89 research outputs found

    Network-Level Structural Abnormalities of Cerebral Cortex in Type 1 Diabetes Mellitus

    Get PDF
    Type 1 diabetes mellitus (T1DM) usually begins in childhood and adolescence and causes lifelong damage to several major organs including the brain. Despite increasing evidence of T1DM-induced structural deficits in cortical regions implicated in higher cognitive and emotional functions, little is known whether and how the structural connectivity between these regions is altered in the T1DM brain. Using inter-regional covariance of cortical thickness measurements from high-resolution T1-weighted magnetic resonance data, we examined the topological organizations of cortical structural networks in 81 T1DM patients and 38 healthy subjects. We found a relative absence of hierarchically high-level hubs in the prefrontal lobe of T1DM patients, which suggests ineffective top-down control of the prefrontal cortex in T1DM. Furthermore, inter-network connections between the strategic/executive control system and systems subserving other cortical functions including language and mnemonic/emotional processing were also less integrated in T1DM patients than in healthy individuals. The current results provide structural evidence for T1DM-related dysfunctional cortical organization, which specifically underlie the top-down cognitive control of language, memory, and emotion. © 2013 Lyoo et al

    Cushing syndrome and glucocorticoids: T-cell lymphopenia, apoptosis, and rescue by IL-21.

    Get PDF
    BACKGROUND: Pediatric endogenous Cushing syndrome (eCs) is mainly caused by pituitary corticotropin-producing adenomas, and most glucocorticoid-dependent effects progressively regress upon tumor removal. eCs reproduces long-term, high-dose glucocorticoid therapy, representing a clean, natural, and unbiased model in which to study glucocorticoid bona fide effects on immunity. OBJECTIVE: We performed extensive immunologic studies in otherwise healthy pediatric patients with eCs before and 6 to 13 months after tumor resection, as well as in in vitro glucocorticoid-treated control cells. METHODS: Flow cytometry, immunoblotting, enzyme-linked immunosorbent assay, real-time quantitative PCR, and RNA-Seq techniques were used to characterize patients and in vitro glucocorticoid treated cells. RESULTS: Reduced thymic output, decreased naive T cells, diminished proliferation, and increased T-cell apoptosis were detected before surgery; all these defects eventually normalized after tumor removal in patients. In vitro studies also showed increased T-cell apoptosis, with correspondingly diminished NF-κB signaling and IL-21 levels. In this setting, IL-21 addition upregulated antiapoptotic BCL2 expression and rescued T-cell apoptosis in a PI3K pathway-dependent manner. Similar and reproducible findings were confirmed in eCs patient cells as well. CONCLUSIONS: We identified decreased thymic output and lymphocyte proliferation, together with increased apoptosis, as the underlying causes to T-cell lymphopenia in eCs patients. IL-21 was decreased in both natural and in vitro long-term, high-dose glucocorticoid environments, and in vitro addition of IL-21 counteracted the proapoptotic effects of glucocorticoid therapy. Thus, our results suggest that administration of IL-21 in patients receiving long-term, high-dose glucocorticoid therapy may contribute to ameliorate lymphopenia and the complications associated to it

    Alternative Splicing Promotes Tumour Aggressiveness and Drug Resistance in African American Prostate Cancer.

    Get PDF
    linical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa

    Alternative Splicing Promotes Tumour Aggressiveness and Drug Resistance in African American Prostate Cancer.

    Get PDF
    linical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa

    Alternative Splicing Promotes Tumour Aggressiveness and Drug Resistance in African American Prostate Cancer.

    Get PDF
    linical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa

    Differential Cytokine Utilization and Tissue Tropism Results in Distinct Repopulation Kinetics of Naïve vs. Memory T Cells in Mice

    Get PDF
    Naïve and memory T cells co-exist in the peripheral T cell pool, but the cellular mechanisms that maintain the balance and homeostasis of these two populations remain mostly unclear. To address this question, here, we assessed homeostatic proliferation and repopulation kinetics of adoptively transferred naïve and memory T cells in lymphopenic host mice. We identified distinct kinetics of proliferation and tissue-distribution between naïve and memory donor T cells, which resulted in the occupancy of the peripheral T cell pool by mostly naïve-origin T cells in short term (<1 week), but, in a dramatic reversal, by mostly memory-origin T cells in long term (>4 weeks). To explain this finding, we assessed utilization of the homeostatic cytokines IL-7 and IL-15 by naïve and memory T cells. We found different efficiencies of IL-7 signaling between naïve and memory T cells, where memory T cells expressed larger amounts of IL-7Rα but were significantly less potent in activation of STAT5 that is downstream of IL-7 signaling. Nonetheless, memory T cells were superior in long-term repopulation of the peripheral T cell pool, presumably, because they preferentially migrated into non-lymphoid tissues upon adoptive transfer and additionally utilized tissue IL-15 for rapid expansion. Consequently, co-utilization of IL-7 and IL-15 provides memory T cells a long-term survival advantage. We consider this mechanism important, as it permits the memory T cell population to be maintained in face of constant influx of naïve T cells to the peripheral T cell pool and under competing conditions for survival cytokines

    T Cell Receptor Signaling That Regulates the Development of Intrathymic Natural Regulatory T Cells

    Get PDF
    T cell receptor (TCR) signaling plays a critical role in T cell development, survival and differentiation. In the thymus, quantitative and/or qualitative differences in TCR signaling determine the fate of developing thymocytes and lead to positive and negative selection. Recently, it has been suggested that self-reactive T cells, escape from negative selection, should be suppressed in the periphery by regulatory T cells (Tregs) expressing Foxp3 transcription factor. Foxp3 is a master factor that is critical for not only development and survival but also suppressive activity of Treg. However, signals that determine Treg fate are not completely understood. The availability of mutant mice which harbor mutations in TCR signaling mediators will certainly allow to delineate signaling events that control intrathymic (natural) Treg (nTreg) development. Thus, we summarize the recent progress on the role of TCR signaling cascade components in nTreg development from the studies with murine model

    Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    Get PDF
    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported inToxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches

    SEALONE (Safety and Efficacy of Coronary Computed Tomography Angiography with Low Dose in Patients Visiting Emergency Room) trial: study protocol for a randomized controlled trial

    Get PDF
    Objective Chest pain is one of the most common complaints in the emergency department (ED). Cardiac computed tomography angiography (CCTA) is a frequently used tool for the early triage of patients with low- to intermediate-risk acute chest pain. We present a study protocol for a multicenter prospective randomized controlled clinical trial testing the hypothesis that a low-dose CCTA protocol using prospective electrocardiogram (ECG)-triggering and limited-scan range can provide sufficient diagnostic safety for early triage of patients with acute chest pain. Methods The trial will include 681 younger adult (aged 20 to 55) patients visiting EDs of three academic hospitals for acute chest pain or equivalent symptoms who require further evaluation to rule out acute coronary syndrome. Participants will be randomly allocated to either low-dose or conventional CCTA protocol at a 2:1 ratio. The low-dose group will undergo CCTA with prospective ECG-triggering and restricted scan range from sub-carina to heart base. The conventional protocol group will undergo CCTA with retrospective ECG-gating covering the entire chest. Patient disposition is determined based on computed tomography findings and clinical progression and all patients are followed for a month. The primary objective is to prove that the chance of experiencing any hard event within 30 days after a negative low-dose CCTA is less than 1%. The secondary objectives are comparisons of the amount of radiation exposure, ED length of stay and overall cost. Results and Conclusion Our low-dose protocol is readily applicable to current multi-detector computed tomography devices. If this study proves its safety and efficacy, dose-reduction without purchasing of expensive newer devices would be possible
    corecore