HOME score). RESULTS: For the whole sample at age 4 the group with the highest 10% OME/HL scores had performance IQ 5 points lower [95% CI -9, -1] and verbal IQ 6 points lower [95% CI -10, -3] than the unaffected group. By age 8 the evidence for group differences was weak. There were significant interactions between OME/HL and the HOME score: those with high OME/HL scores and low 18 month HOME scores had lower IQ at age 4 and 8 than those with high OME/HL scores and high HOME scores. Adjusted mean differences ranged from 5 to 8 IQ points at age 4 and 8. CONCLUSIONS: The cognitive development of children from homes with lower levels of cognitive stimulation is susceptible to the effects of glue ear and hearing loss
Cross-Modal Prediction in Speech Perception
Speech perception often benefits from vision of the speaker's lip movements when they are available. One potential mechanism underlying this reported gain in perception arising from audio-visual integration is on-line prediction. In this study we address whether the preceding speech context in a single modality can improve audiovisual processing and whether this improvement is based on on-line information-transfer across sensory modalities. In the experiments presented here, during each trial, a speech fragment (context) presented in a single sensory modality (voice or lips) was immediately continued by an audiovisual target fragment. Participants made speeded judgments about whether voice and lips were in agreement in the target fragment. The leading single sensory context and the subsequent audiovisual target fragment could be continuous in either one modality only, both (context in one modality continues into both modalities in the target fragment) or neither modalities (i.e., discontinuous). The results showed quicker audiovisual matching responses when context was continuous with the target within either the visual or auditory channel (Experiment 1). Critically, prior visual context also provided an advantage when it was cross-modally continuous (with the auditory channel in the target), but auditory to visual cross-modal continuity resulted in no advantage (Experiment 2). This suggests that visual speech information can provide an on-line benefit for processing the upcoming auditory input through the use of predictive mechanisms. We hypothesize that this benefit is expressed at an early level of speech analysis
Adaptation of sorghum: characterisation of genotypic flowering responses to temperature and photoperiod
Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop grown in a wide range of tropical and temperate environments. This study was conducted to characterise the photothermal flowering responses of sorghum genotypes and to examine relationships between photothermal characteristics and environment of origin in order to better understand the phenological basis of adaptation to environment in sorghum. Twenty-four germplasm accessions and one hybrid from 24 major sorghum-growing areas were grown in a wide range of environments varying in temperature and photoperiod in India, Kenya and Mali between 1992 and 1995. Times from sowing to flowering (f) were recorded, and the responsiveness of 1/f to temperature and photoperiod was quantified using photothermal models. Times from sowing to flowering were accurately predicted in a wide range of environments using a multiplicative rate photothermal model. Significant variation in the minimum time to flower (Fm) and photoperiod sensitivity (critical photoperiod, Pc, and photoperiod-sensitivity slope, Ps) was observed among the genotypes; in contrast there was little variation in base temperature (Tb). Adaptation of sorghum to the diverse environments in which it is grown was largely determined by photoperiod sensitivity and minimum time to flower; photoperiod sensitivity determines broad adaptation to latitude (daylength), while variation in the minimum time to flower determines specific adaptation within smaller ranges of latitude, e.g. within the humid and sub-humid tropics
- …