29 research outputs found

    Peak flow measurements in patients with severe aortic stenosis : a prospective comparative study between cardiovascular magnetic resonance 2D and 4D flow and transthoracic echocardiography

    Get PDF
    Background Aortic valve stenosis (AS) is the most prevalent valvular disease in the developed countries. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is an emerging imaging technique, which has been suggested to improve the evaluation of AS severity compared to two-dimensional (2D) flow and transthoracic echocardiography (TTE). We investigated the reliability of CMR 2D flow and 4D flow techniques in measuring aortic transvalvular peak systolic flow in patients with severe AS. Methods We prospectively recruited 90 patients referred for aortic valve replacement due to severe AS (73.3 +/- 11.3 years, aortic valve area 0.7 +/- 0.1 cm(2), and 54/36 tricuspid/bicuspid), and 10 non-valvular disease controls. All the patients underwent echocardiography and 2D flow and 4D flow CMR. Peak flow velocity measurements were compared using Wilcoxon signed rank sum test and Bland-Altman analysis. Results 4D flow underestimated peak flow velocity in the AS group when compared with TTE (bias - 1.1 m/s, limits of agreement +/- 1.4 m/s) and 2D flow (bias - 1.2 m/s, limits of agreement +/- 1.6 m/s). The differences between values obtained by TTE (median 4.3 m/s, range 2.7-6.1 m/s) and 2D flow (median 4.5 m/s, range 2.9-6.5 m/s) compared to 4D flow (median 3.1 m/s, range 1.7-5.1 m/s) were significant (p < 0.001). The difference between 2D flow and TTE were insignificant (bias 0.07 m/s, limits of agreement +/- 1.5 m/s). In non-valvular disease controls, peak flow velocity was measured higher by 4D flow than 2D flow (1.4 m/s, 1.1-1.7 m/s and 1.3 m/s, 1.1-1.5 m/s, respectively; bias 0.2 m/s, limits of agreement +/- 0.16 m/s). Conclusions CMR 4D flow significantly underestimates systolic peak flow velocity in patients with severe AS. 2D flow, in turn, estimated the AS velocity accurately, with measured peak flow velocities comparable to TTE.Peer reviewe

    Markers of early vascular aging are not associated with cryptogenic ischemic stroke in the young : A case-control study

    Get PDF
    Publisher Copyright: © 2022 The Author(s)Background and Purpose: We aimed to assess the association between covert atherosclerosis, arterial stiffness, and early-onset cryptogenic ischemic stroke (CIS) in a prospective case-control study. Methods: We enrolled 123 young CIS patients (median age 41 years; 42% women) and 123 age- and sex-matched controls. Carotid intima-media thickness (CIMT), Augmentation Index (AIx), central pulse wave velocity (PWV), and subendocardial viability ratio (SEVR) were compared between patients and controls. Conditional logistic regression was used adjusting for age, systolic blood pressure, diastolic blood pressure, current smoking, total cholesterol/high-density lipoprotein cholesterol (Total-C/HDL-C) ratio, and glycated albumin to assess the independent association between CIMT, arterial stiffness and CIS. Results: Patients with higher CIMT and PWV were older, more often men and they had more frequently well-documented risk factors, lower HDL and higher Total-C/HDL-C ratio compared to other tertiles. In univariate comparisons, we found no differences between patients and controls regarding CIMT, AIx, or PWV. In the entire cohort, patients had a significantly lower SEVR compared to controls (146.3%, interquartile range [IQR] 125.7-170.3 vs. 158.0%, IQR 141.3-181.0, P=0.010). SEVR was lower also in women compared to their controls (132.0%, IQR 119.4-156.1 vs. 158.7%, IQR 142.0-182.8, P=0.001) but no significant difference appeared between male patients and male controls. However, after adjusting for comorbidities and laboratory values these significant differences were lost (odds ratio [OR] 1.52, 95% confidence interval [CI] 0.47-4.91) in the entire cohort and OR 3.89, 95% CI 0.30-50.80 in women). Conclusions: Higher CIMT and PWV were associated to higher age, male sex, and several well-documented cardiovascular risk factors. However, in this study we could not prove that either covert atherosclerosis or arterial stiffness contribute to pathogenesis of early-onset CIS.Peer reviewe

    Epitranscriptomics of Ischemic Heart Disease—The IHD-EPITRAN Study Design and Objectives

    Get PDF
    Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets

    Epitranscriptomics of Ischemic Heart Disease - The IHD-EPITRAN Study Design and Objectives

    Get PDF
    Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m(6)A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m(6)A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m(6)A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.</p

    Impact of Atrial Fibrillation on the Symptoms and Echocardiographic Evaluation of Patients With Aortic Stenosis

    No full text
    Atrial fibrillation (AF) is common in patients with aortic stenosis (AS) and complicates the assessment of AS severity. The overlapping of symptoms in these 2 conditions may postpone valve replacement. This study aimed to evaluate the effect of AF on the severity assessment of AS and its impact on symptoms and quality of life (QoL). Patients with severe AS were prospectively recruited. Echocardiography, symptom questionnaires, and RAND-36 QoL assessment were performed preoperatively and 3 months postoperatively. The aortic valve calcium score (AVC) was measured using computed tomography. Of the 279 patients, 74 (26.5%) had AF. Patients with AF had lower mean gradients and 45.9% had a low-gradient phenotype, with a mean gradient <40 mm Hg, compared with 22.4% of those without AF (p <0.001). The AVC measurements revealed severe valve calcification equally in patients with or without AF (85.7% vs 87.7%, p = 0.78). Patients with AF were more symptomatic at baseline, with 50.0% versus 27.3% in New York Heart Association class III or higher (p <0.001), and after intervention. Patients with AF had more residual dyspnea (27.3% vs 12.0%, p = 0.007) and exercise intolerance (36.4% vs 17.0%, p = 0.002). The QoL improved significantly in both groups but was worse at baseline in patients with AF and remained impaired after intervention. In conclusion, low-gradient AS phenotype is overrepresented in patients with AF, but they have equally severe stenosis determined using AVC, despite the lower gradients. Patients with AF have more symptoms and worse QoL, but they improve significantly after intervention. In patients with AF, multimodality imaging is important in the assessment of AS severity.Peer reviewe
    corecore