193 research outputs found

    Coxiella burnetii dormancy in a fatal ten-year multisystem dysfunctional illness: case report

    Get PDF
    Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Abstract BACKGROUND: In a previous study of a Q fever outbreak in Birmingham, our group identified a non-infective complex of Coxiella burnetii (C.b.) antigens able to survive in the host and provoked aberrant humoral and cell-mediated immunity responses. The study led to recognition of a possible pathogenic link between C.b. infection and subsequent long-term post Q fever fatigue syndrome (QFS). This report presents an unusually severe case of C.b. antigen and DNA detection in post-mortem specimens from a patient with QFS. CASE PRESENTATION: We report a 19-year old female patient who became ill with an acute unexplained febrile encephalitis-like illness, followed by increasingly severe multisystem dysfunction and death 10 years later. During life, extensive clinical and laboratory investigations from different disciplinary stand points failed to deliver a definitive identification of a cause. Given the history of susceptibility to infection from birth, acute fever and the diagnosis of "post viral syndrome", tests for infective agents were done starting with C.b. and Legionella pneumophila. The patient had previously visited farms a number of times. Comprehensive neuropathological assessment at the time of autopsy had not revealed gross or microscopic abnormalities. The aim was to extend detailed studies with the post-mortem samples and identify possible factors driving severe disturbance of homeostasis and organ dysfunction exhibited by the course of the patient's ten-year illness. Immunohistochemistry for C.b. antigen and PCR for DNA were tested on paraffin embedded blocks of autopsy tissues from brain, spleen, liver, lymph nodes (LN), bone marrow (BM), heart and lung. Standard H&E staining of brain sections was unrevealing. Immuno-staining analysis for astrocyte cytoskeleton proteins using glial fibrillary acidic protein (GFAP) antibodies showed a reactive morphology. Coxiella antigens were demonstrated in GFAP immuno-positive grey and white matter astrocytes, spleen, liver, heart, BM and LN. PCR analysis (COM1/IS1111 genes) confirmed the presence of C.b. DNA in heart, lung, spleen, liver & LN, but not in brain or BM. CONCLUSION: The study revealed the persistence of C. b. cell components in various organs, including astrocytes of the brain, in a post-infection QFS. The possible mechanisms and molecular adaptations for this alternative C.b. life style are discussed

    Estrogen, estrogen receptors, and hepatocellular carcinoma: Are we there yet?

    Get PDF
    Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/A protective role of the sex steroid hormone estrogen in hepatocellular carcinoma (HCC) was suggested a few decades ago according to clinical data showing higher HCC morbidity and mortality among males. Several recent studies further confirmed the anti-cancer effects of estrogen in the liver. However, it remains to be identified how to exploit estrogen signalling within clinical settings for HCC treatment. There are several unresolved issues related to the estrogen pathway in liver cells. The main problems include the absence of a clear understanding of which estrogen receptor (ER) isoform is predominantly expressed in normal and malignant liver cells, the ER isoform expression difference between males and females, and which ER isoform should be targeted when designing HCC therapy. Some of those questions were recently addressed by Iyer and co-authors. The current editorial review critically analyses the study by Iyer et al (WJG, 2017) that investigated the expression of ER subtypes in liver samples collected from patients with a healthy liver, hepatitis C virus cirrhosis, and HCC. ER presence was evaluated in association with gender, intracellular localization, inflammation marker NF-κB, and proliferation-related effector cyclin D1. The study limitations and advantages are discussed in light of recent advances in the HCC and estrogen signalling areas

    Interaction between anandamide and sphingosine-1-phosphate in mediating vasorelaxation in rat coronary artery

    Get PDF
    <b>BACKGROUND AND PURPOSE</b> Anandamide and sphingosine-1-phosphate (S1P) both regulate vascular tone in a variety of vessels. This study aimed to examine the mechanisms involved in the regulation of coronary vascular tone by anandamide and S1P, and to determine whether any functional interaction occurs between these receptor systems. <br></br> <b>EXPERIMENTAL APPROACH</b> Mechanisms used by anandamide and S1P to regulate rat coronary artery (CA) reactivity were investigated using wire myography. Interactions between S1P and the cannabinoid (CB)2 receptor were determined using human embryonic kidney 293 (HEK293) cells that stably over-express recombinant CB2 receptor. <br></br> <b>KEY RESULTS</b> Anandamide and S1P induced relaxation of the rat CA. CB2 receptor antagonists attenuated anandamide-induced relaxation, while S1P-mediated relaxation was dependent on the vascular endothelium and S1P3. Anandamide treatment resulted in an increase in the phosphorylation of sphingosine kinase-1 within the CA. Conversely, anandamide-mediated relaxation was attenuated by inhibition of sphingosine kinase. Moreover, S1P3, specifically within the vascular endothelium, was required for anandamide-mediated vasorelaxation. In addition to this, S1P-mediated relaxation was also reduced by CB2 receptor antagonists and sphingosine kinase inhibition. Further evidence that S1P functionally interacts with the CB2 receptor was also observed in HEK293 cells over-expressing the CB2 receptor. <br></br> <b>CONCLUSIONS AND IMPLICATIONS</b> In the vascular endothelium of rat CA, anandamide induces relaxation via a mechanism requiring sphingosine kinase-1 and S1P/S1P3. In addition, we report that S1P may exert some of its effects via a CB2 receptor- and sphingosine kinase-dependent mechanism, where subsequently formed S1P may have privileged access to S1P3 to induce vascular relaxation

    Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1

    Get PDF
    The transactivation of enhanced growth factor receptor (EGFR) by G protein–coupled receptor (GPCR) ligands is recognized as an important signaling mechanism in the regulation of complex biological processes, such as cancer development. Estrogen (E2), which is a steroid hormone that is intimately implicated in breast cancer, has also been suggested to function via EGFR transactivation. In this study, we demonstrate that E2-induced EGFR transactivation in human breast cancer cells is driven via a novel signaling system controlled by the lipid kinase sphingosine kinase-1 (SphK1). We show that E2 stimulates SphK1 activation and the release of sphingosine 1-phosphate (S1P), by which E2 is capable of activating the S1P receptor Edg-3, resulting in the EGFR transactivation in a matrix metalloprotease–dependent manner. Thus, these findings reveal a key role for SphK1 in the coupling of the signals between three membrane-spanning events induced by E2, S1P, and EGF. They also suggest a new signal transduction model across three individual ligand-receptor systems, i.e., “criss-cross” transactivation

    Coxiella burnetii dormancy in a fatal tenyear multisystem dysfunctional illness: case report

    Get PDF
    In a previous study of a Q fever outbreak in Birmingham, our group identified a non-infective complex of Coxiella burnetii (C.b.) antigens able to survive in the host and provoked aberrant humoral and cell-mediated immunity responses. The study led to recognition of a possible pathogenic link between C.b. infection and subsequent long-term post Q fever fatigue syndrome (QFS). This report presents an unusually severe case of C.b. antigen and DNA detection in post-mortem specimens from a patient with QFS.We report a 19-year old female patient who became ill with an acute unexplained febrile encephalitis-like illness, followed by increasingly severe multisystem dysfunction and death 10 years later. During life, extensive clinical and laboratory investigations from different disciplinary stand points failed to deliver a definitive identification of a cause. Given the history of susceptibility to infection from birth, acute fever and the diagnosis of "post viral syndrome", tests for infective agents were done starting with C.b. and Legionella pneumophila. The patient had previously visited farms a number of times. Comprehensive neuropathological assessment at the time of autopsy had not revealed gross or microscopic abnormalities. The aim was to extend detailed studies with the post-mortem samples and identify possible factors driving severe disturbance of homeostasis and organ dysfunction exhibited by the course of the patient's ten-year illness. Immunohistochemistry for C.b. antigen and PCR for DNA were tested on paraffin embedded blocks of autopsy tissues from brain, spleen, liver, lymph nodes (LN), bone marrow (BM), heart and lung. Standard H&E staining of brain sections was unrevealing. Immuno-staining analysis for astrocyte cytoskeleton proteins using glial fibrillary acidic protein (GFAP) antibodies showed a reactive morphology. Coxiella antigens were demonstrated in GFAP immuno-positive grey and white matter astrocytes, spleen, liver, heart, BM and LN. PCR analysis (COM1/IS1111 genes) confirmed the presence of C.b. DNA in heart, lung, spleen, liver & LN, but not in brain or BM.The study revealed the persistence of C. b. cell components in various organs, including astrocytes of the brain, in a post-infection QFS. The possible mechanisms and molecular adaptations for this alternative C.b. life style are discussed.Olga A. Sukocheva, Jim Manavis, Tuck-Weng Kok, Mark Turra, Angelo Izzo, Peter Blumbergs and Barrie P. Marmio

    Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism

    Get PDF
    Motivation: Despite being often perceived as the main contributors to cell fate and physiology, genes alone cannot predict cellular phenotype. During the process of gene expression, 95% of human genes can code for multiple proteins due to alternative splicing. While most splice variants of a gene carry the same function, variants within some key genes can have remarkably different roles. To bridge the gap between genotype and phenotype, condition- and tissue-specific models of metabolism have been constructed. However, current metabolic models only include information at the gene level. Consequently, as recently acknowledged by the scientific community, common situations where changes in splice-isoform expression levels alter the metabolic outcome cannot be modeled. Results: We here propose GEMsplice, the first method for the incorporation of splice-isoform expression data into genome-scale metabolic models. Using GEMsplice, we make full use of RNA-Seq quantitative expression profiles to predict, for the first time, the effects of splice isoform-level changes in the metabolism of 1455 patients with 31 different breast cancer types. We validate GEMsplice by generating cancer-versus-normal predictions on metabolic pathways, and by comparing with gene-level approaches and available literature on pathways affected by breast cancer. GEMsplice is freely available for academic use at https://github.com/GEMsplice/GEMsplice_code. Compared to state-of-the-art methods, we anticipate that GEMsplice will enable for the first time computational analyses at transcript level with splice-isoform resolution

    In Vitro and In Vivo Antagonism of a G Protein-Coupled Receptor (S1P3) with a Novel Blocking Monoclonal Antibody

    Get PDF
    Background: S1P 3 is a lipid-activated G protein-couple receptor (GPCR) that has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. Currently, there are no available high-affinity, subtypeselective drug compounds that can block activation of S1P3. We have developed a monoclonal antibody (7H9) that specifically recognizes S1P3 and acts as a functional antagonist. Methodology/Principal Findings: Specific binding of 7H9 was demonstrated by immunocytochemistry using cells that over-express individual members of the S1P receptor family. We show, in vitro, that 7H9 can inhibit the activation of S1P3mediated cellular processes, including arrestin translocation, receptor internalization, adenylate cyclase inhibiton, and calcium mobilization. We also demonstrate that 7H9 blocks activation of S1P3 in vivo, 1) by preventing lethality due to systemic inflammation, and 2) by altering the progression of breast tumor xenografts. Conclusions/Significance: We have developed the first-reported monoclonal antibody that selectively recognizes a lipidactivated GPCR and blocks functional activity. In addition to serving as a lead drug compound for the treatment of sepsi

    Evaluation of Cell Cycle Arrest in Estrogen Responsive MCF-7 Breast Cancer Cells: Pitfalls of the MTS Assay

    Get PDF
    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2′-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the cells are still viable and potential treatments utilizing these pathways may contribute to drug resistant cells. These experiments demonstrate how the combined measurement of metabolic activity and DNA labeling provides a more reliable interpretation of cancer cell response to treatment regimens

    SHP-2 Promotes the Maturation of Oligodendrocyte Precursor Cells Through Akt and ERK1/2 Signaling In Vitro

    Get PDF
    Background: Oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes (OLs), which are responsible for myelination. Myelin is essential for saltatory nerve conduction in the vertebrate nervous system. However, the molecular mechanisms of maturation and myelination by oligodendrocytes remain elusive. Methods and Findings: In the present study, we showed that maturation of oligodendrocytes was attenuated by sodium orthovanadate (a comprehensive inhibitor of tyrosine phosphatases) and PTPi IV (a specific inhibitor of SHP-2). It is also found that SHP-2 was persistently expressed during maturation process of OPCs. Down-regulation of endogenous SHP-2 led to impairment of oligodendrocytes maturation and this effect was triiodo-L-thyronine (T3) dependent. Furthermore, overexpression of SHP-2 was shown to promote maturation of oligodendrocytes. Finally, it has been identified that SHP-2 was involved in activation of Akt and extracellular-regulated kinases 1 and 2 (ERK1/2) induced by T3 in oligodendrocytes
    corecore