7 research outputs found

    Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples[W]

    No full text
    Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus × domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant

    Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study.

    No full text
    BACKGROUND: The relation between dietary nutrients and cardiovascular disease risk markers in many regions worldwide is unknown. In this study, we investigated the effect of dietary nutrients on blood lipids and blood pressure, two of the most important risk factors for cardiovascular disease, in low-income, middle-income, and high-income countries. METHODS: We studied 125 287 participants from 18 countries in North America, South America, Europe, Africa, and Asia in the Prospective Urban Rural Epidemiology (PURE) study. Habitual food intake was measured with validated food frequency questionnaires. We assessed the associations between nutrients (total fats, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, carbohydrates, protein, and dietary cholesterol) and cardiovascular disease risk markers using multilevel modelling. The effect of isocaloric replacement of saturated fatty acids with other fats and carbohydrates was determined overall and by levels of intakes by use of nutrient density models. We did simulation modelling in which we assumed that the effects of saturated fatty acids on cardiovascular disease events was solely related to their association through an individual risk marker, and then compared these simulated risk marker-based estimates with directly observed associations of saturated fatty acids with cardiovascular disease events. FINDINGS: Participants were enrolled into the study from Jan 1, 2003, to March 31, 2013. Intake of total fat and each type of fat was associated with higher concentrations of total cholesterol and LDL cholesterol, but also with higher HDL cholesterol and apolipoprotein A1 (ApoA1), and lower triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ratio of apolipoprotein B (ApoB) to ApoA1 (all ptrend\u3c0·0001). Higher carbohydrate intake was associated with lower total cholesterol, LDL cholesterol, and ApoB, but also with lower HDL cholesterol and ApoA1, and higher triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ApoB-to-ApoA1 ratio (all ptrend\u3c0·0001, apart from ApoB [ptrend=0·0014]). Higher intakes of total fat, saturated fatty acids, and carbohydrates were associated with higher blood pressure, whereas higher protein intake was associated with lower blood pressure. Replacement of saturated fatty acids with carbohydrates was associated with the most adverse effects on lipids, whereas replacement of saturated fatty acids with unsaturated fats improved some risk markers (LDL cholesterol and blood pressure), but seemed to worsen others (HDL cholesterol and triglycerides). The observed associations between saturated fatty acids and cardiovascular disease events were approximated by the simulated associations mediated through the effects on the ApoB-to-ApoA1 ratio, but not with other lipid markers including LDL cholesterol. INTERPRETATION: Our data are at odds with current recommendations to reduce total fat and saturated fats. Reducing saturated fatty acid intake and replacing it with carbohydrate has an adverse effect on blood lipids. Substituting saturated fatty acids with unsaturated fats might improve some risk markers, but might worsen others. Simulations suggest that ApoB-to-ApoA1 ratio probably provides the best overall indication of the effect of saturated fatty acids on cardiovascular disease risk among the markers tested. Focusing on a single lipid marker such as LDL cholesterol alone does not capture the net clinical effects of nutrients on cardiovascular risk

    Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study.

    No full text
    BACKGROUND: The association between intake of fruits, vegetables, and legumes with cardiovascular disease and deaths has been investigated extensively in Europe, the USA, Japan, and China, but little or no data are available from the Middle East, South America, Africa, or south Asia. METHODS: We did a prospective cohort study (Prospective Urban Rural Epidemiology [PURE] in 135 335 individuals aged 35 to 70 years without cardiovascular disease from 613 communities in 18 low-income, middle-income, and high-income countries in seven geographical regions: North America and Europe, South America, the Middle East, south Asia, China, southeast Asia, and Africa. We documented their diet using country-specific food frequency questionnaires at baseline. Standardised questionnaires were used to collect information about demographic factors, socioeconomic status (education, income, and employment), lifestyle (smoking, physical activity, and alcohol intake), health history and medication use, and family history of cardiovascular disease. The follow-up period varied based on the date when recruitment began at each site or country. The main clinical outcomes were major cardiovascular disease (defined as death from cardiovascular causes and non-fatal myocardial infarction, stroke, and heart failure), fatal and non-fatal myocardial infarction, fatal and non-fatal strokes, cardiovascular mortality, non-cardiovascular mortality, and total mortality. Cox frailty models with random effects were used to assess associations between fruit, vegetable, and legume consumption with risk of cardiovascular disease events and mortality. FINDINGS: Participants were enrolled into the study between Jan 1, 2003, and March 31, 2013. For the current analysis, we included all unrefuted outcome events in the PURE study database through March 31, 2017. Overall, combined mean fruit, vegetable and legume intake was 3·91 (SD 2·77) servings per day. During a median 7·4 years (5·5-9·3) of follow-up, 4784 major cardiovascular disease events, 1649 cardiovascular deaths, and 5796 total deaths were documented. Higher total fruit, vegetable, and legume intake was inversely associated with major cardiovascular disease, myocardial infarction, cardiovascular mortality, non-cardiovascular mortality, and total mortality in the models adjusted for age, sex, and centre (random effect). The estimates were substantially attenuated in the multivariable adjusted models for major cardiovascular disease (hazard ratio [HR] 0·90, 95% CI 0·74-1·10, ptrend=0·1301), myocardial infarction (0·99, 0·74-1·31; ptrend=0·2033), stroke (0·92, 0·67-1·25; ptrend=0·7092), cardiovascular mortality (0·73, 0·53-1·02; ptrend=0·0568), non-cardiovascular mortality (0·84, 0·68-1·04; ptrend =0·0038), and total mortality (0·81, 0·68-0·96; ptrend\u3c0·0001). The HR for total mortality was lowest for three to four servings per day (0·78, 95% CI 0·69-0·88) compared with the reference group, with no further apparent decrease in HR with higher consumption. When examined separately, fruit intake was associated with lower risk of cardiovascular, non-cardiovascular, and total mortality, while legume intake was inversely associated with non-cardiovascular death and total mortality (in fully adjusted models). For vegetables, raw vegetable intake was strongly associated with a lower risk of total mortality, whereas cooked vegetable intake showed a modest benefit against mortality. INTERPRETATION: Higher fruit, vegetable, and legume consumption was associated with a lower risk of non-cardiovascular, and total mortality. Benefits appear to be maximum for both non-cardiovascular mortality and total mortality at three to four servings per day (equivalent to 375-500 g/day)

    Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study

    No full text

    Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study

    No full text
    corecore