23 research outputs found

    Bioethanol Production

    Get PDF
    In recent decades, usage of biofuels as fossil fuel substitutes has increased. One method for lowering both crude oil use and environmental pollution is the production of ethanol (bioethanol) from biomass. This report offers an examination of the existing state of affairs and future prospects for biomass-to-ethanol. We examine different conversion routes from a technological, economic, and environmental standpoint. The main focus of this study is on the yield of ethanol from molasses in relation to the dilution ratio and the quantity of yeast used for fermentation while maintaining a constant fermentation temperature and time. In this investigation, the feedstock is sugarcane molasses. A thick by-product of turning sugar cane into sugar is sugarcane molasses. Consequently, sugarcane molasses and other agricultural byproducts are desirable feedstock for the manufacture of bioethanol. Agricultural wastes are cheap, abundant, and renewable. The least expensive strain for the conversion of biomass substrate is Saccharomyces cerevisiae. As a conclusion, it was found that the ethanol yield increased with an increase in yeast quantity, reaching an optimal yeast quantity before ethanol yield started to drop. The ideal ratio of molasses to water was found to be 1:2. The amount of fermentable sugars contained in the biomass has a significant impact on the output of ethanol

    Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    Get PDF
    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transportā€“related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54ā€“56% efficient in wild-type mice, and reduced by only 3ā€“4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3ā€“5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 Ā± 5 Ī¼m and [Na+] was 115 Ā± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by āˆ¼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption

    Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): a randomised controlled trial in India, Sri Lanka, and Bangladesh

    Get PDF
    Background: Although therapeutic hypothermia reduces death or disability after neonatal encephalopathy in high-income countries, its safety and efficacy in low-income and middle-income countries is unclear. We aimed to examine whether therapeutic hypothermia alongside optimal supportive intensive care reduces death or moderate or severe disability after neonatal encephalopathy in south Asia. Methods: We did a multicountry open-label, randomised controlled trial in seven tertiary neonatal intensive care units in India, Sri Lanka, and Bangladesh. We enrolled infants born at or after 36 weeks of gestation with moderate or severe neonatal encephalopathy and a need for continued resuscitation at 5 min of age or an Apgar score of less than 6 at 5 min of age (for babies born in a hospital), or both, or an absence of crying by 5 min of age (for babies born at home). Using a web-based randomisation system, we allocated infants into a group receiving whole body hypothermia (33Ā·5Ā°C) for 72 h using a servo-controlled cooling device, or to usual care (control group), within 6 h of birth. All recruiting sites had facilities for invasive ventilation, cardiovascular support, and access to 3 Tesla MRI scanners and spectroscopy. Masking of the intervention was not possible, but those involved in the magnetic resonance biomarker analysis and neurodevelopmental outcome assessments were masked to the allocation. The primary outcome was a combined endpoint of death or moderate or severe disability at 18ā€“22 months, assessed by the Bayley Scales of Infant and Toddler Development (third edition) and a detailed neurological examination. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT02387385. Findings: We screened 2296 infants between Aug 15, 2015, and Feb 15, 2019, of whom 576 infants were eligible for inclusion. After exclusions, we recruited 408 eligible infants and we assigned 202 to the hypothermia group and 206 to the control group. Primary outcome data were available for 195 (97%) of the 202 infants in the hypothermia group and 199 (97%) of the 206 control group infants. 98 (50%) infants in the hypothermia group and 94 (47%) infants in the control group died or had a moderate or severe disability (risk ratio 1Ā·06; 95% CI 0Ā·87ā€“1Ā·30; p=0Ā·55). 84 infants (42%) in the hypothermia group and 63 (31%; p=0Ā·022) infants in the control group died, of whom 72 (36%) and 49 (24%; p=0Ā·0087) died during neonatal hospitalisation. Five serious adverse events were reported: three in the hypothermia group (one hospital readmission relating to pneumonia, one septic arthritis, and one suspected venous thrombosis), and two in the control group (one related to desaturations during MRI and other because of endotracheal tube displacement during transport for MRI). No adverse events were considered causally related to the study intervention. Interpretation: Therapeutic hypothermia did not reduce the combined outcome of death or disability at 18 months after neonatal encephalopathy in low-income and middle-income countries, but significantly increased death alone. Therapeutic hypothermia should not be offered as treatment for neonatal encephalopathy in low-income and middle-income countries, even when tertiary neonatal intensive care facilities are available. Funding: National Institute for Health Research, Garfield Weston Foundation, and Bill & Melinda Gates Foundation. Translations: For the Hindi, Malayalam, Telugu, Kannada, Singhalese, Tamil, Marathi and Bangla translations of the abstract see Supplementary Materials section

    Identification of Novel Homologous Series of Polyhydroxylated Theasinensins and Theanaphthoquinones in the SII Fraction of Black Tea Thearubigins Using ESI/HPLC Tandem Mass Spectrometry

    No full text
    Thearubigins are the most abundant phenolic pigments found in black tea, produced by enzymatic oxidation of green tea flavan-3-ols in tea fermentation of until recently unknown composition. In this study electrospray ionization tandem LC-MS<sup><i>n</i></sup> experiments have been applied for the characterization of crude thearubigins isolated from black tea not exceeding 1000 Da. The aim of this study is to confirm the oxidative cascade hypothesis of tea fermentation. The data revealed the presence of two novel classes of compounds in thearubigin fractions. The first class of compounds revealed the presence of polyhydroxylated dimers of the theanaphthaquinone and theasinensin C structures, which were consistent with the polyhydroxylation hypothesis previously formulated. Furthermore, new classes of peroxo-/epoxy- compounds in the series of theasinensin A were identified, thus indicating the presence of H<sub>2</sub>O<sub>2</sub> and its important contribution as a nucleophile in the tea fermentation process

    Enhancement of Electroluminescent Green Emission by Far-Field Coupling of Au Nanoparticles in Organic Light Emitting Diodes

    No full text
    Far-field surface plasmon enhanced green electroluminescence in organic light-emitting devices (OLEDs) is harvested by tuning the gold nanoparticles (Au NPs) density at the interface of the anode:hole transport layer (HTL) in OLEDs using IrĀ­(DMSPI)<sub>2</sub>(acac) as emissive layer. Au NPs increases the hole injection with 35/Ī¼m<sup>2</sup> density at the indium tin oxide (ITO):<i>N</i>,<i>N</i>ā€²-di-1-naphthyl-<i>N</i>,<i>N</i>ā€²-diphenylbenzidine (NPB) interface and leads to enhanced emission intensity as a result of increased radiative rate (<i>k</i><sub>r</sub>). The Au NPs modified anode in OLEDs injects holes effectively into the NPB layer and stabilizes its energy level which results in an increase of current density. The reduced hole injection barrier (HIB) was analyzed by using the Richardsonā€“Schottky equation. The far-field plasmonic coupling with hole injection ability of Au NPs at the ITO:HTL interface enhanced the device efficiencies at low turn-on voltage in this work. However, the anode with 6.0/Ī¼m<sup>2</sup> density of Au NPs shows poor hole injection ability into the HTL due to trapping of holes at the interface
    corecore