31 research outputs found

    Draft genome sequence of the plant-pathogenic soil fungus Rhizoctonia solani anastomosis group 3 strain Rhs1AP

    Get PDF
    The soil fungus Rhizoctonia solani is a pathogen of agricultural crops. Here, we report on the 51,705,945 bp draft consensus genome sequence of R. solani strain Rhs1AP. A comprehensive understanding of the heterokaryotic genome complexity and organization of R. solani may provide insight into the plant disease ecology and adaptive behavior of the fungus

    Updates in SJS/TEN: collaboration, innovation, and community

    Get PDF
    Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) is a predominantly drug-induced disease, with a mortality rate of 15–20%, that engages the expertise of multiple disciplines: dermatology, allergy, immunology, clinical pharmacology, burn surgery, ophthalmology, urogynecology, and psychiatry. SJS/TEN has an incidence of 1–5/million persons per year in the United States, with even higher rates globally. One of the challenges of SJS/TEN has been developing the research infrastructure and coordination to answer questions capable of transforming clinical care and leading to improved patient outcomes. SJS/TEN 2021, the third research meeting of its kind, was held as a virtual meeting on August 28–29, 2021. The meeting brought together 428 international scientists, in addition to a community of 140 SJS/TEN survivors and family members. The goal of the meeting was to brainstorm strategies to support the continued growth of an international SJS/TEN research network, bridging science and the community. The community workshop section of the meeting focused on eight primary themes: mental health, eye care, SJS/TEN in children, non-drug induced SJS/TEN, long-term health complications, new advances in mechanisms and basic science, managing long-term scarring, considerations for skin of color, and COVID-19 vaccines. The meeting featured several important updates and identified areas of unmet research and clinical need that will be highlighted in this white paper

    Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability

    Get PDF
    BACKGROUND: The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. RESULTS: Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25–36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. CONCLUSIONS: The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population studies. Despite the conservation of the core genes, the mitochondrial genomes of Aspergillus and Penicillium species examined here exhibit significant amount of interspecies variation. Most of this variation can be attributed to accessory genes and mobile introns, presumably acquired by horizontal gene transfer of mitochondrial plasmids and intron homing

    Sequencing of mitochondrial genomes of nine <it>Aspergillus</it> and <it>Penicillium</it> species identifies mobile introns and accessory genes as main sources of genome size variability

    No full text
    Abstract Background The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Results Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25–36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. Conclusions The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population studies. Despite the conservation of the core genes, the mitochondrial genomes of Aspergillus and Penicillium species examined here exhibit significant amount of interspecies variation. Most of this variation can be attributed to accessory genes and mobile introns, presumably acquired by horizontal gene transfer of mitochondrial plasmids and intron homing.</p

    Cross-reaction between Formosan termite (Coptotermes formosanus) proteins and cockroach allergens.

    No full text
    Cockroach allergens can lead to serious allergy and asthma symptoms. Termites are evolutionarily related to cockroaches, cohabitate in human dwellings, and represent an increasing pest problem in the United States. The Formosan subterranean termite (Coptotermes formosanus) is one of the most common species in the southern United States. Several assays were used to determine if C. formosanus termite proteins cross-react with cockroach allergens. Expressed sequence tag and genomic sequencing results were searched for homology to cockroach allergens using BLAST 2.2.21 software. Whole termite extracts were analyzed by mass-spectrometry, immunoassay with IgG and scFv antibodies to cockroach allergens, and human IgE from serum samples of cockroach allergic patients. Expressed sequence tag and genomic sequencing results indicate greater than 60% similarity between predicted termite proteins and German and American cockroach allergens, including Bla g 2/Per a 2, Bla g 3/Per a 3, Bla g 5, Bla g 6/Per a 6, Bla g 7/Per a 7, Bla g 8, Per a 9, and Per a 10. Peptides from whole termite extract were matched to those of the tropomyosin (Bla g 7), arginine kinase (Per a 9), and myosin (Bla g 8) cockroach allergens by mass-spectrometry. Immunoblot and ELISA testing revealed cross-reaction between several proteins with IgG and IgE antibodies to cockroach allergens. Several termite proteins, including the hemocyanin and tropomyosin orthologs of Blag 3 and Bla g 7, were shown to crossreact with cockroach allergens. This work presents support for the hypothesis that termite proteins may act as allergens and the findings could be applied to future allergen characterization, epitope analysis, and clinical studies

    Genetic Analysis Using an Isogenic Mating Pair of <i>Aspergillus fumigatus</i> Identifies Azole Resistance Genes and Lack of <i>MAT</i> Locus’s Role in Virulence

    No full text
    <div><p>Invasive aspergillosis (IA) due to <i>Aspergillus fumigatus</i> is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of <i>A</i>. <i>fumigatus</i> opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of <i>A</i>. <i>fumigatus</i> strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (<i>MAT1-1</i>) with a highly fertile (<i>MAT1-2</i>) progeny. Genome sequencing showed that the F<sub>9</sub><i>MAT1-2</i> progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in <i>A</i>. <i>fumigatus</i> was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional <i>in vitro</i> drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in <i>erg11A</i> (<i>cyp51A</i>), as well as multi-drug transporters, <i>erg25</i>, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in <i>A</i>. <i>fumigatus</i> or other heterothallic pathogens, especially for virulence associated traits.</p></div

    Total number of SNP of sequenced AFB62 or AFB62F9 intermediate (bold) and high level resistant isolates in itraconazole, posaconazole, or voriconazole after in vitro selection.

    No full text
    <p>Number of mutations in relevant genes <i>erg11A</i>, <i>erg25A</i>, <i>hmg1</i>, <i>ssc70</i>, <i>ganA</i>, and the ABC transporter (AFUA_92.m00226) are presented. Strains in <b>bold</b> were selected under intermediate drug concentrations, strain in <i>italics</i> were direct derivatives of strains in bold selected at high drug concentrations. Numbers in parentheses refer to the number of individual SNPs identified in each gene. Details on the specific mutations are found in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004834#ppat.1004834.s006" target="_blank">S4 Table</a>. Itra—itraconazole, Posa—posaconazole, Vori—voriconazole.</p><p>Total number of SNP of sequenced AFB62 or AFB62F9 intermediate (bold) and high level resistant isolates in itraconazole, posaconazole, or voriconazole after in vitro selection.</p

    Genomic comparison of AFB62F9 and AFB62.

    No full text
    <p>(A) Whole genome coverage plot using AFB62F9 reads mapped to the AFB62 genome showing percent identity (y-axis) per chromosome (x-axis). The red line and dots represents regions of the AFB62 genome covered by AFB62F9 reads at greater than 90% identity. (B) Close-up of mapped reads to the region surrounding the <i>MAT1-2</i> locus in AFB62. Numbers on top are coordinates on contig 677 (coordinates 1495670–1582078 on chromosome III). Top track in dark blue: average coverage of the genome was 48X with a maximum of 56 read coverage. The <i>MAT1-2</i> locus in AFB62F9 had no mapped reads so the coverage drops to 0X (~27 Kb in this figure). Second track: SNP density per 1,000 bp is depicted as a red histogram. Maximum SNP/Kb was 10. Note the sharp increase surrounding the <i>MAT1-1</i> locus and extending in the 3’ direction for an additional ~230Kb not depicted in this figure. Bottom track: annotated protein-coding genes in the AFB62 assembly. Direction of arrows depicts the coding strand.</p
    corecore