22 research outputs found

    Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells

    Get PDF
    Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14 transcription factors (TFs) in reprogramming MAPCs to induced endodermal progenitor cells (iENDO cells), defined as cells that can be long-term expanded and differentiated to both hepatocyte- and endocrine pancreatic-like cells. We demonstrated that 14 TF-iENDO cells can be expanded for at least 20 passages, differentiate spontaneously to hepatocyte-, endocrine pancreatic-, gut tube-like cells as well as endodermal tumor formation when grafted in immunodeficient mice. Furthermore, iENDO cells can be differentiated in vitro into hepatocyte- and endocrine pancreatic-like cells. However, the pluripotency TF OCT4, which is not silenced in iENDO cells, may contribute to the incomplete differentiation to mature cells in vitro and to endodermal tumor formation in vivo. Nevertheless, the studies presented here provide evidence that reprogramming of adult stem cells to an endodermal intermediate progenitor, which can be expanded and differentiate to multiple endodermal cell types, might be a valid alternative for the use of PSCs for creation of endodermal cell types

    <i>piggyBac </i>transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts

    Get PDF
    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.status: publishe

    Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells

    Get PDF
    International audienceCRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dys-trophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript , we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency , as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucle-oprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions

    Carcinoma in situ

    No full text
    Carcinoma in situ (precancerous lesion) of true vocal cord in a nonsmoker adolescent female without any history of prior neck irradiation is rare. A 16-year-old female patient without any of the known risk factors presented with history of gradual-onset hoarseness of voice unrelieved by symptomatic treatments for 1 year. Contrast-enhanced CT scan of neck and laryngoscopy and histopathology of the tissue from irregular lesions along the medial margin of the left vocal cord diagnosed it as a case of carcinoma in situ of vocal cord. Absence of known risk factors and very young age of the patient made this case a rarity and hence the case is being reported

    Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes

    Get PDF
    International audienceCTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM

    3D human induced pluripotent stem cell–derived bioengineered skeletal muscles for tissue, disease and therapy modeling

    No full text
    International audienceSkeletal muscle is a complex tissue composed of multinucleated myofibers responsible for force generation that are supported by multiple cell types. Many severe and lethal disorders affect skeletal muscle; therefore, engineering models to reproduce such cellular complexity and function are instrumental for investigating muscle pathophysiology and developing therapies. Here, we detail the modular 3D bioengineering of multilineage skeletal muscles from human induced pluripotent stem cells, which are first differentiated into myogenic, neural and vascular progenitor cells and then combined within 3D hydrogels under tension to generate an aligned myofiber scaffold containing vascular networks and motor neurons. 3D bioengineered muscles recapitulate morphological and functional features of human skeletal muscle, including establishment of a pool of cells expressing muscle stem cell markers. Importantly, bioengineered muscles provide a high-fidelity platform to study muscle pathology, such as emergence of dysmorphic nuclei in muscular dystrophies caused by mutant lamins. The protocol is easy to follow for operators with cell culture experience and takes between 9 and 30 d, depending on the number of cell lineages in the construct. We also provide examples of applications of this advanced platform for testing gene and cell therapies in vitro, as well as for in vivo studies, providing proof of principle of its potential as a tool to develop next-generation neuromuscular or musculoskeletal therapies

    Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy

    Full text link
    The development of the next-generation gene therapy vectors for hemophilia requires using lower and thus potentially safer vector doses and augmenting their therapeutic efficacy. We have identified hepatocyte-specific transcriptional cis-regulatory modules (CRMs) by using a computational strategy that increased factor IX (FIX) levels 11- to 15-fold. Vector efficacy could be enhanced by combining these hepatocyte-specific CRMs with a synthetic codon-optimized hyperfunctional FIX-R338L Padua transgene. This Padua mutation boosted FIX activity up to sevenfold, with no apparent increase in thrombotic risk. We then validated this combination approach using self-complementary adenoassociated virus serotype 9 (scAAV9) vectors in hemophilia B mice. This resulted in sustained supraphysiologic FIX activity (400%), correction of the bleeding diathesis at clinically relevant, low vector doses (5 × 10(10) vector genomes [vg]/kg) that are considered safe in patients undergoing gene therapy. Moreover, immune tolerance could be induced that precluded induction of inhibitory antibodies to FIX upon immunization with recombinant FIX protein
    corecore