29 research outputs found

    Proximate and mineral composition of Japanese quail egg and its possible role in bone healing

    Get PDF
    Quail eggs are known to be highly nutritious. In the first study, the nutritional and mineral composition of quail eggs was evaluated by determining the proportion of moisture, total ash, lipids, nitrogen, crude protein and carbohydrate in the egg. The second phase was to determine the role of quail eggs in bone healing. Freshly laid Japanese quail eggs were purchased from a research institute in Plateau state, Nigeria. Five eggs were randomly selected and used for the evaluation of the nutritional and mineral composition of eggs. They were subjected to different methods to obtain the proximate and nutritive content. The moisture content in the egg was 65.5 %, total ash was 8.5 %, lipid was 1.5 %, nitrogen was 0.75 %, crude protein was 4.72 %, and carbohydrate was 19.78 %. For the mineral content, sodium was 42.5 mg, potassium was 80 mg, phosphorus was 6.49 mg, calcium was 0.9 mg, and magnesium was 1.3 mg. In the second study, 12 male New Zealand white rabbits with an average age of 7–8 months were used. They were separated into 2 groups comprising 6 rabbits per group. Rabbits in group A had a cylindrical trephine drill to create a 3.5 mm diameter defect on the lateral distal epicondyle of the left femur and were monitored for 12 weeks. Faster healing was observed in the group administered quail egg. At week 10, the radiographic score of the quail egg treated group [4(3-4)] was significantly (P < 0.05) higher compared to the control group with 2(2-3). At week 12, complete healing was observed in the quail egg group [4(4-4)]; this was different from the control group that had 2 rabbits yet to be healed. The study shows that Japanese quail egg is nutritious and rich in essential nutrients including calcium and phosphorus and as such it can serve as a nutritional supplement to enhance bone healing

    An analysis of air pollution at some industrial areas of Kano using the AERMOD Model

    Get PDF
    The effect of pollution on air quality has been a concern for mankind for a long time. In some cases the problem is essentially one of local emissions in a given urban area leading to an adverse effect on air quality in that same area. However, in the general case, the problem is more diverse in that the problem of air pollution has multiplicity effects beyond the point source and these effects are dynamic in nature. Such effects are usually evaluated using dynamical equations. In this study, a comprehensive review on effect of air polluting variables was described on the basis of evaluation of formulation equations of the American Meteorological Society and U.S. Environmental protection Agency Regulatory Model (AERMOD view 9.6.5). The AERMOD model was also used to simulate the dispersion and deposition of the hourly and daily H2S and NO2 concentrations from two domains: Challawa and Sharada industrial estates /areas respectively. The AERMOD model evaluation showed that there was good correlation between the modelled and observed H2S concentration for the daily and hourly comparison at Challawa  (0.53 and 0.91 respectively) but the daily and hourly comparison of H2S at Sharada (0.13 and 0.46 respectively) was seen to drop indicating poor correlation and model skill. However, model evaluation of NO2 shows poor agreements and model skill at Challawa as well as daily comparison at Sharada. However, the modelling shows good agreement (R2= 0.64) in the trend for the hourly value modelled versus observed concentrations at Sharada. Moreover, the mean absolute percentage error (MAPE) for the two pollutants (H2S and NO2) at all the two domains indicates highly accurate result for both daily and hourly concentrations. AERMOD software can therefore be used to estimate the dispersion and deposition of the pollutants at some domains considered in this study. Key Words: AERMOD model, Air pollutant, Industrial sources, Dispersion and Depositio

    CFD and statistical approach to optimize the average air velocity and air volume fraction in an inert-particles spouted-bed reactor (IPSBR) system

    Get PDF
    Inert-particles spouted bed reactor (IPSBR) is characterized by intense mixing generated by the circular motion of the inert particles. The operating parameters play an important role in the performance of the IPSBR system, and therefore, parameter optimization is critical for the design and scale-up of this gas-liquid contact system. Computational fluid dynamics (CFD) provides detailed modeling of the system hydrodynamics, enabling the determination of the operating conditions that optimize the performance of this contact system. The present work optimizes the main IPSBR operating parameters, which include a feed-gas velocity in the range 0.5-1.5 m/s, orifice diameter in the range 0.001-0.005 m, gas head in the range 0.15-0.35 m, mixing-particle diameter in the range 0.009-0.0225 m, and mixing-particle to reactor volume fraction in the range 2.0-10.0 vol % (which represents 0.01-0.1 kg of mixing particles loading). The effects of these parameters on the average air velocity and average air volume fraction in the upper, middle, and conical regions of the reactor were studied. The specific distance for each region has been measured from the orifice point to be 50 mm for the conical region, 350 mm for the middle region and 550 mm for the upper rejoin. The selected factors were optimized to obtain the minimum air velocity distribution (maximum gas residence time) and the maximum air volume fraction (maximum interfacial area concentration) because these conditions will increase the gas holdup, the gas-liquid contact area, and the mass transfer coefficient among phases. Response surface methodology (RSM) was used to determine the optimum operating conditions. The regression analysis showed an excellent fit of the experimental data to a second-order polynomial model. The interaction between the process variables was evaluated using the obtained three-dimensional surface plots. The analysis revealed that under the optimized parameters of a feed-gas velocity of 1.5 m/s, orifice diameter of 0.001 m, gas head of 0.164 m, mixing-particle diameter of 0.0225 m, and mixing-particle loading of 0.02 kg, the minimum average air velocity and highest air volume fraction were observed throughout the reactor.This work was supported by the ADNOC Refining Research Center , Abu Dhabi, UAE.Scopu

    Coherent Photoproduction of pi^+ from 3^He

    Full text link
    We have measured the differential cross section for the Îł\gamma3^3He→π+t\rightarrow \pi^+ t reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid 3^3He target. The differential cross sections for the Îł\gamma3^3He→π+t\rightarrow \pi^+ t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.Comment: 11 pages, 16 figure

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Full text link
    Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the "duality" phenomenon in the F2 structure function

    Precision Measurement of the p(e,e ' p)pi(0) Reaction at Threshold

    Get PDF
    New results are reported from a measurement of π0\pi^0 electroproduction near threshold using the p(e,eâ€Čp)π0p(e,e^{\prime} p)\pi^0 reaction. The experiment was designed to determine precisely the energy dependence of s−s- and p−p-wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the ϕπ∗\phi^*_{\pi} and Ξπ∗\theta^*_{\pi} angles in the pπ0p \pi^0 center-of-mass was obtained for invariant energies above threshold from 0.5 MeV up to 15 MeV. The 4-momentum transfer Q2Q^2 coverage ranges from 0.05 to 0.155 (GeV/c)2^2 in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p−p-wave predictions from ChPT for Q2>0.07Q^2>0.07 (GeV/c)2^2, while the s−s-wave predictions are in reasonable agreement.Comment: 5 pages, 6 figure

    Q

    Full text link
    The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis

    Measurement of the xx- and Q2Q^2-Dependence of the Asymmetry A1A_1 on the Nucleon

    Get PDF
    We report results for the virtual photon asymmetry A1A_1 on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton (15^{15}NH3_3) and deuteron (15^{15}ND3_3) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for A1(x,Q2)A_1(x,Q^2) and the related ratio g1/F1(x,Q2)g_1/F_1(x,Q^2) in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer Q2Q^2 from 0.05 to 5.0 GeV2^2 and in final-state invariant mass WW up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong Q2Q^2--dependence of A1(x,Q2)A_1(x,Q^2) for WW below 2 GeV. At higher WW, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but A1(x,Q2)A_1(x,Q^2) is not strictly Q2Q^2--independent. We add significantly to the world data set at high xx, up to x=0.6x = 0.6. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative dd-quark polarization up to our highest xx. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.Comment: 7 pages LaTeX, 5 figure

    Beam Spin Asymmetries in DVCS with CLAS at 4 .8 GeV

    Get PDF
    We report measurements of the beam spin asymmetry in Deeply Virtual Compton Scattering (DVCS) at an electron beam energy of 4.8 GeV using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The DVCS beam spin asymmetry has been measured in a wide range of kinematics, 1(GeV/c)2^2 <Q2<2.8<Q^2<2.8(GeV/c)2^2, 0.12<xB<0.480.12<x_B<0.48, and 0.1 (GeV/c)2^2 <−t<0.8<-t<0.8(GeV/c)2^2, using the reaction \pEpX. The number of H(e,eâ€ČÎłp)(e,e^{\prime}\gamma p) and H(e,eâ€Čπ0p)(e,e^{\prime}\pi^0 p) events are separated in each (Q2,xB,t)(Q^2,x_B,t) bin by a fit to the line shape of the H(e,eâ€Čp)X(e,e^{\prime}p)X Mx2M_x^2 distribution. The validity of the method was studied in detail using experimental and simulated data. It was shown, that with the achieved missing mass squared resolution and the available statistics, the separation of DVCS-BH and π0\pi^0 events can reliably be done with less than 5% uncertainty. The Q2Q^2- and tt-dependences of the sinâĄÏ•\sin\phi moments of the asymmetry are extracted and compared with theoretical calculations
    corecore