56 research outputs found

    Japanese Encephalitis Virus Induce Immuno-Competency in Neural Stem/Progenitor Cells

    Get PDF
    BACKGROUND: The low immunogenicity of neural stem/progenitor cells (NSPCs) coupled with negligible expression of MHC antigens has popularized their use in transplantation medicine. However, in an inflammatory environment, the NSPCs express costimulatory molecules and MHC antigens, and also exhibit certain immunomodulatory functions. Since NSPCs are the cellular targets in a number of virus infections both during postnatal and adult stages, we wanted to investigate the immunological properties of these stem cells in response to viral pathogen. METHODOLOGY/PRINCIPAL FINDINGS: We utilized both in vivo mouse model and in vitro neurosphere model of Japanese encephalitis virus (JEV) infection for the study. The NSPCs residing in the subventricular zone of the infected brains showed prominent expression of MHC-I and costimulatory molecules CD40, CD80, and CD86. Using Flow cytometry and fluorescence microscopy, we observed increased surface expression of co-stimulatory molecule and MHC class I antigen in NSPCs upon progressive JEV infection in vitro. Moreover, significant production of pro-inflammatory cyto/chemokines was detected in JEV infected NSPCs by Cytokine Bead Array analysis. Interestingly, NSPCs were capable of providing functional costimulation to allogenic T cells and JEV infection resulted in increased proliferation of allogenic T cells, as detected by Mixed Lymphocyte reaction and CFSE experiments. We also report IL-2 production by NSPCs upon JEV infection, which possibly provides mitogenic signals to T cells and trigger their proliferation. CONCLUSION/SIGNIFICANCE: The in vivo and in vitro findings clearly indicate the development of immunogenicity in NSPCs following progressive JEV infection, in our case, JEV infection. Following a neurotropic virus infection, NSPCs possibly behave as immunogenic cells and contribute to both the innate and adaptive immune axes. The newly discovered immunological properties of NSPCs may have implications in assigning a new role of these cells as non-professional antigen presenting cells in the central nervous system

    Mental health status and its correlates among people living with HIV/AIDS in a tertiary care center of West Bengal

    Get PDF
    Background: People with mental disorders experience disproportionately higher rates of disability and mortality. Bidirectional link between mental illness and HIV/AIDS accelerates the disease progression, reduces willingness to access health care, promotes high risk behavior, leads to low medication adherence, and ultimately results in poor disease outcome. The present study was conducted with the objectives to estimate the prevalence of common mental disorders (CMD) among people living with HIV/AIDS (PLWHA) attending anti-retroviral therapy (ART) clinic at Burdwan medical college and hospital and to find out the association if any, between sociodemographic characteristics and CMD among the study population. Methods: A cross sectional descriptive study was conducted among 410 adult PLWHA, selected through systematic random sampling, registered at ART clinic of Burdwan medical college and hospital, West Bengal during October 2022 to February 2023. Interview of each study subject, with a pre-designed, pre-tested, semi-structured schedule was done to obtain socio-demographic characteristics and CMD was assessed using WHO’s self-reporting questionnaire (SRQ)-20. Univariate and multivariable logistic regression was performed to predict the factors associated with CMD. Data were analysed using SPSS v23.  Results: Prevalence of CMD was 30.2% among PLWHA attending ART clinic. In univariate logistic regression, female gender, persons not living with partner (un-married, widow/widower, divorced/separated), current smoker, pre-ART cases and persons with WHO stage 3 disease were found to be significantly associated with presence of CMD. But in multivariable logistic regression, persons not living with partner [AOR 2.114 (95% CI: 1.228-3.641)] and pre-ART cases [AOR 8.909 (95% CI: 4.770-16.640)] were remained statistically significant. Conclusions: Screening and treating the PLWHA suffering from CMD, should be considered to be an integral part of HIV care, support and treatment at the primary level

    Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of microglia, the resident macrophages of the central nervous system (CNS), is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB) is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2) and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4), one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation.</p> <p>Methods</p> <p>For <it>in vitro </it>studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml <it>Salmonella enterica </it>lipopolysacchride (LPS). Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs). Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA) were performed to study the interaction of Klf4 to iNOS promoter elements <it>in vitro</it>. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors.</p> <p>Results</p> <p>LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown. We found that Klf4 can potentially interact with pNF-κB and is important for iNOS and Cox-2 promoter activity <it>in vitro.</it></p> <p>Conclusions</p> <p>These studies demonstrate the role of Klf4 in microglia in mediating neuroinflammation in response to the bacterial endotoxin LPS.</p

    Environmental and Genetic Traffic in the Journey from Sperm to Offspring

    Get PDF
    Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.O

    Spatiotemporal Insights Into RNA–Organelle Interactions in Neurons

    Get PDF
    Neurons exhibit spatial compartmentalization of gene expression where localization of messenger RNAs (mRNAs) to distal processes allows for site-specific distribution of proteins through local translation. Recently, there have been reports of coordination between mRNA transport with vesicular and organellar trafficking. In this review, we will highlight the latest literature on axonal and dendritic local protein synthesis with links to mRNA–organelle cotransport followed by emerging technologies necessary to study these phenomena. Recent high-resolution imaging studies have led to insights into the dynamics of RNA–organelle interactions, and we can now peer into these intricate interactions within subcellular compartments of neurons

    Abrogated Inflammatory Response Promotes Neurogenesis in a Murine Model of Japanese Encephalitis

    Get PDF
    Japanese encephalitis virus (JEV) induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline.Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE) and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used.This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors

    The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis

    Get PDF
    Background: Submicroscopic deletions in 14q12 spanning FOXG1 or intragenic mutations have been reported in patients with a developmental disorder described as a congenital variant of Rett syndrome. This study aimed to further characterise and delineate the phenotype of FOXG1 mutation positive patients. Method: The study mapped the breakpoints of a 2;14 translocation by fluorescence in situ hybridisation and analysed three chromosome rearrangements in 14q12 by cytogenetic analysis and/or array comparative genomic hybridisation. The FOXG1 gene was sequenced in 210 patients, including 129 patients with unexplained developmental disorders and 81 MECP2 mutation negative individuals. Results: One known mutation, seen in two patients, and nine novel mutations of FOXG1 including two deletions, two chromosome rearrangements disrupting or displacing putative cis-regulatory elements from FOXG1, and seven sequence changes, are reported. Analysis of 11 patients in this study, and a further 15 patients reported in the literature, demonstrates a complex constellation of features including mild postnatal growth deficiency, severe postnatal microcephaly, severe mental retardation with absent language development, deficient social reciprocity resembling autism, combined stereotypies and frank dyskinesias, epilepsy, poor sleep patterns, irritability in infancy, unexplained episodes of crying, recurrent aspiration, and gastro-oesophageal reflux. Brain imaging studies reveal simplified gyral pattern and reduced white matter volume in the frontal lobes, corpus callosum hypogenesis, and variable mild frontal pachgyria. Conclusions: These findings have significantly expanded the number of FOXG1 mutations and identified two affecting possible cis-regulatory elements. While the phenotype of the patients overlaps both classic and congenital Rett syndrome, extensive clinical evaluation demonstrates a distinctive and clinically recognisable phenotype which the authors suggest designating as the FOXG1 syndrome

    Ribosome-Associated Vesicles promote activity-dependent local translation

    Get PDF
    Local protein synthesis in axons and dendrites underpins synaptic plasticity. However, the composition of the protein synthesis machinery in distal neuronal processes and the mechanisms for its activity-driven deployment to local translation sites remain unclear. Here, we employed cryo-electron tomography, volume electron microscopy, and live-cell imaging to identify Ribosome-Associated Vesicles (RAVs) as a dynamic platform for moving ribosomes to distal processes. Stimulation via chemically-induced long-term potentiation causes RAV accumulation in distal sites to drive local translation. We also demonstrate activity-driven changes in RAV generation and dynamics , identifying tubular ER shaping proteins in RAV biogenesis. Together, our work identifies a mechanism for ribosomal delivery to distal sites in neurons to promote activity-dependent local translation

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
    corecore